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� A framework to predict binary
liquidus from the properties of the
pure elements and estimates from
Miedema’s model is proposed.

� The liquidus prediction is broken
down into three simpler prediction
tasks to improve both accuracy and
interpretability.

� The equilibrium onset temperature of
solidification is predicted with a
mean absolute error of 102 K.

� A large dataset comprising data on
2016 binary liquidus between 64
elements is shared in open access.

� CALPHAD assessments enable the
creation of large machine learning
datasets for predicting phase
equilibria.
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Knowledge of the liquidus is important for the design and processing of many materials. For instance,
deep eutectics are important for the design of metallic glasses, and recently multi-principal element
alloys have been designed based on eutectic compositions or melting temperatures extrapolated from
binary liquidus data. In this study, we provide a general framework for predicting binary liquidus only
from the properties of the pure elements and thermodynamic properties calculated by Miedema’s model.
Our framework combines three machine learning models that are trained and evaluated on liquidus data
collected from 466 CALPHAD assessments of binary phase diagrams. The first model predicts the forma-
tion of liquid miscibility gaps with a prediction accuracy of 95.3%, outperforming the empirical Mott
model. The second and third models predict the equilibrium onset temperature of solidification and
the critical temperature of liquid miscibility gaps, respectively. An important feature of our models is that
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Phase diagrams
CALPHAD
they can give indications of the presence of congruent melting phases and eutectics. Using our frame-
work, we predict the liquidus in 1563 binary systems not included in our CALPHAD dataset, many of
which are unknown. By collecting more data, our framework will continue to grow towards better liq-
uidus prediction.

� 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Phase diagrams assessments play an important role in the
design of a multitude of materials [1], from alloys [2] to semicon-
ductors [3] or composites [4]. Yet, phase diagram determination is
time consuming, and the number of materials systems that remain
to be explored is immense. In recent years, machine learning (ML)
has emerged as a valuable tool to identify compositions worth
investigating by predicting specific features that are desirable for
a given application [5–7]. For instance, one can refer to the predic-
tion of single- or two-phase domains to design multi-principal ele-
ment alloys (MPEAs) [8], of metallic glasses [9], or of new
quasicrystals [10].

Data collection is a crucial step of such data-driven studies. To
obtain the necessary phase diagram data, two main sources have
been used. The first is high-throughput DFT calculations. Here,
the thermodynamic stability of compounds is evaluated from their
enthalpy of formation calculated at 0 K, as in Ref. [11]. The great
advantage of this approach is that large amounts of data can be
generated in an efficient way. For instance, databases such as The
Materials Project [12] contain data on more than 100,000 com-
pounds, and it is possible to create tailor-made datasets of more
than 10,000 entries [13]. A disadvantage of this approach is that
the data can be of limited accuracy [14] and do not provide infor-
mation on the thermal stability of the compounds. The second
source is the experimental literature. High-quality data can be
obtained from it, but it is very time consuming to collect and assess
the data. Therefore, the datasets, often collected from non-digital
compilations, are relatively small, comprising tens [15–17] to
thousands [8,18] of entries on phase equilibria. This can be detri-
mental to the performance of ML models [19].

An interesting alternative to collecting phase diagram data is to
rely on CALPHAD-based thermodynamic assessments. A major
advantage of this strategy is that CALPHAD assessments integrate
and combine both thermodynamic and phase equilibria data,
obtained from both experimental measurements and first-
principles calculations [20]. Consistency between data of different
nature can be evaluated as they are all translated in terms of Gibbs
energy. Moreover, compatibility between binary data and ternary
data can be evaluated, as illustrated in Ref. [21]. It is therefore sug-
gested that CALPHAD assessments can be used to create large and
unique datasets for predicting phase equilibria and thermody-
namic properties. However, to the best of our knowledge, there
have been only few attempts to predict phase diagrams properties
from datasets collected from CALPHAD assessments [22–25].

An important part of phase diagrams is the liquidus that is the
lowest temperature above which a material is at equilibrium in a
homogeneous liquid phase. The liquidus provides information on
the thermal stability of solids. As such, knowledge of the liquidus
is important for materials processing, such as casting [26], additive
manufacturing [27] or biomass combustion [28], and for the design
of all kinds of materials, such as thermoelectrics [29] or superalloys
[30], notably as there is a correlation between the melting point of
precipitates and creep resistance [31,32]. Of particular importance
are local minima in the liquidus, eutectics. Eutectic casting is an
essential concept in metallurgy [33], and a promising route to
the design of MPEAs [34,35]. Besides, deep eutectics are important
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for the design of metallic glasses [9,36]. To further illustrate the
wide range of applications, eutectic alloys are promising candi-
dates as phase change materials for thermal energy storage [37],
and binary alloys are being investigated for this application
[38,39]. Information on binary phase diagrams have been used to
predict phase equilibria in higher-order systems using machine
learning [25,40], and notably, strategies to design MPEAs based
on eutectic compositions [41,42] or melting temperatures [43]
extrapolated from binary liquidus data have been proposed. There-
fore, a model to predict binary liquidus can be useful for numerous
applications.

In oxide systems, empirical [44] and ML [45] models have been
developed to reproduce the liquidus. However, these interpolation
models were not designed to be predictive outside the system of
interest. Several ML studies have been conducted to predict the
congruent melting point of compounds corresponding to a local
maximum in the liquidus. Most of these studies focus on ionic liq-
uids, salts melting below 373 K and composed of organic and inor-
ganic ions, as in Ref. [46]. Studies on the prediction of the melting
point of equimolar binary compounds have been carried out on the
basis of limited datasets containing less than 50 entries [16,17]. An
ML model was developed based on a dataset of 248 melting points
of pure elements and binary compounds [18]. Despite the limited
size of the dataset, performance was improved after including
physical properties calculated by DFT as features. An ensemble
model of 30 graph neural network models was trained on a much
larger dataset of 10,000 melting points of compounds [47]. A neu-
ral network was developed to predict binary liquidus from a data-
set collected from CALPHAD assessments comprising 287 binaries
and 57 elements [23]. However, this ML model failed to reproduce
miscibility gaps. This limitation can be explained as follows. A
maximum in the liquidus can correspond to two very different
cases. The first is the presence of a compound that melts congru-
ently, which suggests some affinity between the elements, while
the second is the presence of a liquid miscibility gap that comes
from repulsive interactions between the elements.

Despite the importance of the liquidus for materials design, the
prediction of liquidus temperatures in a vast compositional space
has only been attempted once in 2020 [23]. That is because it is
challenging to collect data of sufficient quantity and quality to
build models upon. In this study, we propose a framework to pre-
dict binary liquidus including miscibility gaps (Fig. 1). From data
collected from CALPHAD assessments on 466 binary systems and
64 elements, our framework is tested, and 1563 binary liquidus
not included in our dataset are predicted. Our framework consists
of three ML prediction models. The first, referred to as Model 1, is a
classification model to predict the formation of liquid miscibility
gaps. The second, Model 2, predicts the equilibrium onset temper-
ature of solidification, noted TS+L, disregarding the fact the liquid
may not be homogeneous. This information is obtained from
Model 1 and from our third model, Model 3. Model 3 predicts
the critical temperature above which the elements are completely
miscible in the liquid, noted TL+L, whether the miscibility gap is
metastable (TL+L < TS+L = Tliquidus) or stable (TS+L < TL+L = Tliquidus).
The liquidus is thus obtained as the maximum between Model 2
and Model 3. However, Model 3 can only be trained on data from
systems where the elements show some degree of immiscibility

http://creativecommons.org/licenses/by/4.0/


Fig. 1. Framework adopted in this study to predict binary liquidus. (a) From a compilation of CALPHAD assessments, liquidus data are collected on 466 binary systems. (b)
Binary liquidus between 64 elements are then predicted from 3 ML models. ‘‘w/o” stands for without.
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(TL+L greater than 300 K). Therefore, in systems where Model 1 pre-
dicts that the formation of a miscibility gap is very unlikely, Model
3 is not expected to be valid, and the liquidus is directly obtained
from Model 2.

2. Methods

2.1. Dataset

Training datasets are collected from 466 CALPHAD assessments
of binary phase diagrams obtained from the Computational Phase
Diagram Database (CPDDB) [48] using the Pandat software [49].
A reference list of the assessments can be found in the data repos-
itory associated with this article [50]. First, in these binaries, a
stable liquid miscibility gap is found in 44 systems, and this infor-
mation is used to develop Model 1. Second, for each binary, the liq-
uidus is calculated over the entire compositional range in steps of
0.5 at.%. The data on the 13 systems in which there is a very steep
miscibility gap, stable above 4000 K, are removed. The liquidus
temperature in the remaining 453 binaries are used to develop
Model 2 after removing the data corresponding to miscibility gaps.
Last, liquid miscibility gap temperatures from 33 binaries in which
the miscibility gap is eventually stable and 171 binaries in which it
is metastable are used to develop Model 3. All data were collected
disregarding the presence of the gas phase. Additional information
on composition of each dataset is given in Supplementary Note A.

2.2. Descriptors

Up to 58 descriptors are obtained from the properties of the
pure elements weighted by the composition. The melting proper-
ties of the pure elements are calculated from the SGTE unary data-
base [51]. In this way, feature extraction is consistent with data
collection, as this database is the backbone of CALPHAD assess-
ments. It is pointed out that the melting point of C is set at
4765 K, which is an upper limit [52], and that for P, data on the
red allotrope which melts at 852 K are adopted. The other proper-
ties are calculated using matminer [53] from the data accumulated
in the magpie repository [54].

Up to 4 descriptors are obtained from Miedema’s semi-
empirical model [55]. The element-dependent parameters of the
model are taken from the matminer repository [53]. To compute
the variables of the model, we follow the procedure of Ref. [56].
3

2.3. ML methods

The following algorithms are used: k-nearest neighbor (KNN)
and random forest (RF) as implemented in scikit-learn [57],
lightGBM [58], and artificial neural network (ANN) with two hid-
den layers as implemented in tensorflow [59].

All models are optimized and tested from a nested cross-
validation (CV) approach schematized in Fig. S4. Data on each
binary system form a group and are never split between the
training, validation, or test sets. A group 10-fold CV is performed
in the inner loop to determine the best set of hyperparameters
from grid search, except for lightGBM for which the Optuna
package [60] is used. A group 20-fold CV is performed in the outer
loop to evaluate model performance. More details are in Supple-
mentary Note B.
3. Results and discussion

3.1. Prediction of the formation of liquid miscibility gaps

To train Model 1, five descriptors are used. Two descriptors are
obtained from the absolute difference of the enthalpy of fusion of
the pure elements and of their entropy of fusion. The remaining
three descriptors obtained from Miedema’s model [55,61] are (i)
the enthalpy of mixing in the liquid phase estimated at equiatomic
composition, and the square of the difference (ii) of the so-called
work function, denoted u, and (iii) of the cube root of the average
electron density at the boundary of the Wigner-Seitz cell, denoted

n1=3
ws . It has been shown that the latter two descriptors allow to dis-

tinguish between binary systems in which compounds exist from
others [55,62].

In the dataset, the classes are imbalanced as liquid miscibility
gaps are stable in only 44 of the 466 included binaries. This can
cause the classifier to be biased toward the majority class, i.e., to
underestimate the stability of miscibility gaps. This imbalance
can be addressed by over-sampling the minority class during train-
ing. For this purpose, two over-sampling methods implemented in
Imbalanced-learn [63] are used: SMOTE [64] and BorderlineSMOTE
[65]. These algorithms generate synthetic samples in the minority
class until the desired Nrmin=Nmaj ratio is reached, with the number
of samples in the minority class after resampling, Nrmin, and the
number of samples in the majority class, Nmaj. An optimal value



Table 1
Results obtained when predicting the stability of liquid miscibility gaps using the RF algorithm and different over-sampling strategies. The confusion matrix is presented in the
four rightmost columns. It shows how many observations were correctly (true positive, TP and true negative, TN) and incorrectly classified (false positive, FP and false negative,
FN), with the positive class being ‘‘there is a stable miscibility gap in the system”.

Over-sampling Nrmin=Nmaj Accuracy Macro F1 score TP FN FP TN

None 0.104 0.953 0.846 28 16 6 416
SMOTE 0.20 0.951 0.851 31 13 10 412
BorderlineSMOTE 0.20 0.953 0.856 31 13 9 413

Table 2
Descriptors for Model 2 and Model 3.

Descriptor Characteristics

Melting point Mean and average absolute deviation of the melting property among elements
in composition
(20 dimensional)

Enthalpy of fusion
Enthalpy of the liquid at the melting point
Enthalpy of the solid at the melting point
Entropy of fusion
Entropy of the liquid at the melting point
Entropy of the solid at the melting point
Heat capacity of fusion
Heat capacity of the liquid at the melting point
Heat capacity of the solid at the melting point

Atomic number Mean and average absolute deviation of the property among elements in
composition
(38 dimensional)

Mendeleev number
Periodic table row
Periodic table column
Atomic weight
Covalent radius
Electronegativity
Volume (at 0 K from DFT)
Number of valence electrons
Filled s orbitals
Filled p orbitals
Filled d orbitals
Filled f orbitals
Unfilled valence orbitals
Unfilled s orbitals
Unfilled p orbitals
Unfilled d orbitals
Unfilled f orbitals
Space group number

Enthalpy of mixing in the binary liquid phase Estimates from Miedema’s model
(2 dimensional)Enthalpy of formation of an ordered binary intermetallic compound

Table 3
Performance metrics obtained over all the 453 binaries included in the dataset for
different algorithms when predicting the equilibrium onset temperature of solidifi-
cation. R2 is the coefficient of determination.

Algorithm MAE (in K) R2

lightGBM 102.4 0.945
RF 102.4 0.944
ANN 118.3 0.931
KNN 114.4 0.931
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for this ratio was obtained from a grid search. The results obtained
using the RF algorithm and different over-sampling strategies are
summarized in Table 1. While over-sampling does not improve
the accuracy of the model, the best results are obtained when using
the BorderlineSMOTE algorithm [65]. It is pointed out that similar
results are obtained with the lightGBM algorithm (Supplementary
Note C).

In a previous study [66], an empirical model called Mott model
was proposed to predict liquid immiscibility in binaries. It was
applied to the present dataset to allow for a direct comparison with
our ML model. For each binary, the Mott number was calculated
from the data in the magpie repository [54], and compared with
‘‘Mott criterion 1” from Ref. [66]. An accuracy of 74.2% was
obtained, which is significantly lower than the accuracy of our
ML model. Furthermore, an advantage of RF is that the probability
of belonging to each class can be evaluated. This is more informa-
tive than simply knowing whether a miscibility gap is stable or not.
For instance, our model predicts a probability of having a miscibil-
ity gap of 0.31 in the La-Zr systemwhere a miscibility gap is almost
stable [67], and of 0.73 in the Cr-Sn system where a miscibility gap
is stable only over a limited range of composition and temperature
[68] (Supplementary Note E).
4

3.2. Prediction of the equilibrium onset temperature of solidification

To train Model 2, the 60 descriptors listed in Table 2 are used.
The target variable of Model 2 is the difference between the liq-
uidus temperature and the weighted average of the melting points
of the elements, as in Ref. [23].

Performance metrics for different ML algorithms are presented
in Table 3. The best results are obtained using the lightGBM and RF
algorithms, and the RF algorithm is chosen to build Model 2. The
mean absolute percentage error (MAPE) is shown per element in
Fig. 2. This is a measure of the error relative to the temperature.



Fig. 2. The MAPE of Model 2 per element. For the elements that are underrepresented in the dataset, such as As, Ba, Cs, Rh and Tl for which only one binary is included
(Fig. S4), the calculated MAPE may not be representative.

Fig. 3. Liquidus predicted using Model 2 for (a) the Au-Tb system and (b) the Cu-Y
system. The liquidus calculated from CALPHAD assessments [73,74] that have not
been used during training and experimental data [74–79] are plotted for
comparison.

Fig. 4. Scatter plot of the liquidus temperatures predicted by Model 2 against the
ones calculated from CALPHAD assessments across the whole dataset comprising
453 binaries. The diagonal line illustrates perfect agreement. Outliers obtained in
the Al-Ga and B-Ga systems are circled and discussed in the text.
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For a given element A, it is calculated over all binaries in the data-
set between A and any other element B as follows:

MAPE el Að Þ ¼ 100
X

el BjA-B2Datasetf g

1
199

X

0:5�xB�99:5

� TCALPHADðxBÞ � TMLðxBÞj j
TCALPHADðxBÞ ð1Þ

with TCALPHAD the liquidus temperature calculated from CALPHAD
assessments, TML the liquidus temperature predicted from Model
2. The predictions are especially accurate for rare earths, with an
MAE of 72 K calculated over all the 158 binaries in the dataset
between a lanthanide and any other element, which can be as
low as 30 K for Ho and Er (Fig. S6). The predicted Au-Tb liquidus,
which has an MAE of 35 K, is shown in Fig. 3(a). This good agree-
ment is explained by the fact that there are particularly strong



Table 4
Performance metrics obtained for different ML algorithms when predicting liquid
miscibility gap temperatures from data on 33 binaries in which a miscibility gap is
eventually stable.

Algorithm MAE (in K) R2

RF 459.6 0.541
lightGBM 471.7 0.52
ANN 532 0.454
KNN 523.7 0.337

Fig. 5. Scatter plot of the miscibility gap temperatures predicted using the RF
algorithm against the ones calculated from CALPHAD assessments. The dataset
comprises (a) data on 33 binaries in which a miscibility gap is eventually stable and
(b) from data on 204 binaries in which the miscibility gap is either stable or
metastable.
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trends in phase diagrams throughout the lanthanide series [69,70].
However, the predictions are less reliable for group (1) and group
15 elements. This is because these electropositive and electronega-
tive elements tend to form complex liquids with short-range order-
ing [71,72], and they are underrepresented in the dataset (Fig. S2).
An important feature of Model 2 is that can give indications of the
presence of congruent melting phases and eutectics that correspond
to maxima and minima of the liquidus. This is true even when the
liquidus temperature is not closely predicted, as shown in Fig. 3(b)
with the Cu-Y case.

Fig. 4 shows a scatter plot between the liquidus temperatures
predicted by Model 2 and calculated from CALPHAD assessments
across the whole dataset. The absolute error is less than 100 K in
63% of the cases, and less than 200 K in 85% of the cases. The model
is abnormally inaccurate in the B-Ga and Al-Ga systems, for which
mean absolute errors (MAE) of 724 K and 645 K are obtained,
respectively. In the B-Ga system, no compounds have been synthe-
sized and the existence of a large liquid miscibility gap has been
assumed [80]. The B-Ga liquidus calculated from a CALPHAD
assessment [81] based on this limited information only is therefore
unreliable. In Ref. [81], the liquidus temperature was modeled to
increase from 303 K for pure Ga to 2285 K at 4.5 at.%B, whereas
Model 2 predict a much lower liquidus temperature of 648 K at this
composition. Thus, the liquidus temperature in the B-Ga system
appears to be severely overestimated in [81]. This is further sup-
ported by the fact that a critical miscibility gap temperature of
3796 K is calculated from Ref. [81], whereas a temperature of
1966 K is predicted from Model 3. This illustrates how our ML
models can provide CALPHAD assessors with reasonable liquidus
estimates where no experimental data exist. On the other hand,
in the Al-Ga system, the liquidus calculated from Ref. [82] is reli-
able, as it is supported by several consistent experimental datasets.
Model 2 greatly overestimates the liquidus temperature in this sys-
tem. This is explained by the fact that our model was trained to
reproduce the overestimated B-Ga liquidus and assumes similari-
ties between two binaries of group 13 neighbors. If data on B-Ga
are removed from the training set, the MAE for Al-Ga decreases
from 724 K to 330 K, a value still high, but more consistent with
the expected accuracy for group 13 elements (Fig. 2). This illus-
trates how unreliable data in the training set can mislead the
model.

If a single RF model was trained to predict the liquidus temper-
ature, miscibility gaps included, the MAE would increase from
102 K to 132 K. This illustrates that our framework based on three
ML models (Fig. 1) improves prediction accuracy. Besides, a RF
model was trained using the 7 descriptors used in Ref. [23] instead
of the 60 proposed in Table 1. A higher MAE of 110 K was obtained.

So far, the prediction performance of Model 2 has been evalu-
ated in the case where the binary liquidus to be predicted is com-
pletely unknown. If some liquidus data are available in the system
of interest, they can be included in the training set, which will
improve the accuracy of the model. To demonstrate this, a RF
model was trained after the data points at equiatomic composition
were systematically removed from the test set and added to the
training set over all folds. A significantly improved MAE of 87 K
was obtained. When the data points at 25 and 75 at.% are also
added to the training set, the MAE is further improved to 71 K.

3.3. Prediction of the liquid miscibility gap temperature

To train Model 3, the 60 descriptors listed in Table 3 are used.
When only the data on the 33 binaries in which a liquid miscibility
gap is eventually stable are used, performance metrics obtained for
different algorithms are summarized in Table 4, and a scatter plot
between the CALPHAD and the predicted miscibility gap tempera-
tures is shown in Fig. 5(a). The predictions are rather inaccurate,
6

with an MAE of 460 K for the RF model. A possible explanation is
that the dataset is too small, since it contains 30 elements but only
33 binaries. To investigate this hypothesis, a RF model is built from
a larger dataset, which now also includes the data from the 171
entirely metastable miscibility gaps. A lower overall MAE of
356 K is obtained for this new model. However, for the 33 binaries
with a stable miscibility gap, a higher MAE of 580 K is now
obtained. It appears from Fig. 5(b) that higher miscibility gap tem-
peratures are systematically predicted to be lower than those cal-
culated from CALPHAD assessments. It is concluded that the main
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limitation of miscibility gap temperature prediction is not the
quantity of data, but the quality of data. Experimental data on liq-
uid miscibility gaps are often lacking, especially at high tempera-
tures. As a result, the calculated miscibility gap temperatures in
our dataset are often unreliable. For instance, in the Mg-Mn sys-
tem, a monotectic reaction has been measured at 1471 K [83],
but no solubility data are available. Two CALPHAD assessments
[83,84] have been proposed based on this limited information,
and a difference of 1300 K is found between them for the critical
temperature at which the miscibility gap closes. Although it has
not been possible at this stage to predict miscibility gap tempera-
tures accurately, the R2 value of Model 3 is greater than 0.5, which
suggests it can reproduce miscibility gap trends in unknown
binaries.
3.4. Prediction of the liquidus in 1563 binary systems

By combining our three ML models, we predict the liquidus in
1563 binary systems not included in our dataset, many of which
are unknown. The prediction results can be found in an open-
access repository [50]. As discussed in the last paragraph of the
introduction, Model 2 is not valid in systems where the elements
are always miscible in the stable or metastable liquid phase. There-
fore, Model 3 was only used in systems where the probability of
having a stable liquid miscibility gap is predicted by Model 1 to
be greater or equal to 0.25. The prediction of two unknown liq-
uidus is shown in Fig. 6 as an example. The Cd-Ce binary is a sys-
Fig. 6. Prediction of two unknown liquidus. (a) In the Cd-Ce system, Model 1
predicts that the probability of having a miscibility gap is zero, so the liquidus is
directly obtained from Model 2. (b) In the Ca-Sm system, Model 1 predicts that the
probability of having a miscibility gap is 0.47, and the liquidus is obtained as the
maximum between Model 2 and Model 3.
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tem of interest for the reprocessing of nuclear fuels [85,86], and
because icosahedral quasicrystals can be formed between Cd and
rare earths [87]. Our predictions suggest the existence of one or
several phases in the 15 to 60 at.%Ce range that melt congruently
around 1100 K, and that there is a relatively deep eutectic at about
80 at.%Ce, which suggests it may be possible to form metallic
glasses in this system following Ref. [9]. The Ca-Sm system is of
interest for the development of new magnesium alloys [88]. Our
prediction suggests the presence of a liquid miscibility gap with
a critical temperature of about 2100 K.

4. Conclusion

In this study, we developed a general framework to predict bin-
ary liquidus. The liquidus prediction is broken down into three pre-
diction tasks, which enables to differentiate between miscibility
gaps and congruent melting phases while also improving the pre-
diction accuracy.

Knowledge of the liquidus is essential for the processing and
design of all kinds of materials. With our framework, reasonable
estimates of the liquidus and indications of the presence of eutec-
tics and congruent melting phases can be obtained in domains
where no data are available. This can be valuable in the early stages
of materials development. This is also valuable for developing CAL-
PHAD databases, which play an important role in computational
materials design.

This work also demonstrates how CALPHAD assessments can be
used to create unique ML datasets for predicting phase equilibria.
However, to create high-quality datasets, the assessments should
only be used within their range of validity and if they are based
on sufficient information. This was not checked for in the present
study. As a result, while our datasets contain high-quality data val-
idated by experiments, as in the Au-Tb, Cu-Y or Al-Ga cases, it also
contains unreliable data, as in the B-Ga case. This was shown to
impact the accuracy of the ML models. We are working on improv-
ing our datasets, both in terms of quality and quantity, to further
increase the performance of our models.

Another perspective is to find better features for our models. In
this work, the enthalpy of mixing predicted by Miedema’s model
[55] is found to be an important feature for liquidus prediction.
Miedema’s model is commonly used in machine learning studies
focusing on phase equilibria, such as Refs. [8,89]. However, as its
accuracy can be questioned [90], we are working on the prediction
of enthalpies of mixing in binary solutions.
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