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Modelling the flexural hysteresis behaviour of

bretelle dampers based on a quasi-static bending test
Shima Zamanian, Sébastien Langlois, Alex Loignon, Alireza Ture Savadkoohi, Marc L. M. François

Bretelle dampers are made of slack conductor pieces that are used to 
mitigate aeolian vibration amplitudes. Under cyclic and dynamic 
excitation, inter-strand friction in slack conductors causes a 
significant flexural hysteresis leading to the dissipation of high 
amounts of energies. The objective of this work is to study the 
flexural hysteresis of three types of slack conductors based on quasi-
static bending tests and to reproduce their nonlinear hysteresis 
behavior using two different approaches; an analytical model using a 
linear Euler-Bernoulli beam coupled with a Bouc-Wen model, and a 
finite element model using a superposition of multifiber beam 
elements with material nonlinearity. The parameters of both models 
are identified based on the bending test results for different levels of 
deformation. The developed models in this study can provide a fast 
tool for manufacturers to identify the dynamical behavior of slack 
con-ductor and to optimize their damping properties. Furthermore, the 
bretelle damper model can be integrated into a conductor model in 
order to study the vibrational behavior of transmission lines equipped 
with bretelle dampers.

Keywords: Bretelle damper, finite-element analysis, Bouc-Wen, 
dynamics, hysteresis, transmission lines.

I. INTRODUCTION

A
EOLIAN vibration causes fretting fatigue at or close

to the suspension clamp or to the clamp of dampers

where the conductor movement is restrained. Bretelles are used

widely in Norway and France to mitigate aeolian vibration

amplitude. They are made of slack conductor pieces installed

between two spans at the suspension clamp. A slack conductor

has a low or negligible axial tension along its length as op-

posed to a taut conductors. Under bending excitation, friction

between the wires of conductors creates a flexural hysteresis.

Thus, the moment-curvature relationship is nonlinear; it de-

pends not only on the absolute value of curvature but also

on the history of deformation. The hysteresis characteristic

contributes to the energy dissipation of conductors. Contrary

to taut conductors, slack conductors exhibit significant energy

dissipation [1]–[3].

Theoretical models are proposed to predict the nonlinear

behavior of conductors with high tension. The model of Papail-

iou [4] describes the secant bending stiffness as a function of

curvature considering the lay angle and friction force between

wires. In this model, by increasing the curvature, wires slip

layer-by-layer towards the core, and bending stiffness trans-

mits smoothly from maximum bending stiffness EImax (full-

stick state) to the minimum bending stiffness EImin (full-slip

state). Dastous [5] converted the model of Papailiou based

on the tangent bending stiffness method and implemented

it in a finite element formulation. Hong et al. [6] improved

the model of Papailiou by reconsidering some simplifying

assumptions and introducing a new criterion for wire slippage

regarding the radial pressure transmission between the layers.

The mentioned models were developed for taut conductors

(e.g. transmission line conductors), and they do not necessarily

apply to slack conductors.

The nonlinearity in the behaviour of the messenger cable

of the Stockbridge damper which is the base for power

dissipation in the messenger wire of the Stockbridge damper

was investigated by Sturm [7] and Diana et al [8]. This

nonlinearity was reflected in the nonlinearity of the load-

deflection curve of the messenger wire obtained using the flex-

ural rigidity tests. Sauter [3] developed a nonlinear model of a

Stockbridge damper. He measured the local moment-curvature

of the messenger cable of a Stockbridge damper using a

quasi-static test and reproduced the local moment-curvature

relationship using Jenkin elements. Foti and Martinelli [9]

developed a bilinear elastic-plastic model coupled with the

Bouc-Wen model. Langlois and Legeron [10] developed a

finite-element model of the messenger cable of a Stockbridge

damper with variable bending stiffness by superimposing

beam elements with material nonlinearity. The constitutive

parameters are identified based on a characterization test.

Filliatrault and Stearns [11] performed a quasi-static bending

test on low-tension substation conductors. They concluded that

low-tension conductors have negligible hysteresis, and their

bending stiffness tends toward the minimum bending stiffness.

To study specifically bretelle dampers, field tests have been

carried out by Van Dyke et al. [12] and Leblond et al [13].

In their tests, bretelle dampers were installed between two

spans at the suspension clamp, and the damping efficiency

of the bretelle was measured under wind-induced vibrations.

It was shown that in addition to energy dissipation, bretelles

transfer part of the vibrational energy to the adjacent span

before reaching the suspension clamp. This coupling effect

can involve many parameters in the efficiency of bretelle

damper. Although bretelles are economically attractive, the

optimization of design variables by laboratory tests or field

tests is difficult and time-consuming. The flexural behavior

of bretelle dampers has not been studied yet. On the other

hand, the dynamic model of the bretelle damper with variable

bending stiffness has not been developed and validated. This

model could be integrated into a model of transmission lines,

and the behavior of the system under aeolian vibration could

be studied. Moreover, this model allows for optimizing the

damping parameters of conductor-damper system.

The first objective of this paper is to study the flexural
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TABLE I
PROPERTIES OF CONDUCTOR SAMPLES

Conductor Type Aster570 Parrot Curlew

Total area (mm2) 570 862.4 591.4

Total diameter (mm) 31.05 38.2 31.6

Number of wires (Al/St) 61/0 54/19 54/7

Diameter of steel wires (mm) - 2.55 3.515

Diameter of aluminum wires (mm) 3.45 4.25 3.515

Lay angle

-layer 1 7.8 7.2 7.2

-layer 2 10 7.5 10

-layer 3 11 11 11

-layer 4 13 12.8 12.6

-layer 5 - 14.7 -

Linear mass (kg/km) 1574 2879 1979

Global modulus of elasticity (GPa) 54 62.7 69

Maximum bending stiffness (Nm2) 2184 5089 2392

Minimum bending stiffness (Nm2) 28.7 67.7 38

Span length (m) 1.242 1.53 1.274

Total length (m) 2 2 2

hysteresis of three types of slack conductors by performing

a quasi-static four-point bending test. This test can give a

good insight into the bending behavior of bretelles. The next

objective is to develop a nonlinear model that predicts the

hysteresis behavior of a slack cable under different amplitudes

and frequencies. Two models are developed, an analytical

model of the slack cable using a linear Euler-Bernoulli beam

coupled with a nonlinear Bouc-Wen model [14], [15], and a

finite element model by superimposing beam elements with

material nonlinearity. The constitutive parameters of the two

models are obtained based on the results of the four points

bending test.

This paper is structured as follows; Section II presents the

methodology of the four-point bending test and the results.

Section III presents the development of analytical and finite

element model and the parameter identification process, and

finally section IV presents the conclusion.

II. FLEXURAL FOUR-POINT EXPERIMENT

The four-point bending test presented in this section aims

to obtain the flexural characteristics of the slack conductors.

The test procedure and the results of the test are presented in

this section.

A. Setup and Procedures

The four-point bending test setup is shown in Fig. 1.

The test is performed on three conductor types; Parrot and

Curlew which are ACSR conductors (Aluminium Conductors

Steel Reinforced) with aluminium alloy 1350-H19 wire, and

Aster570 which is AAAC conductor (All Aluminium Alloy

conductor) with aluminium alloy 6201-T81 wires. The prop-

erties of the conductor specimens are summarized in Table

I. Due to the storage process, there was an initial curvature

of conductor samples. The setup was adapted for the proper

installation of each conductor specimen, considering their

initial curvatures.

Four supports at an equal distance of L/3 keep the con-

ductor sample in place where L is the span length, which is

Fig. 1. The four-point bending test setup.

Fig. 2. The VIC method result.

the distance between the two exterior supports (see Table I).

This length was defined to obtain a ratio of span length to the

diameter of the conductor equal to 40:1 which is within the

range recommended for example in ASTM D7264 standard

[16] for the application to composite materials. The upper

support is a pin connection. The three other supports are made

of a pair of low friction rollers that allows rotation and free

vertical movement of the conductor. The two central supports

are linked to a 5-kN MTS dynamic actuator that applies a

sine displacement in the transverse direction. Moment and

curvature were measured at the central part of the sample

between the two loading supports (measuring zone in Fig. 1),

since due to the four-point loading condition, the central part

has a constant bending moment and no shear force. To measure

the total force applied by the loading supports, a load cell with

a capacity of 100 lbs (445 N) is inserted between the piston rod

of the actuator and the steel spreader plate. The displacement

amplitude was increased successively with pauses between

each step, and the test was continued for at least two cycles.
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The required level of displacement amplitude reached by each

loading support was determined by preliminary tests to ensure

that the minimum bending stiffness could be reached at the

central part of the conductor. The bending moment at the

measuring zone is given by:

M =
FL

3
(1)

where F is the force applied by each loading support.

The displacement of the actuator is also recorded, but as it

was not possible to obtain a precise evaluation of the curvature

from this distant measurement, an image treatment method

had to be used. Indeed, the Virtual Image Correlation (VIC)

technique [17] is used to assess the silhouette shapes. At

each level of displacement, a picture has been taken by a

5 megapixel camera. Each photo was analyzed by the VIC

method developed as a MATLAB [18] script. A virtual image

(red curves in Fig. 2) based on an arc of a circle was fitted

on the border of the image by following the white-to-black

gradient of the boundary. The central part of the conductor

has been painted black to obtain a good contrast, and a white

surface was installed as the background. Two lights have been

positioned close to the camera to provide equal illumination

and avoid shadows on both sides of the sample. When the

best match between the curve and the image was reached,

the mean radius of curvature of the inner and outer curve

was given. Fig. 2. shows two curves (red lines) that are fitted

by the VIC method. The amplitudes of displacement that has

been tested are 4 and 10 mm by 0.25 and 1-mm increments

with pauses between steps in order to catch images. For each

test with a displacement amplitude of 10 mm, a total of 128

photos have been taken and analyzed by the VIC method.

To obtain the moment-curvature loops, the initial value of

conductor curvature is subtracted from the absolute value of

the curvature measured by the VIC method.

B. Effect of Initial Curvature

In this part, the effect of initial curvature on the bending

behaviour of the slack conductor has been investigated by

measuring the hysteresis cycles for three different initial

curvatures, as shown in Fig. 3. The ideal rest state corresponds

to a position where the stored elastic energy in the conductor

is minimized. To achieve this state, the actuator is utilized to

correct the displacement in an iterative manner. The objective

is to position the zero force-zero displacement point at the

center of the hysteresis loop. At the less curved state and more

curved state, by imposing an initial displacement, the natural

curvature of the cable is reduced or increased. The results of

the test for Aster570 and Parrot for different initial curvatures

κi are presented in Fig. 4 and Fig. 5. The results show a

somewhat larger hysteresis area and slightly lower average

slope as a consequence of decreasing the initial curvature.

Thus, the change in overall hysteresis and energy dissipation

is relatively small when changing the initial curvature.

The tangential bending stiffness EI as a function of relative

curvature κ′ is calculated and presented in Fig. 6 and Fig.

7. This value is obtained by calculating the slope of the

moment-curvature loop starting from the point where the force

(a) Less curved (b) Ideal rest state (c) More curved

Fig. 3. Initial state of the conductor samples at the onset of the bending test

direction changes from loading to unloading. The slope is

measured until it reaches a constant value. In the figures,

EImax and EImin represent the maximum and minimum

theoretical bending stiffness, respectively, as calculated based

on the reference [4]. It can be observed that, in all cases, the

initial stiffness of conductors typically begins at approximately

50% of the theoretically calculated EImax. The theoretical

assumption behind EImax is that all the wires within the

conductor are in a stick condition, behaving like a solid body.

However, in practical conductors, there exists some degree of

slippage between the wires, which leads to lower values of

initial bending stiffness. These findings are in agreement with

the research conducted by authors referenced as [19] and [20].

As the curvature increases, there is a point where the bending

stiffness reaches approximately EImin and remains relatively

constant. This phenomenon occurs due to the slippage of

almost all the wires within the conductor.

In addition, the results show that in the more curved state by

imposing higher initial curvature (EI at κ′ = 0), the contact

area between the wire and therefore the friction forces between

the adjacent layers increase. Consequently, at the beginning of

the more curved state, the wires remain in the stick state, and

the greater number of contact points requires a higher force to

overcome the overall friction between the wires. This fact can

elevate the sticking stress and leads to higher initial bending

stiffness. While the initial EI value is influenced by the initial

curvature, it appears that as the curvature is further increased,

the bending stiffness exhibits a similar trend regardless of

the initial curvature. In other words, the relationship between

curvature and bending stiffness becomes relatively consistent,

regardless of the specific initial curvature.

C. Effect of Frequency

Conductors usually exhibit a small viscoelastic behavior

[3], [10]. To understand the effect of frequency on slack

conductors, a continuous sinusoidal displacement has been

applied to the system and the force-displacement plot at the

loading supports was obtained using the load cell for the
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Fig. 4. Moment and curvature relation of AAAC Aster570 at various initial
curvatures with a displacement amplitude of 4 mm.
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Fig. 5. Moment and curvature relation of ACSR Parrot at various initial
curvatures with a displacement amplitude of 10 mm.

amplitudes of 1, 2, 3, 4, 5, 10, 15, 20, 25 mm and the

frequencies of 0.3, 0.5, 1 Hz. Tests were performed at higher

frequencies but were not used because the inertial forces

were difficult to measure and they induced a high level of

uncertainties in the evaluation of the forces. The stiffness of

the system is determined as the trend line of all points on

the hysteresis force-displacement loop. To remove the inertial

effects from the system, the new force-displacement hysteresis

loop was obtained under the same amplitudes and frequencies

after disconnecting the cable. The negative slope observed in

the force-displacement loop of the system without the cable

reflects the inertial impact of components such as the hydraulic

jack, rollers, and other masses involved in the system. This

negative slope value is then added to the equivalent stiffness

of the system when the cable is connected. Fig. 8 illustrates

the equivalent stiffness of the entire system after removing

the inertial effects. The variation of the stiffness for all cases

is less than 17% and, the flexural behavior of the system is

insignificantly affected by the frequency of excitation.
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Fig. 6. Tangential bending stiffness as a function of relative curvature for
AAAC Aster570 at various initial curvatures.
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Fig. 7. Tangential bending stiffness as a function of relative curvature for
ACSR Parrot at various initial curvatures.

D. Comparative moment and curvature relationship

The experimentally measured moment and curvature rela-

tionship of the conductor specimens were obtained at the ideal

rest initial state and with the displacement amplitude of 10

mm. The hysteresis cycles of the three types of conductors

are shown in Fig. 9. The equivalent stiffness EIeq of all three

slack conductors, which is the equivalent slope of the trend line

of moment-curvature hysteresis loop, is close to the minimum

bending stiffness of the conductor. The ACSR Curlew and

AAAC Aster570 have similar geometry (number of layers,

diameter of wire, and number of wires), but the Curlew has

a steel core. The existence of the steel core results in higher

equivalent bending stiffness, and smaller hysteresis area. The

ACSR Parrot includes more wires in the layers and the steel

core, which results in a larger hysteresis area and equivalent

stiffness. In fact, by increasing the number of wires, the contact

surface between the wires increases, which results in more

friction between the layers.

Comparing to taut conductors [4], [21], the bending stiffness

of slack conductors decreases to the EImin value at lower
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Fig. 8. Relative stiffness versus displacement at various frequencies measured
at loading supports for AAAC Aster570.

values of curvature (Fig. 6 and 7). Due to the lack of tension

in slack conductors, the normal forces between the layers of

the slack conductors are smaller than the taut conductors, and

this results in a lower limiting stress. Thus, by increasing the

curvature, the wires of the slack conductor shift to the slippage

state faster, which leads to lower equivalent stiffness and larger

hysteresis area compared to a taut conductor.

III. MODELLING METHODS

This section presents an analytical and numerical model to

describe the bending behaviour of the slack conductors. These

models can estimate the nonlinear dynamic behavior and the

energy dissipation of slack conductors based on the quasi-

static bending properties of the cable. Fig. 10 presents a sketch

of the models. It is composed of a simply supported beam with

the length of L, which is the span length (see Table I), loaded

by two forces at an equal distance at the center of the span.

In both models, the initial curvature of the slack conductor

is neglected since the results of the tests are obtained based

on the relative curvature. In addition, it is assumed that the

properties of the conductor are the same along the span. The

parameters of both models are identified based on the bending

test results of the conductor samples with the ideal rest initial

state and presented in the last part of this section.

A. Analytical approach

For describing the bending characteristics of the slack

conductor, it is considered as a linear elastic Euler-Bernoulli

beam coupled with a Bouc-Wen model [12], [15]. The bending

deflection v(x, t) of the linear Euler-Bernoulli beam under an

external load F (t) = F̄ sin (Ωt) , see Fig. 10, can be described

by the following equation [22]:

EI(
∂4v(x, t)

∂x4
) + F (t)δ(x− L/3) + F (t)δ(x− 2L/3)

= m
∂2v(x, t)

∂t2
+ c

∂v(x, t)

∂t

(2)
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Fig. 9. The measured hysteresis loops of three types of slack conductors with
the displacement amplitude of 10 mm.

where δ is Dirac delta function, EI is the bending stiffness,

F̄ is the force amplitude, Ω is the excitation frequency, m is

the mass per unit length and c is the viscous damping.

The boundary conditions at the external supports are:

v(0, t) = 0, ∀t

v(L, t) = 0, ∀t

v′′(0, t) = 0, ∀t

v′′(L, t) = 0, ∀t

(3)

where the prime denotes the derivative with respect to the

space variable x. In every mode, the system exhibits a con-

sistent vibrational pattern, resulting in the division of the dis-

placement function into distinct time and space components.

The displacement function v(x,t) can be represented in the

following manner:

v(x, t) = Γ(x)g(t) (4)

where Γ(x) is the natural mode shape of the system and g(t)
is the corresponding generalized coordinate. By substituting

Eq. (4) into Eq. (2) and solving the eigenvalue problem

related to the free response of the system, and incorporating

the boundary conditions described in Eq. (3), the modal

characteristics of the system, including the natural modes and

corresponding frequencies can be determined as follows:

Γi(x) = Ai sin (βix) (5)

ωi = β2

i

√

m

EI
(6)

where i = 1, 2, 3, ... denotes the mode number. The variable

βi = iπ/L is calculated using the characteristic equation

(sin(βL) = 0). The coefficients Ai can be obtained from

mass normalization of modes as follows:
∫ L

0

mΓi(x)
2dx = 1 (7)

Based on the deflection shape of the conductor specimen in

the bending test, the system is projected on its first mass
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normalized mode. Thus, the response of the system Eq. (4)

can be rewritten as:

v(x, t) = Γ1(x)g1(t) (8)

By substituiting Eq. (8) in Eq. (2), applying the boundary

conditions Eq. (3), the equation of motion in the modal

coordinate after addition of nonlinear Bouc-Wen model could

be expressed as [23], [24]:

g̈1(t) + 2ξω1ġ1(t) + αω2

1
g1(t) + (1− α)ω2

1
z(t) = f(t) (9)

ż(t) = ġ1(t)[1− |
z(t)

gy
|n (β + λsgn(zġ1))] (10)

where the dots denotes the derivative with respect to time,

sgn is the sign function, ξ = c/2mω1 is the proportional

damping, ω1 is the first natural circular frequency and f(t) =
(Γ1(L/3) + Γ1(2L/3))F̄ sin (Ωt) is the modal force.

The Bouc-Wen model is linked to the equation of the beam

as a superposition of a linear elastic force αω2

1
g1(t) and a

hysteretic force (1 − α)ω2

1
z(t). The hysteretic force involves

the hysteretic internal variable z(t) which is governed by

the nonlinear first-order differential Eq. (10). The Bouc-Wen

model parameters, β, γ are non-dimensional parameters that

control the shape and size of the hysteresis loop, α is the post-

yielding to pre-yielding stiffness ratio, gy is the generalized

yield displacement and n is a positive number that controls the

smoothness of the transition from the elastic to the inelastic

region.

The response of the system is calculated by direct integra-

tion of Eq. (9) and Eq. (10) using the ”ode45” function in

MATLAB [18]. To be able to use this function, Eq. (9) and

Eq. (10) have to be transformed into a system of first-order

equations as below:

Ẏ (1) = Y (2)

Ẏ (2) = −2ξω1Y (2)− αω2

1
Y (1)− (1− α)ω2

1
Y (3) + f(t)

Ẏ (3) = Y (2)[1− |
Y (3)

gy
|n (β + λsgn(Y (3)Y (2)))]

(11)

where Y (1) = g1(t), Y (2) = ġ1(t) and Y (3) = z(t).
The following initial conditions are considered for this

system:

t = 0 →

{

Y (1) = 0, Ẏ (1) = 0

Y (2) = 0, Ẏ (2) = 0
(12)

After obtaining the response of the system numerically, the

total restoring force Fr(t) is expressed as:

Fr(t) = αω2

1
g1(t) + (1− α)ω2

1
z(t) (13)

thus, the moment M(t) at the central part of the beam between

the loads is calculated as:

M = Fr(t)L/6 (14)

The curvature is calculated using the second derivative of

Eq. (8) as follows:

φ(x, t) =
∂2Γ1(x)

∂x2
g(t) (15)

Fig. 10. Sketch of the four-point bending test.

To reproduce the results of the bending test, the Bouc-Wen

parameters need to be identified for each conductor sample

such that the moment-curvature relationship corresponds to

the bending test. In this model, the excitation force amplitude

F̄ for each conductor type is equal to the maximum force

measured experimentally to reach the 10 mm displacement at

the loading supports. To accurately characterize the bending

behaviour of the slack conductors, a very low excitation

frequency Ω of 0.3 Hz has been considered to excite the first

mode of the system which is compatible with the deflection

shape of the conductor specimen in the bending test. The

frequency of excitation is considered to be constant and equal

for all samples. To help the convergence of the response the

proportional damping ξ of 0.5% and the time step of 0.001 s

is considered.

B. Numerical Approach

To develop the numerical model, the open-source finite

element software code-aster 2018 [25] was implemented. This

model is developed to predict the nonlinear response of the

slack conductor, thus a direct transient analysis with the time

step of 0.001 s is used.

To model the hysteretic behaviour of the slack conductor,

nonlinear Euler-Bernoulli beam elements with material and

geometrical nonlinearities are superimposed with an elastic

Euler-Bernoulli beam. The mesh size is equal to 80 mm. For

each conductor layer, one nonlinear beam is considered on

the nodes. The nonlinear beams have elastic-perfectly-plastic

behaviour; the elastic regime represents the sticking state of

each layer of conductor, which occurs when the curvature is

not high enough to dominate the friction forces between the

wires. The moment in sticking state Mstick
i is a linear function

of curvature with a constant slope that represents the stick

stiffness EIsticki of each layer and can be calculated as [5]:

Mstick
i = EIsticki κ i = 1, 2, 3, 4, ..., n (16)
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where n is the number of layers and κ is curvature. In the

perfectly plastic regime, the moment is constant and equal to

the yield moment of each nonlinear beam corresponding to

the maximum moment reached before the onset of slippage

of each conductor layer. The yield moment and the bending

stiffness of each nonlinear beam determine the curvature

criterion for entering the perfectly-plastic regime.

As mentioned earlier, one linear elastic beam is also con-

sidered on the nodes which represents the slipping state of

layers that occurs when the friction forces cannot prevent the

relative movement between the wires. The internal moment of

the elastic beam Mmin is a linear function of curvature with a

constant slope that is equal to the minimum bending stiffness

of the conductor [5]:

Mmin = EIminκ (17)

EImin is the minimum bending stiffness, which is due to the

bending of all wires around their neutral axis. These elements

are superimposed at each mesh subdivision and have the

same group of nodes. Thus, at each node, all beam elements

experience the same deflection, and the properties of each

beam contribute to the total stiffness matrix. Thus, the total

moment is equal to [5]:

M =























Mmin +
∑

i

Mstick
i κ ⩽ κslip

Mmin +
∑

i

My
i κ > κslip

(18)

In code-aster, multi-fiber beam (MFB) elements are able to

model the behaviour of structures with material nonlinearities

under static and dynamic loading. Thus, each layer of the

conductor is modeled with an MFB element. The elastic limit

of each MFB can be controlled by defining the yield stress. It

can be calculated from the yield moment My
i and the moment

of inertia of each beam Ii using the following equation:

σi = My
i hi/Ii i = 1, 2, 3, 4, ..., n (19)

where hi is the distance of the fibers of each beam compared

to the central axis of the section and can be given by:

hi =

√

Ii
Ai

i = 1, 2, 3, 4, ..., n (20)

where Ii is the moment of inertia of each beam and Ai = A/n
is the total area of the conductor cross-section A, divided by

the number of layers n. According to Eq. (13), (14), and (15),

by adjusting the sticking stiffness EIsticki and yield moment

My
i of each beam, the overall moment-curvature hysteresis

loop of the conductor samples can be reproduced based on

the results of the four-point bending test. In this model, the

excitation force has a displacement amplitude of 10 mm and a

frequency of 0.3 Hz. The moment and curvature at the central

part of the span were calculated directly by the code-aster

model.

TABLE II
THE PARAMETERS OF THE BOUC-WEN MODEL

Conductor Type Aster570 Parrot

EI (Nm2) 387.55 1290

α 0.11 0.125

gy 0.1 0.075

n 1 1

β 20 18

γ 85 18

TABLE III
THE PARAMETERS OF THE NUMERICAL MODEL

Conductor Type Aster570 Parrot

EIsticki (Nm2)
i=1 31.91 73.38

i=2 13.5 9.79

i=3 30.29 12.99

i=4 96.39 130.8

i=5 837.01 300.26

i=6 - 740.78

M
y
i (N.m)

i=1 - -

i=2 0.3 0.2

i=3 0.12 0.21

i=4 0.18 0.63

i=5 0.58 0.48

i=6 - 0.5

C. Parameter Identification

The constitutive parameters of the models are identified

based on an average of the experimentally measured moment-

curvature loops of the samples of each conductor type for the

bending test with the ideal rest initial state. For each conductor

type, the constitutive parameters of the models should be

determined. In this study, the parameters of Aster570 and

Parrot are identified and validated.

According to Eq. (5), (6) and (9), the Bouc-Wen parameters;

α, gy , n, β, γ and the bending stiffness of the Euler-Bernoulli

beam EI need to be obtained in order to reproduce the

right moment-curvature relation. EI controls the slope of the

hysteresis loop in the elastic region and it can be estimated

directly from the experimental moment-curvature loop. The

Bouc-Wen parameters were identified iteratively by trial and

error to reach the best match between the analytical and

experimental results. Table II presents the sets of parameters

that are identified for each conductor sample.

According to Eq. (13), (14), and (15), the parameters of

the numerical model that contribute to controlling the global

flexural behaviour of the model are EIsticki and My
i of each

beam. These parameters were determined with an iterative pro-

cess and can define the state of each layer (sticking/slipping).

Based on the initial bending stiffness of the conductors that

have been calculated from the tests (Fig. 6 and 7), the initial

guess for EIsticki of each beam is:

EIsticki = (EImax
i − EImin

i )/2 (21)

where EImax
i and EImin

i are the maximum and minimum

bending stiffness of each layer that have been calculated

theoretically based on [4]. The identified parameters for the

numerical model are presented in table III.
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Fig. 11. Characterization of AAAC Aster570 conductor.
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Fig. 12. Characterization of ACSR Parrot conductor.

In Fig. 11 and 12 numerically and analytically obtained

hysteresis cycles are compared to those measured experi-

mentally. Both models can reproduce the real flexural be-

haviour of the slack conductors with good precision. Using

the moment-curvature relation, the tangential bending stiffness

as a function of the curvature is calculated and compared in

Fig. 13 and 14. The finite element model corresponds better

to the experimental results in comparison to the Bouc-Wen

model. In fact, in the finite element model by considering the

same number of MFB as the number of conductor layers and

controlling the parameters of each beam, the gradual slippage

of the wires can be modeled, which results in a more accurate

bending behaviour.

IV. CONCLUSION

The deformation of the bretelle dampers, which is a slack

conductor piece, during the Aeolian vibration is mainly due

to bending. Thus, to study the flexural behaviour of bretelle

dampers, a quasi-static four-point bending test has been per-

formed on three different slack conductors. The measured
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Fig. 13. The tangential bending stiffness as a function of curvature for
Aster570 conductor, comparison between the models with the experimental
results
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Fig. 14. The tangential bending stiffness as a function of curvature for Parrot
conductor, comparison between the models with the experimental results

moment-curvature relation indicates the existence of signifi-

cant hysteretic behaviour in slack conductor originating from

the friction between the wires, which leads to the energy

dissipation characteristics of the slack conductors. Calculation

of the tangential bending stiffness from the measured moment

and curvature relationship showed that the bending stiffness of

the slack conductors starts from lower values than EImax and

drops quickly to EImin at low curvatures and stays constant

by further increasing the curvature. The equivalent bending

stiffness of the slack cable tends toward the EImin.

The flexural behaviour of the slack cable was reproduced by

two different nonlinear models; a Bouc-Wen model and a finite

element model. The constitutive parameters of the models

are identified based on the experimentally obtained data in

the time domain. Both models use a direct time integration

method, which allows the calculation of dynamical problems.

It should be noted that to use the models, the properties of a

conductor need to be characterized. The finite element model

allows the inclusion of the bretelle damper into a conductor

model for vibration analysis or the optimization of the bretelle

8



damper configuration. However, the Bouc-Wen model and

its integration into the conductor model would need further

analytical development. Furthermore, some additional tests on

conductors are suggested for instance to study the effect of

span length on the bending stiffness and also to extend the

models to other geometries of conductors and try to get a

generalized behaviour of slack conductors in bending.
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