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We consider a linear implicit-explicit (IMEX) time discretization of the Cahn-Hilliard equation with a source term, endowed with Dirichlet boundary conditions. For every time step small enough, we build an exponential attractor of the discrete-in-time dynamical system associated to the discretization. We prove that, as the time step tends to 0, this attractor converges for the symmmetric Hausdorff distance to an exponential attractor of the continuous-in-time dynamical system associated with the PDE. We also prove that the fractal dimension of the exponential attractor (and consequently, of the global attractor) is bounded by a constant independent of the time step. The results also apply to the classical Cahn-Hilliard equation with Neumann boundary conditions.

Introduction

We consider the Cahn-Hilliard equation with a source term and Dirichlet boundary conditions. It reads u t + ∆ 2 u -∆f (u) + g(u) = in Ω × (0, +∞),

(1.1) u = ∆u = 0 on ∂Ω × (0, +∞), (1.2) u| t=0 = u 0 in Ω, (1.3) where Ω is a bounded open subset R d (d = 1, 2 or 3) with smooth boundary ∂Ω.

The unknown function u is the order parameter, f is the nonlinear regular potential and g is the source term. When g = 0, the PDE (1.1) is known as the Cahn-Hilliard equation [START_REF] Cahn | Free energy of a nonuniform system. I. Interfacial free energy[END_REF] and it has been thoroughly studied (see [START_REF] Miranville | The Cahn-Hilliard equation. Recent advances and applications[END_REF] and references therein). The generalization with a source term g has drawn a lot of interest in recent years, in particular for biological applications [START_REF] Garcke | Well-posedness of a Cahn-Hilliard system modelling tumour growth with chemotaxis and active transport[END_REF][START_REF] Khain | Generalized Cahn-Hilliard equation for biological applications[END_REF][START_REF] Miranville | The Cahn-Hilliard equation. Recent advances and applications[END_REF][START_REF] Miranville | The Cahn-Hilliard equation with a nonlinear source term[END_REF].

The PDE (1.1) endowed with Dirichlet boundary conditions (1.2) was analyzed in [START_REF] Fakih | Asymptotic behavior of a generalized Cahn-Hilliard equation with a mass source[END_REF][START_REF] Miranville | Asymptotic behaviour of a generalized Cahn-Hilliard equation with a proliferation term[END_REF][START_REF] Miranville | A generalized Cahn-Hilliard equation with logarithmic potentials[END_REF] with various assumptions on f and g (see also [START_REF] Dor | On the modified of the one-dimensional Cahn-Hilliard equation with a source term[END_REF]). In particular, global-in-time solutions were shown to exist and their asymptotic behaviour was studied. The existence of finite dimensional attractors was established. Numerical simulations were performed, e.g., in [START_REF] Aristotelous | Adaptive, second-order in time, primitive-variable discontinuous Galerkin schemes for a Cahn-Hilliard equation with a mass source[END_REF][START_REF] Fakih | Asymptotic behavior of a generalized Cahn-Hilliard equation with a mass source[END_REF][START_REF] Lee | On the evolutionary dynamics of the Cahn-Hilliard equation with cut-off mass source[END_REF]. Our purpose in this manuscript is to obtain a similar asymptotic result for a linear time discretization of (1.1)-(1.2) with fixed time step δt > 0. In addition, we want a construction of exponential attractors which is robust as δt goes to 0. We use a first order implicit-explicit (IMEX) time discretization where the nonlinearities f and g are treated explicitly and the bilaplacian is treated implicitly. This is a very popular discretization of the classical Cahn-Hilliard equation which allows the use of the fast Fourier transform (FFT) [START_REF] Brachet | Convergence to equilibrium for time and space discretizations of the Cahn-Hilliard equation[END_REF][START_REF] Shen | Numerical approximations of Allen-Cahn and Cahn-Hilliard equations[END_REF]. It has also been successfully used in variants of the Cahn-Hilliard equation including a source term [START_REF] Dor | On the hyperbolic relaxation of the Cahn-Hilliard equation with a mass source. Asymptotic Analysis[END_REF][START_REF] Dor | Hyperbolic relaxation of the viscous Cahn-Hilliard equation with a symport term for the biological applications[END_REF].

An exponential attractor is a compact positively invariant set which contains the global attractor, has finite fractal dimension and attracts exponentially the trajectories. In comparison with the global attractor, an exponential attractor is expected to be more robust to perturbations: global attractors are generally upper semicontinuous with respect to perturbations, but the lower semicontinuity can be proved only in some specific cases (see [START_REF] Babin | Attractors of evolution equations[END_REF][START_REF] Miranville | Attractors for dissipative partial differential equations in bounded and unbounded domains[END_REF][START_REF] Stuart | Dynamical systems and numerical analysis[END_REF][START_REF] Wang | Numerical algorithms for stationary statistical properties of dissipative dynamical systems[END_REF] and references therein). In particular, the upper semicontinuity of the global attractor as the mesh step and the time step tend to 0 was proved in [START_REF] Elliott | Error estimates with smooth and nonsmooth data for a finite element method for the Cahn-Hilliard equation[END_REF] for a finite element approximation of the Cahn-Hilliard equation.

Exponential attractors were first introduced by Eden et al. [START_REF] Eden | Exponential attractors for dissipative evolution equations[END_REF] with a construction based on a "squeezing property". In [START_REF] Efendiev | Exponential attractors for a singularly perturbed Cahn-Hilliard system[END_REF], Efendiev, Miranville and Zelik proposed a robust construction of exponential attractors based on a "smoothing property" and an appropriate error estimate. Their construction has been adapted to many situations, including singular perturbations. We refer the reader to the review [START_REF] Miranville | Attractors for dissipative partial differential equations in bounded and unbounded domains[END_REF] for details.

In [START_REF] Pierre | Convergence of exponential attractors for a time semi-discrete reaction-diffusion equation[END_REF], a robust family of exponential attractors was built for a time semidiscretization of a generalized Allen-Cahn equation. An abstract result was first derived, based on the construction in [START_REF] Efendiev | Exponential attractors for a singularly perturbed Cahn-Hilliard system[END_REF], and it was then applied to the backward Euler scheme. The same approach was successfully applied for a time splitting scheme in [START_REF] Batangouna | Convergence of exponential attractors for a time splitting approximation of the Caginalp phase-field system[END_REF], for a discretized Ginzburg Landau equation in [START_REF] Batangouna | A robust family of exponential attractors for a time semi-discretization of the Ginzburg-Landau equation[END_REF] and for a space semidiscretization of the Allen-Cahn equation in [START_REF] Pierre | Convergence of exponential attractors for a finite element approximation of the Allen-Cahn equation[END_REF]. In these papers, the nonlinearity was treated implicitly. Here, we also adapt the approach introduced in [START_REF] Pierre | Convergence of exponential attractors for a time semi-discrete reaction-diffusion equation[END_REF], but we focus on a case where the nonlinearity is treated explicitly, thus allowing a linear scheme.

Since we use an IMEX scheme, the main condition that we impose on the potential is that f is Lipschitz continous on R (cf. (2.2)). This restriction can be well understood for the classical Cahn-Hilliard equation, which is a gradient flow for the H -1 inner product, so that there is a Lyapunov functional (the energy) naturally associated with it. In order for the IMEX scheme to have the same property, it is necessary to assume that f is Lipschitz continuous and that the time step is small enough. This is known as energy stability [START_REF] Brachet | Convergence to equilibrium for time and space discretizations of the Cahn-Hilliard equation[END_REF][START_REF] Shen | Numerical approximations of Allen-Cahn and Cahn-Hilliard equations[END_REF].

For g = 0, the PDE (1.1)-(1.2) is no longer a gradient flow and there is no Lyapunov functional associated with it. However, the PDE is a dissipative system if f satisfies a standard dissipativity assumption (see (2.4)) and if g is subordinated to f (cf. Remark 2.3). We prove here that the discrete-in-time dynamical system associated to the IMEX scheme is also dissipative if the time step is small enough (cf. Section 3.2). Typically, f can be the usual cubic nonlineary which is modified into an affine function outside a compact interval as in (2.8). In turn, a typical choice for g is the symport term

g(s) = ks k + |s| (s ∈ R), (1.4) 
where k, k > 0 [START_REF] Li | Cahn-Hilliard models for glial cells[END_REF][START_REF] Li | A coupled Cahn-Hilliard model for the proliferative-toinvasive transition of hypoxic glioma cells[END_REF][START_REF] Miranville | A singular reaction-diffusion equation associated with brain lactate kinetics[END_REF]. Our analysis also includes the case g = 0 (the classical Cahn-Hilliard equation).

Our manuscript is organized as follows. We first give the a priori estimates for the PDE (1.1)-(1.3) in Section 2. In Section 3, we establish their discrete counterpart for the IMEX scheme. The most technical part is the dissipative H 2 estimate (Proposition 3.6). An error estimate on finite time intervals is proved in Section 4.

The main result is given in the last section. For every time step δt > 0 small enough, we build an exponential attractor M δt of the discrete-in-time dynamical system associated to the IMEX scheme. We prove that M δt converges to M 0 for the symmmetric Hausdorff distance as δt tends to 0, where M 0 is an exponential attractor of the continuous-in-time dynamical system associated with the PDE. We also prove that the fractal dimension of M δt (and consequently, of the global attractor) is bounded by a constant independent of δt. The results also apply to the classical Cahn-Hilliard equation with Neumann boundary conditions, as pointed out in Remark 5.5.

The continuous problem

2.1. Notation and assumptions. We make the following assumptions: 

f ∈ C 1,1 (R), f (0) = 0, (2.1) 
f is bounded on R, (2.2) 
f is piecewise C 1 and f is bounded on R, (2.3) 
f (s) = f K (s) =      (3K 2 -1)s -2K 3 , s > K, s 3 -s, s ∈ [-K, K], (3K 2 -1)s + 2K 3 , s < -K, (2.8) 
where

K ≥ 1. Thus, f K ∈ C 1 (R) has a linear growth at ±∞ with max s∈R |f K (s)| = 3K 2 -1.
This regularization is very popular for the IMEX scheme [START_REF] Brachet | Convergence to equilibrium for time and space discretizations of the Cahn-Hilliard equation[END_REF][START_REF] Shen | Numerical approximations of Allen-Cahn and Cahn-Hilliard equations[END_REF].

Remark 2.3. The growth of g is controlled by the growth of f in order to ensure that the PDE is dissipative (see [START_REF] Miranville | Asymptotic behaviour of a generalized Cahn-Hilliard equation with a proliferation term[END_REF]Remark 2.1]). If we suppress assumption (2.6), then dissipativity is no longer garanteed. Indeed, let us choose f (s) = s and g(s) = -αs (s ∈ R) with α > λ 2 1 + λ 1 and λ 1 > 0 is the first eigenvalue of the minus Laplacian operator with Dirichlet boundary conditions. We have -∆e 1 = λ 1 e 1 where e 1 ∈ H 2 (Ω) ∩ H 1 0 (Ω) is an eigenfunction associated to λ 1 . Then the function u(t) = e βt e 1 with β = α -

λ 2 1 -λ 1 > 0 solves (1.1)-(1.2) but u(t) L 2 (Ω) → +∞ as t → +∞.
We set H := L 2 (Ω) and we denote by (•, •) the scalar product both in H and in H d and by • the induced norm. The symbol • X will indicate the norm in the generic real Banach space X. Next, we set V := H 1 0 (Ω), so that V = H -1 (Ω) is the topological dual of V . The space V is endowed with the Hilbertian norm v → ∇v which is equivalent to the usual H 1 (Ω)-norm, thanks to the Poincaré inequality.

We also denote by A : D(A) → H the (minus) Laplace operator A = -∆ with homogeneous Dirichlet boundary condition, with domain D(A) = H 2 (Ω) ∩ H 1 0 (Ω). By elliptic regularity [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF], the norm v → ∆v is equivalent to the usual H 2 (Ω)-norm in D(A). Moreover,

D(A 2 ) = v ∈ H 4 (Ω) : v = ∆v = 0 on ∂Ω (in the sense of trace) , and the norm v → ∆ 2 v is equivalent to the usual H 4 (Ω)-norm in D(A 2 ).
It is well known that A is a positive self-adjoint operator with compact resolvent, so that we can define, for s ∈ R, its powers A s : D(A s ) → H. For each s ∈ R, the Hilbert space D(A s ) is equipped with the norm v 2s = A s v . We have

D(A 0 ) = H with • 0 = • and D(A 1/2 ) = V with • 1 = ∇ • .
Indeed, an integration by parts shows that

∇v 2 = (Av, v) = A 1/2 v 2 , ∀v ∈ D(A).
(2.9)

If s 1 < s 2 , then the space D(A s 2 ) is continuously embedded in D(A s 1 ), i.e.

v 2s 1 ≤ c S v 2s 2 , ∀v ∈ D(A s 2 ), (2.10) 
where the positive constant c S depends on s 1 and s 2 .

By (2.1)-(2.2), the map v → f (v) is Lipschitz continuous from H into H and from V into V and we have

f (v) -f (w) ≤ L f v -w , ∀v, w ∈ H, (2.11) 
where

L f = sup s∈R |f (s)|. Similarly, by (2.5)-(2.6), v → g(v)
is Lipschitz continuous from H into H and from V into V and we have

g(v) ≤ c g , ∀v ∈ H, (2.12 
)

g(v) -g(w) ≤ L g v -w , ∀v, w ∈ H. (2.13) We define F by F (s) = s 0 f (t)dt (2.14)
We deduce from (2.4) that 3) implies that f has a finite number of discontinuities (the corner points of f ). Here, f is the distributional derivative of f since C 1,1 (R) = W 2,∞ (R). Moreover, the following chain rule holds [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF]Theorem 7.8]

F (s) ≥ γ 1 s 2 -γ 2 , ∀s ∈ R, where γ 1 > 0, γ 2 ≥ 0. ( 2 
: if v ∈ H 1 (Ω), we have f (v) ∈ H 1 (Ω) and ∇f (v) = f (v)∇v. Consequently, if v ∈ H 2 (Ω), then f (v) ∈ H 2 (Ω) and ∆f (v) = f (v)∆v + f (v)|∇v| 2 .
(2.19)

We use here that

H 1 (Ω) ⊂ L 4 (Ω) since d ≤ 3, so that |∇v| 2 ∈ L 2 (Ω).
The abstract version of (1.1)-(1.2) reads

du dt + A 2 u + Af (u) + g(u) = 0 in D(A -1
), for a.e. t > 0.

(2.20)

It is associated to the variational formulation

d dt (u, v) + (Au, Av) + (f (u), Av) + (g(u), v) = 0 in D (0, ∞), ∀v ∈ D(A).
2.2. The continuous semigroup. We first state the well-posedness result of our model.

Theorem 2.4. For every u 0 ∈ V , there exists a unique solution u of (1.1)-(1.3) which satisfies

u ∈ C 0 ([0, T ], V ) ∩ L 2 (0, T ; D(A)) and u t ∈ L 2 (0, T ; V ), ∀T > 0. Moreover, if u 0 ∈ D(A), then u satisfies u ∈ C 0 ([0, T ], D(A)) ∩ L 2 (0, T ; D(A 2 )), ∀T > 0.
Proof. For u 0 ∈ V , the proof of existence is based on the estimates (2.22), (2.29) and a standard Galerkin scheme. In order to prove that u is continuous from [0, T ] into V , we use a standard argument [START_REF] Miranville | The Cahn-Hilliard equation. Recent advances and applications[END_REF][START_REF] Temam | Infinite-dimensional dynamical systems in mechanics and physics[END_REF]. We first show that u is weakly continuous into V , thanks to the Strauss lemma, and we note that t → ∇u(t) 2 is absolutely continuous since d dt ∇u 2 belongs to L 1 (0, T ) by (2.30). For u 0 ∈ D(A), the proof of existence is based on the estimates (2.37) and (2.38).

The proof of uniqueness and of the continuous dependence with respect to the initial data in the L 2 -norm follow from estimate (2.54).

As a consequence, we have the continuous (with respect to the L 2 -norm) semigroup S 0 (t) defined as

S 0 (t) : D(A) → D(A), u 0 → u(t), t ≥ 0.
(2.21)

Dissipative estimates.

In this subsection, we first establish some priori estimates for the solution u to the system (1.1)-(1.3). These formal estimates could be rigorously justified by a Galerkin approximation. These estimates are essential in the proof of Theorem 2.4.

Proposition 2.5 (Dissipative estimate in L 2 (Ω)). We have

u(t) 2 + e -ε 0 t t 0 ∆u(s) 2 ds ≤ C 0 u(0) 2 e -ε 0 t + M 0 , t ≥ 0, (2.22) 
where the positive constants ε 0 , C 0 and M 0 are independent of u(0).

Proof. On multiplying (1.1) by (-∆) -1 u and integrating over Ω, we have

d dt u 2 -1 + 2 ∇u|| 2 + 2(f (u), u) + 2(g(u), (-∆) -1 u) = 0 (2.23)
Using (2.17), we find

(f (u), u) ≥ c 1 Ω u 2 dx -c 2 ≥ c 1 u 2 -c 2 , c 1 = γ 5 > 0, c 2 ≥ 0.
Using (2.12), the continuous injection H ⊂ D(A -1 ) and Young's inequality, we find

|(g(u), (-∆) -1 u)| ≤ g(u) (-∆) -1 u ≤ c g c S u ≤ c 1 2 u 2 + c 2 g c 2 S 2c 1 .
Combining the above estimates in (2.23), we obtain

d dt u(t) 2 -1 + c 3 ( ∇u(t) 2 + u(t) 2 ) ≤ c 4 , (2.24) 
where c 3 = min(2, c 1 ) > 0 and

c 4 = c 4 (c S , c g , c 1 , c 2 ) ≥ 0.
Next, we multiply (1.1) by u and we integrate over Ω. We get

d dt u 2 + 2 ∆u 2 + 2(∇f (u), ∇u) + 2(g(u), u) = 0. (2.25)
Thanks to (2.18), we have

(f (u)∇u, ∇u) ≥ -γ 7 ∇u 2 , γ 7 > 0.
Using (2.12), Young's inequality and the Poincaré inequality, we deduce that

|(g(u), u)| ≤ g(u) u ≤ c g u ≤ γ 7 u 2 + c 2 g 4γ 7 .
Combining the above estimates in (2.25), we find

d dt u(t) 2 + 2 ∆u(t) 2 ≤ 2γ 7 ( ∇u(t) 2 + u(t) 2 ) + c 5 , c 5 = c 5 (c g , γ 7 ) ≥ 0. (2.26)
Summing (2.24) and α times (2.26) where α > 0 is small enough, we conclude

d dt E 1 (t) + c 6 (E 1 (t) + ∆u(t) 2 ) ≤ c 7 , c 6 > 0, c 7 ≥ 0, (2.27) 
where

E 1 (t) = α u(t) 2 + u(t) 2 -1 . In particular, E 1 (t) ≥ α u(t) 2
. Applying Gronwall's lemma to (2.27) (see, e.g., [START_REF] Temam | Infinite-dimensional dynamical systems in mechanics and physics[END_REF]) yields

E 1 (t) + c 6 e -c 6 t t 0 ∆u(s) 2 ds ≤ E 1 (0)e -c 6 t + c 7 c 6 , t ≥ 0. (2.28)
This proves Proposition 2.5.

Proposition 2.6 (Dissipative estimate in H 1 (Ω)). We have

∇u(t) 2 + e -ε 1 t t 0 u t (s) 2 -1 ds ≤ C 1 ∇u(0) 2 e -ε 1 t + M 1 , t ≥ 0, (2.29) 
where the positive constants ε 1 , C 1 and M 1 are independent of u(0).

Proof. Testing (1.1) by (-∆) -1 u t and integrating over Ω, we have

d dt ∇u 2 + 2 u t 2 -1 + 2(f (u), u t ) + 2(g(u), (-∆) -1 u t ) = 0. (2.30) 
Using (2.12), the injection H -1 ⊂ D(A -1 ) and Young's inequality, we get

|(g(u), (-∆) -1 u t )| ≤ g(u) (-∆) -1 u t ≤ c g u t -1 ≤ 1 2 u t 2 -1 + c 2 g 2 .
By (2.14), we get

(f (u), u t ) = d dt Ω F (u)dx. This yields d dt ∇u(t) 2 + 2(F (u), 1) + u t (t) 2 -1 ≤ c 2 g , t ≥ 0. (2.31)
Adding (2.27) and β times (2.31), where β > 0 is small enough, we deduce that

d dt E 2 (t) + c 8 (E 1 (t) + ∆u(t) 2 + u t (t) 2 -1 ) ≤ c 9 , t ≥ 0, (2.32) 
where c 8 = min(c 6 , β) > 0, c 9 = c 9 (c 7 , c g ) ≥ 0 and

E 2 (t) = E 1 (t) + β ∇u(t) 2 + 2β(F (u), 1).
By (2.16) and the Poincaré inequality, we have 

E 2 (t) ≤ c ∇u(t) 2 + c , c, c > 0, ( 2 
∆u(t) 2 ≤ Q 2 ( ∆u(0) )e -ε 2 t + M 2 , t ≥ 0, (2.37 
)

and t 0 ∆ 2 u(s) 2 ds ≤ Q 2 ( ∆u(0) ) + C 2 t, t ≥ 0, (2.38)
where the monotonic function Q 2 and the positive constants ε 2 , M 2 and C 2 are independent of u(0).

Proof. We multiply (1.1) by ∆ 2 u and integrate over Ω, we have

d dt ∆u 2 + 2 ∆ 2 u 2 + 2(g(u), ∆ 2 u) = 2(∆f (u), ∆ 2 u). (2.39) 
Using (2.12) and Young's inequality, we find

|(g(u), ∆ 2 u)| ≤ g(u) ∆ 2 u ≤ c g ∆ 2 u ≤ 1 4 ∆ 2 u 2 + c 2 g .
Moreover, we have

|(∆f (u), ∆ 2 u)| ≤ ∆f (u) ∆ 2 u ≤ ∆f (u) 2 + 1 4 ∆ 2 u 2 .
Thus,

d dt ∆u 2 + ∆ 2 u 2 ≤ 2 ∆f (u) 2 + 2c 2 g . (2.40) Using the chain rule (2.19), assumptions (2.2)-(2.
3) and interpolation inequalities, we obtain (see [START_REF] Miranville | The Cahn-Hilliard equation. Recent advances and applications[END_REF][START_REF] Temam | Infinite-dimensional dynamical systems in mechanics and physics[END_REF])

∆f (u) ≤ f (u) L ∞ (Ω) ∆u + f (u) L ∞ (Ω) ∇u 2 L 4 (Ω) ≤ c f ∆u + c f ∇u 2 L 4 (Ω) ≤ c f u 2 3 H 1 (Ω) u 1 3 H 4 (Ω) + c f u 2 H 7 4
, H

3 4 ⊂ L 4 (Ω) ≤ c f u 2 3 H 1 (Ω) u 1 3 H 4 (Ω) + c f u 3 4 H 1 (Ω) u 1 4 H 4 (Ω)
≤ (Thanks to estimate (2.29))

≤ c f (R 1 ) u 1 3 H 4 (Ω) + c f (R 1 ) u 1 4 H 4 (Ω) , t ≥ 0, where R 1 = ∇u(0) . Since the norm v → ∆ 2 v is equivalent to the usual H 4 (Ω)- norm in D(A 2 ), we have ∆f (u) 2 ≤ c 14 ∆ 2 u 2 3 + c 15 ∆ 2 u 1 2 , (2.41) 
where c 14 = c 14 (f , R 1 ) and c 15 = c 15 (f , R 1 ). Hence, by Young's inequality,

∆f (u) 2 ≤ 1 8 ∆ 2 u 2 + 2 3
8 3

1 2 c 3 2 14 + 1 8 ∆ 2 u 2 + 3 4 × 2 1 3 c 4 3 15 ≤ 1 4 ∆ 2 u 2 + c 16 , c 16 = c 16 (c 14 , c 15 ) ≥ 0. (2.42)
This estimate, combined with (2.40), yields

d dt ∆u(t) 2 + 1 2 ∆ 2 u(t) 2 ds ≤ c 17 , c 17 = 2c 2 g + c 16 (R 1 ) ≥ 0, t ≥ 0. (2.43)
The dissipative estimate (2.29) shows that there exists a time We deduce from Proposition 2.7 the existence of bounded absorbing set in D(A) and consequently, of a global attractor associated with our semigroup S 0 (t) [START_REF] Temam | Infinite-dimensional dynamical systems in mechanics and physics[END_REF].

t 1 = t 1 (R 1 ) such that ∇u(t) 2 ≤ C 1 + M 1 , for all t ≥ t 1 . Integrating (2.43) on the interval [0, t] for t ≤ t 1 , we obtain ∆u(t) 2 + 1 2 t 0 ∆ 2 u(s) 2 ds ≤ ∆u(0) 2 + c 17 t 1 (R 1 ), t ∈ [0, t 1 ]. ( 2 
Theorem 2.8. The semigroup S 0 (t) has a global attractor A ⊂ D(A) which is invariant (S 0 (t)A = A), bounded in H 2 (Ω), compact in L 2 (Ω), and which attracts the bounded sets of D(A) for the L 2 (Ω)-norm.

The following estimate shows that the semigroup is Hölder continuous in time.

Lemma 2.9. Let T > 0. If u 0 ∈ H 2 (Ω) ∩ H 1 0 (Ω), then u(t 1 ) -u(t 2 ) 2 ≤ Q(T, u 0 2 )|t 1 -t 2 |, ∀t 1 , t 2 ∈ [0, T ].
(2.48)

Proof. We multiply (1.1) by u t and integrate over Ω. We find

d dt ∆u(t) 2 + 2 u t (t) 2 -2(∆f (u), u t ) + 2(g(u), u t ) = 0. (2.49)
Using the Cauchy-Schwarz inequality, (2.12) and Young's inequality, we obtain

|(g(u), u t )| ≤ g(u) u t ≤ c g u t ≤ 1 4 u t 2 + c 2 g .
Similarly, we have

|(∆f (u), u t )| ≤ ∆f (u) u t ≤ 1 4 u t 2 + ∆f (u) 2 ≤ (Estimate (2.42)) ≤ 1 4 u t 2 + 1 2 ∆ 2 u 2 + c 16 (R 1 ),
where R 1 = ∇u(0) . Combining the above estimates in (2.49), we find

d dt ∆u(t) 2 + u t (t) 2 ≤ ∆ 2 u(t) 2 + 2c 16 (R 1 ), t ≥ 0.
Integrating on [0, T ], we obtain

∆u(T ) 2 + T 0 u t (t) 2 dt ≤ T 0 ∆ 2 u(t) 2 dt + 2c 16 (R 1 )T.
Thus, by Proposition 2.7,

T 0 u t (t) 2 dt ≤ Q( u(0) 2 , T ), (2.50)
where Q is a continuous and monotonic function of its arguments. Let t 1 , t 2 ∈ [0, T ]. Using the Cauchy-Schwarz inequality, we have

u(t 1 ) -u(t 2 ) = t 2 t 1 u t (s)ds ≤ t 2 t 1 u t (s) ds ≤ |t 1 -t 2 | 1 2 t 2 t 1 u t (s) 2 ds 1 2
.

(2.51) Lemma 2.9 follows from (2.50) and (2.51).

2.4.

Estimates for the difference of two solutions. Let now u 1 and u 2 be two solutions of system (1.1)-(1.3) with initial data u 0,1 and u 0,2 , respectively. We set u = u 1 -u 2 and u 0 = u 0,1 -u 0,2 and we have, for all T > 0,

u t + A 2 u + A(f (u 1 ) -f (u 2 )) + (g(u 1 ) -g(u 2 )) = 0 in L 2 (0, T ; D(A -1
)), (2.52)

u| t=0 = u 0 (= u 0,1 -u 0,2 ) in V. (2.53)
We first prove:

Lemma 2.10 (Uniqueness). For all t ≥ 0, we have

u 1 (t) -u 2 (t) 2 + t 0 ∆u(s) 2 ds ≤ e c f,g t u 0,1 -u 0,2 2 , (2.54)
where the positive constant c f,g depends only on L f and L g .

Proof. On multiplying (2.52) by u in H, we obtain

d dt u 2 + 2 Au 2 + 2(f (u 1 ) -f (u 2 ), Au) + 2(g(u 1 ) -g(u 2 ), u) = 0. (2.55)
From (2.13), we deduce that

|(g(u 1 ) -g(u 2 ), u)| ≤ g(u 1 ) -g(u 2 ) u ≤ L g u 2 .
Using (2.11) and Young's inequality, we find

|(f (u 1 ) -f (u 2 ), Au)| ≤ f (u 1 ) -f (u 2 ) Au ≤ L f u Au ≤ L 2 f 2 u 2 + 1 2 Au 2 .
Thus,

d dt u(t) 2 + Au(t) 2 ≤ c f,g u(t) 2 , c f,g = (2L g + L 2 f ) > 0, t ≥ 0. (2.56)
We finally conclude (2.54) from (2.56) and Gronwall's lemma.

Next, we show a L 2 -H 1 smoothing property.

Lemma 2.11.

If u i (0) 2 ≤ R 2 (i=1,2)
, then for all t > 0, we have

u(t) 2 1 ≤ c S t exp(c(R 2 )t) u 0 2 .
(2.57)

Proof. We multiply (2.52) by 2tA -1 u t in H. We deduce

d dt (t ∇u 2 ) + 2t u t 2 -1 + 2t(g(u 1 ) -g(u 2 ), (-∆) -1 u t ) + 2t(f (u 1 ) -f (u 2 ), u t ) = ∇u 2 .
(2.58) Using (2.7), Poincaré's inequality and Young's inequality, we have

|(g(u 1 ) -g(u 2 ), (-∆) -1 u t )| ≤ g(u 1 ) -g(u 2 ) (-∆) -1 u t ≤ L g u u t -1 L g c S ∇u u t -1 ≤ L 2 g c 2 S ∇u 2 + 1 4 u t 2 -1 .
Next, we use the Cauchy-Schwarz inequality and (2.9):

|(f (u 1 ) -f (u 2 ), u t )| = |(A 1 2 (f (u 1 ) -f (u 2 )), A -1 2 u t )| ≤ ∇ 1 0 f (u 1 + s(u 2 -u 1 ))dsu u t -1 ≤ 1 0 f (u 1 + s(u 2 -u 1 ))ds∇u u t -1 + 1 0 f (u 1 + s(u 2 -u 1 ))(∇u 1 + s∇(u 2 -u 1 ))dsu u t -1 ≤ c f ( ∇u + |u| |∇u 1 | + |u| |∇u 2 | ) u t -1 ≤ c f ( ∇u + u L 4 (Ω) ∇u 1 L 4 (Ω) + ∇u 2 L 4 (Ω) u t -1
≤ (thanks to the continuous embedding

H 1 (Ω) ⊂ L 4 (Ω)) ≤ c( ∇u + ∇u u 1 H 2 (Ω) + u 1 H 2 (Ω) u t -1 ≤ (since u 1 , u 2 are bounded in H 2 (Ω) by (2.37)) ≤ c(R 2 ) ∇u 2 + 1 4 u t 2 -1 .
(2.59)

Combining the above estimates in (2.58), we find

d dt (t ∇u(t) 2 ) + t u t (t) 2 -1 ≤ c t ∇u 2 + ∇u(t) 2 , c = 2L 2 g c 2 S + 2c(R 2 ).
By Gronwall's lemma, t ∇u(t) 2 ≤ e c t t 0 ∇u(s) 2 ds, t ≥ 0.

We conclude from (2.54) that (2.57) holds with c(R 2 ) = c + c f,g .

3.

The time semidiscrete problem 3.1. The discrete semigroup. For the time semidiscretization, we apply the semiimplicit Euler scheme to (1.1). In the remainder of the manuscript, δt > 0 denotes the time step. The scheme reads : let

u 0 ∈ D(A) = H 2 (Ω) ∩ H 1 0 (Ω) and for n = 0, 1, 2, • • • , let u n+1 ∈ D(A) solve u n+1 -u n δt + A 2 u n+1 + Af (u n ) + g(u n ) = 0. (3.1)
This is a linear sheme known as the IMEX (Implicit-Explicit) scheme: at each time step, u n+1 is computed by solving a linear system whose right-hand side involves u n . By elliptic regularity, for u n ∈ D(A), u n+1 is unique and belongs to D(A).

The following result shows that the discrete semigroup S n δt u 0 = u n is well-defined on D(A). Theorem 3.1. Assume that δt ≤ 1/(2L g ), where L g is the constant in (2.13). Then for every u n ∈ D(A), there exists a unique u n+1 ∈ D(A) which solves (3.1). Moreover, the mapping S δt : u n → u n+1 is Lipschitz continuous for the L 2 (Ω)-norm from D(A) into D(A).

The Lipschitz continuity in L 2 (Ω) follows from (3.39). The following regularity result will prove useful:

Lemma 3.2. If u n ∈ D(A), then u n+1 = S δt u n belongs to D(A 2 ) and δt A 2 u n+1 2 ≤ 2 ∆u n 2 + Cδt ∆u n 4 + 1 , (3.2) 
where the positive constant C is independent of δt and u n . Moreover,

∆u n+1 2 ≤ ∆u n 2 + Cδt ∆u n 4 + 1 . (3.3) 
Proof. By (3.1), u n+1 solves

u n+1 -u n + δtA 2 u n+1 = δt h (3.4) where h = ∆f (u n ) -g(u n ). By the chain rule (2.19), h ∈ L 2 (Ω) with h ≤ f (u n ) L ∞ (Ω) ∆u n + f (u n ) L ∞ (Ω) ∇u n 2 L 4 (Ω) + g(u n ) ≤ (H 1 (Ω) ⊂ L 4 (Ω)) ≤ c f ∆u n + c f c 2 S ∆u n 2 + c g . (3.5) 
Since u n , u n+1 and h belong to L 2 (Ω), we deduce from (3.4) that u n+1 ∈ D(A 2 ). Next, we take the L 2 -scalar product of (3.4) with u n+1 -u n . This yields

u n+1 -u n 2 + δt ∆u n+1 2 = δt(∆u n+1 , ∆u n ) + δt(h, u n+1 -u n ) ≤ δt ∆u n+1 ∆u n + δt h u n+1 -u n .
From Young's inequality, we deduce that

u n+1 -u n 2 + δt ∆u n+1 2 ≤ δt ∆u n 2 + δt 2 h 2 . (3.6) 
Now, we take the L 2 -scalar product of (3.4) with A 2 u n+1 . We find

δt A 2 u n+1 2 = -(u n+1 -u n , A 2 u n+1 ) + δt(h, A 2 u n+1 ) ≤ 1 δt u n+1 -u n 2 + δt 4 A 2 u n+1 2 + δt h 2 + δt 4 A 2 u n+1 2 .
Thus, by (3.6), δt A 2 u n+1 2 ≤ 2 ∆u n 2 + 4δt h 2 .

Using (3.5), we find (3.2). From (3.6) and (3.5), we also deduce that

∆u n+1 2 ≤ ∆u n 2 + δt h 2 ≤ ∆u n 2 + Cδt ∆u n 4 + 1 .
This is (3.3).

Dissipative estimates, uniform in δt.

In this subsection, we first establish some priori estimates for the scheme (3.1). The following well-known identity will be frequently used:

(a -b, a) = 1 2 ( a 2 -b 2 + a -b 2 ), a, b ∈ L 2 (Ω) (3.7)
In (3.7), we may also replace the inner product and the norm in L 2 (Ω) by another inner product and the norm associated to it. We recall a discrete Gronwall lemma. Proof. Since a n+1 ≤ (1 -γδt)a n + δtC, ∀n ≥ 0, we find by induction that for all n ≥ 0,

a n ≤ (1 -γδt) n a 0 + δtC n-1 k=0 (1 -γδt) k ≤ (1 -γδt) n a 0 + C γ .
By convexity, we have 1 -s ≤ e -s for all s ≥ 0. Thus, for all n ≥ 0,

a n ≤ e -nγδt a 0 + C γ .
This is (3.9). By (3.8), we also have

a n+1 + δtb n+1 ≤ a n + δtC, ∀n ≥ 0.
By summing from n = 0 to n = N -1, we find

a N + δt N -1 n=0 b n+1 ≤ a 0 + N δtC.
This yields (3.10).

Proposition 3.4 (Dissipative estimate in L 2 (Ω)). If δt is small enough, then

u n 2 ≤ C 0 u 0 2 e -ε 0 nδt + M 0 , ∀n ≥ 0, (3.11) 
and

δt n-1 k=0 ∆u k+1 2 ≤ C 0 u 0 2 + nδtM 0 , ∀n ≥ 0, (3.12)
where the positive constants C 0 , ε 0 , M 0 , C 0 and M 0 are independent of u 0 and δt.

Proof. We multiply (3.1) by A -1 u n+1 in H. Using (3.7), we have

1 2δt ( u n+1 2 -1 -u n 2 -1 + u n+1 -u n 2 -1 ) + ∇u n+1 2 + (f (u n+1 ), u n+1 ) +(f (u n ) -f (u n+1 ), u n+1 ) + (g(u n ), (-∆) -1 u n+1 ) = 0. (3.13)
Thanks to (2.17), we have

(f (u n+1 ), u n+1 ) ≥ c 1 u n+1 2 -c 2 , c 1 = γ 5 > 0, c 2 ≥ 0.
Using the Cauchy-Schwarz inequality, (2.11) and Young's inequality, we find

|(f (u n ) -f (u n+1 ), u n+1 )| ≤ f (u n ) -f (u n+1 ) u n+1 ≤ L f u n -u n+1 u n+1 ≤ c 1 4 u n+1 2 + L 2 f c 1 u n -u n+1 2 .
Moreover,

|(g(u n ), (-∆) -1 u n+1 )| ≤ g(u n ) (-∆) -1 u n+1 ≤ c g c S u n+1 ≤ c 1 4 u n+1 2 + c 2 g c 1
, where c g = c g c S .

Let us combine the above estimates in (3.13). We find

1 2δt u n+1 2 -1 + c 1 2 u n+1 2 + ∇u n+1 2 + 1 2δt u n+1 -u n 2 -1 ≤ 1 2δt u n 2 -1 + L 2 f c 1 u n+1 -u n 2 + c 2 g c 1 . (3.14) 
Now, we multiply (3.1) by u n+1 in H. We obtain

1 2δt ( u n+1 2 -u n 2 + u n+1 -u n 2 ) + ∆u n+1 2 +(f (u n ), ∆u n+1 ) + (g(u n ), u n+1 ) = 0. (3.15)
By (2.11), (2.1), (2.10) and Young's inequality, we have

|(f (u n ), ∆u n+1 )| ≤ f (u n ) ∆u n+1 ≤ L f u n ∆u n+1 ≤ L 2 f c 2 S 2 ∇u n 2 + 1 2 ∆u n+1 2 .
Owing to (2.12) and Young's inequality, we have

|(g(u n ), u n+1 )| ≤ g(u n ) u n+1 ≤ c g u n+1 ≤ 1 4 u n+1 2 + c 2 g .
Combining the above estimates in (3.15), we obtain

1 2δt u n+1 2 + 1 2δt u n+1 -u n 2 + 1 2 ∆u n+1 2 ≤ 1 2δt u n 2 + L 2 f c 2 S 2 ∇u n 2 + 1 4 u n+1 2 + c 2 g . (3.16)
On summing (3.14) and α (3.16) with α > 0 small enough, we conclude that

1 2δt u n+1 2 -1 + α 2δt u n+1 2 + ( c 1 2 - α 4 ) u n+1 2 + ∇u n+1 2 + 1 2δt u n+1 -u n 2 -1 + α 2δt u n+1 -u n 2 + α 2 ∆u n+1 2 ≤ 1 2δt u n 2 -1 + α 2δt u n 2 + L 2 f c 1 u n+1 -u n 2 + α L 2 f c 2 S 2 ∇u n 2 + c , (3.17)
where c = c 2 g c 1 +αc 2 g . We choose α > 0 small enough so that α ≤ c 1 and αL 2 f c 2 S /2 ≤ 1 and we set

a n = u n 2 -1 + α u n 2 . (3.18)
Then, for δt small enough (depending only on α and L 2 f /c 1 ), the estimate (3.17) yields

1 2δt a n+1 + c 1 2 a n+1 + α 2 ∆u n+1 2 ≤ 1 2δt a n + c , c 1 = c 1 (c 1 , c S ) > 0.
Thus,

a n+1 + αδt 1 + c 1 δt ∆u n+1 2 ≤ 1 1 + c 1 δt a n + 2δt 1 + c 1 δt c .
Thanks to an asymptotic expansion of order 2, for δt small enough (depending only on c 1 ), we have

a n+1 + α 2 δt ∆u n+1 2 ≤ (1 - c 1 2 δt)a n + 2c δt. (3.19) 
We deduce from Lemma 3.3 that for all n ≥ 0,

a n ≤ e -c 1 nδt/2 a 0 + 4c c 1 and α 2 δt n-1 k=0 ∆u k+1 2 ≤ a 0 + 2c nδt.
This concludes the proof of Proposition 3.4.

Proposition 3.5 (Dissipative estimate in H 1 (Ω)). If δt is small enough, then ∇u n 2 ≤ C 1 e -ε 1 nδt ∇u 0 2 + M 1 , ∀n ≥ 0, (3.20) 
and

δt n-1 k=0 u k+1 -u k 2 -1 ≤ C 1 ∇u 0 2 + M 1 , ∀n ≥ 0,
where the positive constants C 1 , ε 1 , M 1 , C 1 and M 1 are independent of u 0 and δt.

Proof. We multiply (3.1) by A -1 u n+1 -u n δt in H. We obtain

1 δt 2 u n+1 -u n 2 -1 + 1 2δt ∇u n+1 2 -∇u n 2 + ∇(u n+1 -u n ) 2 + 1 δt (F (u n+1 ) -F (u n ), 1) + (g(u n ), (-∆) -1 u n+1 -u n δt ) = 1 2δt Ω f (ζ u n+1 ,u n )(u n+1 -u n ) 2 dx. (3.21) 
Here, we used that for all r, s ∈ R,

F (s) = F (r) + f (r)(s -r) + f (ξ s,r ) (s -r) 2 2 , for some ξ s,r ∈ [r, s],
and (r,

s) → f (ξ s,r ) is a continuous function on R 2 , since F ∈ C 2 (R). Using (2.
2), an interpolation inequality and Young's inequality, we obtain

Ω f (ζ u n+1 ,u n )(u n+1 -u n ) 2 dx ≤ f L ∞ (Ω) u -u n 2 ≤ L f u n+1 -u n 2 ≤ L f ∇(u n+1 -u n ) u n+1 -u n -1 ≤ 1 2 ∇(u n+1 -u n ) 2 + L 2 f 2 u n+1 -u n 2 -1 .
By (2.12),

(g(u n ), (-∆) -1 u n+1 -u n δt ) ≤ g(u n ) (-∆) -1 u n+1 -u n δt ≤ c g c S u n+1 -u n δt -1 ≤ 1 2δt 2 u n+1 -u n 2 -1 + c 2 g c 2 S 2 .
Combining the above estimates in (3.21), we get

1 2δt ∇u n+1 2 + 1 δt (F (u n+1 ), 1) + 1 2δt 2 u n+1 -u n 2 -1 + 1 4δt ∇(u n+1 -u n ) 2 ≤ 1 2δt ∇u n 2 + 1 δt (F (u n ), 1) + L 2 f 4δt u n+1 -u n 2 -1 + c 2 g c 2 S 2 . (3.22) 
Let δt be small enough so that (3.19) holds and δt ≤ 1/(4L 2 f ). Adding (3.19) and 2δtβ times (3.22) where β > 0 is small enough, we find that

E n+1 2 + α 2 δt ∆u n+1 2 + β 2δt u n+1 -u n 2 -1 ≤ E n 2 + (2c + βc 2 g c 2 S )δt, (3.23) 
where

E n 2 = a n + β ∇u n 2 + 2β(F (u n ), 1
) and a n is defined by (3.18). By (2.15), F (s) + γ 2 ≥ 0 for all s ∈ R, so that Ẽn 2 = E n 2 + 2β(γ 2 , 1) ≥ 0, ∀n ≥ 0. Moreover, by (2.16) and the Poincaré inequality, we have Ẽn

2 ≤ c 3 ∇u n 2 + c 4 , c 3 , c 4 > 0, (3.24) 
so that (3.23) yields Ẽn+1

2 + c 5 δt Ẽn+1 2 + β 2δt u n+1 -u n 2 -1 ≤ Ẽn 2 + c 6 δt, c 5 , c 6 > 0.

Thus, Ẽn+1

2

+ 1 1 + c 5 δt β 2δt u n+1 -u n 2 -1 ≤ 1 1 + c 5 δt Ẽn 2 + c 6 1 + c 5 δt δt.
Therefore, for δt small enough (depending only on c 5 ), we have

Ẽn+1 2 + βδt 4 u n+1 -u n δt 2 -1 ≤ (1 - c 5 2 δt) Ẽn 2 + c 6 δt.
We may apply Lemma 3.3, which yields

Ẽn ≤ e -nc 5 δt/2 Ẽ0 2 + 2c 6 c 5 (3.25) 
and

β 4δt n-1 k=0 u k+1 -u k 2 -1 ≤ Ẽ0 2 + nδtc 6 , (3.26) 
for all n ≥ 0. Finally, we note that Ẽn 2 ≥ β ∇u n 2 , and this estimate, together with (3.24), (3.25) and (3.26), concludes the proof. Proposition 3.6 (Dissipative estimate in H 2 (Ω)). For δt small enough, we have

∆u n 2 ≤ Q 2 ( ∆u 0 )e -ε 2 nδt + M 2 , ∀n ≥ 0, (3.27) 
and

n-1 k=0 ∆(u k+1 -u k ) 2 ≤ Q 2 ( ∆u 0 ) + M 2 nδt, n ≥ 0, (3.28) 
where the monotonic function Q 2 and the positive constants ε 2 , M 2 and M 2 are independent of u 0 and δt.

Proof. By Lemma 3.2, we know that for all n ≥ 1, u n ∈ D(A 2 ). On multiplying (3.1) by A 2 u n+1 in H and using (3.7), we obtain

1 2δt ∆u n+1 2 -∆u n 2 + ∆(u n+1 -u n ) 2 + ∆ 2 u n+1 2 = -(g(u n ), ∆ 2 u n+1 ) + (∆f (u n ), ∆ 2 u n+1 ). (3.29)
Using (2.12) and Young's inequality yields

|(g(u n ), ∆ 2 u n+1 )| ≤ g(u n ) ∆ 2 u n+1 ≤ c g ∆ 2 u n+1 ≤ 1 4 ∆ 2 u n+1 2 + c 2 g .
Similarly, we have

|(∆f (u n ), ∆ 2 u n+1 )| ≤ ∆f (u n ) ∆ 2 u n+1 ≤ 1 4 ∆ 2 u n+1 2 + ∆f (u n ) 2 .
Therefore, we have

1 2δt ∆u n+1 2 -∆u n 2 + ∆(u n+1 -u n ) 2 + 1 2 ∆ 2 u n+1 2 ≤ ∆f (u n ) 2 + c 2 g . (3.30)
Arguing as in the continuous case (cf. (2.42)) and using the H 1 -estimate (3.20), we find that for all n ≥ 1, we have

∆f (u n ) ≤ 1 4 ∆ 2 u n 2 + c 16 (R 1 ), (3.31) 
where c 16 depends on R 1 = ∇u(0) . The estimate (3.30) becomes

1 2δt ∆u n+1 2 + 1 2 ∆ 2 u n+1 2 + 1 2δt ∆(u n+1 -u n ) 2 ≤ 1 2δt ∆u n 2 + 1 4 ∆ 2 u n 2 + c 7 ,
where c 7 (R 1 ) = c 2 g + c 16 (R 1 ). We multiply this estimate by 2δt and we obtain

b n+1 + δt 2 ∆ 2 u n+1 2 + ∆(u n+1 -u n ) 2 ≤ b n + 2c 7 δt, (3.32) 
where

b n = ∆u n 2 + δt 4 ∆ 2 u n 2 .
Using that δt is bounded from above and that (2.10) holds for s 1 = 1 and s 2 = 2, we find b n ≤ c 8 ∆ 2 u n 2 , ∀n ≥ 1 for some constant c 8 > 0 independent of δt. Thus, (3.32) 

implies b n+1 + δt 2c 8 b n+1 + ∆(u n+1 -u n ) 2 ≤ b n + 2c 7 δt, ∀n ≥ 1.
Therefore, for δt small enough, we have

b n+1 + 1 2 ∆(u n+1 -u n ) 2 ≤ (1 -c 9 δt)b n + 2c 7 δt ∀n ≥ 1, (3.33) 
where c 9 = 1/(4c 8 ). By Lemma 3.3,

b n ≤ e -(n-1)c 9 δt b 1 + 2c 7 c 9 , ∀n ≥ 1, (3.34) 
and 1 2 ) and Lemma 3.2 (for n = 0).

n-1 k=1 ∆(u k+1 -u k ) 2 ≤ b 1 + (n -1)δt 2c 7 c 9 , ∀n ≥ 1. ( 3 

3.3.

Estimates for the difference of solutions, uniform in δt. Let v n and w n be two sequences generated by the scheme (3.1) and corresponding to the initial data v 0 and w 0 respectively. We denote u n = v n -w n their difference, which satisfies

u n+1 -u n δt + A 2 u n+1 + A(f (v n ) -f (w n )) + (g(v n ) -g(w n )) = 0, ∀n ≥ 0. (3.38)
Lemma 3.7. Assume that δt < 1/(2L g ). Then for all n ≥ 1, we have

u n 2 + n-1 k=0 u k+1 -u k 2 + δt n-1 k=0 ∆u k+1 2 ≤ exp (c f,g nδt) u 0 2 . (3.39)
Proof. We multiply (3.38) by u n+1 in H. We obtain

1 2δt ( u n+1 2 -u n 2 + u n+1 -u n 2 ) + ∆u n+1 2 = (f (v n ) -f (w n ), ∆u n+1 ) -(g(v n ) -g(w n ), u n+1 ). (3.40) 
Owing to (2.13) and Young's inequality, we have

|(g(v n ) -g(w n ), u n+1 )| ≤ g(v n ) -g(w n ) u n+1 ≤ L g u n u n+1 ≤ L g 2 u n+1 2 + L g 2 u n 2 .
By (2.11) and Young's inequality,

|(f (v n ) -f (w n ), ∆u n+1 )| ≤ f (v n ) -f (w n ) ∆u n+1 ≤ L f u n ∆u n+1 ≤ L 2 f 2 u n 2 + 1 2 ∆u n+1 2 .
Plugging this in (3.40) times 2δt, we find

(1 -L g δt) u n+1 2 + u n+1 -u n 2 + δt ∆u n+1 2 ≤ (1 + cδt) u n 2 , (3.41) 
where c = L 2 f + L g . Thus, for δt ≤ 1/(2L g ), we have

u n+1 2 + u n+1 -u n 2 + δt ∆u n+1 2 ≤ (1 + c δt) u n 2 , ∀n ≥ 0, (3.42) 
where c = c (c, L g ). We apply the estimate

1 + s ≤ exp (s), ∀s ∈ R, (3.43) 
to s = c δt and we obtain (3.39) by induction, with c f,g = c .

Next, we show a L 2 -H 1 smoothing property.

Lemma 3.8. Let R 2 > 0 and δt < 1/(2L g ). If v 0 2 ≤ R 2 and w 0 2 ≤ R 2 , then for all n ≥ 1, we have

nδt u n 2 1 ≤ c S exp(c(R 2 )nδt) u 0 2 . (3.44)
Proof. We multiply (3.38) by A -1 (u n+1 -u n )/δt in H and we find 

1 δt 2 u n+1 -u n 2 -1 + 1 2δt ∇u n+1 2 -∇u n 2 + ∇(u n+1 -u n 2 ) + f (v n ) -f (w n ), u n+1 -u n δt + g(v n ) -g(w n ), A -1 u n+1 -u n δt = 0. ( 3 
|(g(v n ) -g(w n ), (-∆) -1 u n+1 -u n δt )| ≤ g(v n ) -g(w n ) (-∆) -1 u n+1 -u n δt ≤ L g u n c S u n+1 -u n δt -1 ≤ L 2 g c 2 S ∇u n 2 + 1 4δt 2 u n+1 -u n 2 -1 .
Thanks to (3.27), we know that (v n ) and (w n ) are bounded in H 2 (Ω). Arguing as in the continuous case (see (2.59)), we obtain

|(f (v n ) -f (w n ), u n+1 -u n δt )| ≤ A 1 2 (f (v n ) -f (w n )) u n+1 -u n δt -1 ≤ c(R 2 ) ∇u n 2 + 1 4δt 2 u n+1 -u n 2 -1 .
We combine the above estimates in (3.45) and we deduce that

1 2δt ∇u n+1 2 ≤ 1 2δt ∇u n 2 + c ∇u n 2 , ∀n ≥ 0, where c = c (R 2 ) = L 2 g c 2 S + c(R 2 )
. We multiply this by 2nδt and we add ∇u n+1 2 on both sides. This yields

(n + 1) ∇u n+1 2 ≤ (1 + 2c δt)n ∇u n 2 + ∇u n+1 2 , ∀n ≥ 0. Let d n = n ∇u n 2
. By (2.10), we have

d n+1 ≤ (1 + 2c δt)d n + c S ∆u n+1 2 , ∀n ≥ 0.
Using d 0 = 0, we deduce by induction that

d n ≤ (1 + 2c δt) n (c S n-1 k=0 ∆u k+1 2 ), ∀n ≥ 1.
The conclusion (3.44) follows from (3.39) and from (3.43) with s = 2c δt. and

|(g(u δt ) -g(u δt ), e δt )| ≤ g(u δt ) -g(u δt ) e δt ≤ L g u δt -u δt e δt ≤ L 2 g 4 u δt -u δt 2 + e δt 2 .
Moreover, by (2.11),

|(f (u δt ) -f (u), ∆e δt )| ≤ f (u δt ) -f (u) ∆e δt ≤ L f e δ ∆e δt ≤ L 2 f e δ 2 + 1 4 ∆e δ 2 and |(f (u δt ) -f (u δt ), ∆e δt )| ≤ f (u δt ) -f (u δt ) ∆e δt ≤ L f u δt -u δt ∆e δt ≤ L 2 f u δt -u δt 2 + 1 4 ∆e δt 2 .
We also have

|(∆(u δt -u δt ), ∆e δt )| ≤ ∆(u δt -u δt ) ∆e δt ≤ ∆(u δt -u δt ) 2 + 1 4 ∆e δt 2 .
Inserting the estimates above into (4.5), we find

d dt e δt (t) 2 + 1 2 ∆e δt (t) 2 ≤ c 1 e δt (t) 2 + c 2 u δt -u δt 2 + 2 ∆(u δt -u δt ) 2 , (4.6) 
where c 1 = 2L g + 2 + 2L 2 f and c 2 = L 2 g /2 + 2L 2 f . Let T > 0 and N = T /δt . Thanks to e δt (0) = 0 and the classical Gronwall lemma applied to (4.6), we obtain

e δt (t) 2 ≤ exp (c 1 T ) N δt 0 c 2 u δt (s) -u δt (s) 2 ds + exp (c 1 T ) N δt 0 2 ∆(u δt (s) -u δt (s)) 2 ds, ∀t ∈ [0, N δt]. (4.7)
On the interval [nδt, (n + 1)δt), we have

u δt (s) -u δt (s) ≤ u n+1 -u n and ∆(u δt (s) -u δt (s)) ≤ ∆(u n+1 -u n ) .
Thus,

N δt 0 c 2 u δt (s) -u δt (s) 2 ds ≤ c 2 δt N -1 k=0 u k+1 -u k 2 and N δt 0 ∆(u δt (s) -u δt (s)) 2 ds ≤ δt N -1 k=0 ∆(u k+1 -u k ) 2 .
Plugging these estimates into (4.7), we obtain

e δt (t) 2 ≤ exp (c 1 T ) c 2 N -1 k=0 u k+1 -u k 2 + 2 N -1 k=0 ∆(u k+1 -u k ) 2 δt ≤ c 3 exp (c 1 T ) N -1 k=0 ∆(u k+1 -u k ) 2 δt, (4.8) 
where

c 3 = c 2 c 2 S + 2. By (3.28), e δt (t) 2 ≤ c 3 exp (c 1 T ) Q 2 ( ∆u 0 ) + M 2 T δt, ∀t ∈ [0, N δt].
This concludes the proof.

Convergence of exponential attractors

5.1. Some definitions. Before stating our main result, we recall some definitions (see e.g. [START_REF] Efendiev | Exponential attractors for a singularly perturbed Cahn-Hilliard system[END_REF][START_REF] Temam | Infinite-dimensional dynamical systems in mechanics and physics[END_REF]). We recall that H = L 2 (Ω) and D(A) = H 2 (Ω) ∩ H 1 0 (Ω). A continuous-in-time semigroup {S(t), t ∈ R + } on D(A) is a family of (nonlinear) operators such that S(t) is a continuous operator (for the L 2 (Ω)-norm) from D(A) into itself, for all t ∈ R + , with S(0) = Id (identity) and S(t + s) = S(t) • S(s), ∀s, t ∈ R + .

A discrete-in-time semigroup {S(t), t ∈ N} on D(A) is a family of (nonlinear) operators which satisfy these properties with R + replaced by N. A discrete-intime semigroup is usually denoted {S n , n ∈ N}, where S(= S(1)) is a continuous (nonlinear) operator from D(A) into itself.

A (continuous or discrete) semigroup {S(t), t ≥ 0} defines a (continuous or discrete) dynamical system: if u 0 is the state of the dynamical system at time 0, then u(t) = S(t)u 0 is the state at time t ≥ 0. The term "dynamical system" will sometimes be used instead of "semigroup". Definition 5.1 (Global attractor). Let {S(t), t ≥ 0} be a continuous or discrete semigroup on D(A). A bounded set A ⊂ D(A) is called the global attractor of the dynamical system if the following three conditions are satisfied:

(1) A is compact in H;

(2) A is invariant, i.e. S(t)A = A, for all t ≥ 0;

(3) A attracts all bounded sets in D(A), i.e., for every bounded set B in D(A), lim t→+∞ dist H (S(t)B, A) = 0.

Here, dist H denotes the non-symmetric Hausdorff semidistance in H between two subsets, which is defined as

dist H (B 1 , B 2 ) = sup b 1 ∈B 1 inf b 2 ∈B 2 b 1 -b 2 H .
It is easy to see, thanks to the invariance and the attracting property, that the global attractor, when it exists, is unique [START_REF] Temam | Infinite-dimensional dynamical systems in mechanics and physics[END_REF].

Let X ⊂ H be a (relatively compact) subset of H. For ε > 0, we denote N ε (X, H) the minimum number of balls of H of radius ε > 0 which are necessary to cover X. respect to δt ∈ [0, δt 0 ], where δt 0 > 0 is chosen small enough. The estimates of Sections 2-4 show that assumptions (H1)-(H9) of Theorem 2.5 in [START_REF] Pierre | Convergence of exponential attractors for a time semi-discrete reaction-diffusion equation[END_REF] are satisfied. Thus, the conclusions of Theorem 5.3 hold for δt ∈ [0, δt ], for some δt ∈ (0, δt 0 ] small enough. We note that Theorem 2.5 in [START_REF] Pierre | Convergence of exponential attractors for a time semi-discrete reaction-diffusion equation[END_REF] is stated for a family of semigroups which act on the whole space H, but with a minor modification of the proof, it can be applied to our situation where the semigroup acts on D(A) and is continuous for the H-norm. The main tool is the construction of exponential attractors based on a uniform smoothing property proposed by Efendiev, Miranville and Zelik in [START_REF] Efendiev | Exponential attractors for a singularly perturbed Cahn-Hilliard system[END_REF]Theorem 4.4].

As in [29, Corollary 6.2], we have: Corollary 5.4. For every δt ∈ [0, δt ], the semigroup {S δt (t), t ≥ 0} possesses a global attractor A δt in D(A) which is bounded in D(A) and compact in H. Moreover, dist H (A δt , A 0 ) → 0 as δt → 0 + , and the fractal dimension of A δt is bounded by a constant independent of δt. where n is the unit outer normal to ∂Ω.

If g = 0 in (1.1), we deal with the classical Cahn-Hilliard equation and a result similar to Theorem 5.3 can be obtained. In this case, we have the conservation of mass and it is convenient to introduce the function spaces

H β = v ∈ H : Ω v = β and H α = |β|≤α H β ,
as in [START_REF] Batangouna | Convergence of exponential attractors for a time splitting approximation of the Caginalp phase-field system[END_REF][START_REF] Temam | Infinite-dimensional dynamical systems in mechanics and physics[END_REF], where β ∈ R and α > 0.

If g = 0, the situation is more delicate because we no longer have the conservation of mass [START_REF] Miranville | Asymptotic behaviour of a generalized Cahn-Hilliard equation with a proliferation term[END_REF]Remark 5.7]. If g is a proliferation term, the mass may even blow in finite time [START_REF] Cherfils | On a generalized Cahn-Hilliard equation with biological applications[END_REF][START_REF] Miranville | The Cahn-Hilliard equation and some of its variants[END_REF][START_REF] Miranville | The Cahn-Hilliard equation. Recent advances and applications[END_REF].
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Lemma 3 . 3 .b

 33 Let C, γ > 0 and (a n ), (b n ) be two sequences of nonnegative real numbers such thata n+1 + δtb n+1 ≤ (1 -γδt)a n + δtC, ∀n ≥ 0,(3.8)where δt ∈ (0, 1/(2γ)]. Then for all n ≥ 0, we havea n ≤ e -nγδt a 0 + k+1 ≤ a 0 + nδtC.(3.10)By convention, for n = 0, the sum in the left-hand side of (3.10) is zero.

Remark 5 . 5 .

 55 Let us replace the Dirichlet boundary conditions (1.2) with Neumann boundary conditions, which read ∂ n u = ∂ n ∆u = 0 on ∂Ω × (0, +∞), (5.1)

  .35) Thanks to the dissipative estimate(3.20), there exists a timet 1 = t 1 (R 1 ) such that ∇u n 2 ≤ C 1 + M 1 , ∀n ≥ t 1 /δt. Let n 1 = t 1 /δt , where • denotes the integer ceiling function. Then for n ≥ n 1 , the constant c 16 in (3.31) no longer depends on R 1 . Consequently, (3.33) holds for all n ≥ n 1 with c 7 and c 9 independent of R 1 . By induction (as in Lemma 3.3), we have b n ≤ e -(n-n 1 )c 9 δt b n 1 +

	and					
	1 2	n-1 k=n 1	∆(u k+1 -u k ) 2 ≤ b n 1 + (n -n 1 )δt	2c 7 c 9	, ∀n ≥ n 1 .	(3.37)
	The dissipative estimate (3.27) follows from (3.36) (for n ≥ n 1 ), (3.34) (for 1 ≤ n ≤
	n 1 and Lemma 3.2 (for n = 0). Estimate (3.28) follows from (3.37) (for n ≥ n 1 ),
	(3.35) (for 1 ≤ n ≤ n 1 ), (3.34) (for b n 1			
			2c 7 c 9	, ∀n ≥ n 1 ,	(3.36)

Finite time uniform error estimate

For the error estimate on a finite time interval, we follow the methodology in [START_REF] Pierre | Convergence of exponential attractors for a time semi-discrete reaction-diffusion equation[END_REF][START_REF] Wang | Approximation of stationary statistical properties of dissipative dynamical systems: time discretization[END_REF]. We consider a sequence (u n ) in D(A) generated by (3.1). To the sequence (u n ), we associate three functions u δt , u δt , u δt : R + → D(A), namely

We note that

, for all T > 0. The scheme (3.1) can be rewritten

Equivalently, we have

in D(A -1 ), for a.e. t > 0. We denote by u the solution to (2.20) with initial condition u 0 ∈ D(A) and we set

The error estimate reads:

Theorem 4.1. For all T > 0 and for all R 2 > 0, there is a constant C(T, R 2 ) independent of δt such that u 0 = u 0 and u 0

where N = T /δt and • denotes the integer floor function.

Proof. On subtracting (2.20) from (4.2), we find

We multiply (4.4) by e δt in H. We obtain

Estimate (2.13) and Young's inequality yield

The fractal dimension of X (see e.g. [START_REF] Eden | Exponential attractors for dissipative evolution equations[END_REF][START_REF] Temam | Infinite-dimensional dynamical systems in mechanics and physics[END_REF]) is the number

Definition 5.2 (Exponential attractor). Let {S(t), t ≥ 0} be a continuous or discrete semigroup on D(A). A bounded set M ⊂ D(A) is an exponential attractor of the dynamical system if the following three conditions are satisfied:

(1) M is compact in H and has finite fractal dimension;

(2) M is positively invariant, i.e. S(t)M ⊂ M, for all t ≥ 0;

(3) M attracts exponentially the bounded subsets of D(A) in the following sense:

where the positive constant α and the monotonic function

It is easy to see that the exponential attractor, if it exists, contains the global attractor.

5.2. The main result. We have seen that {S 0 (t), t ∈ R + } defined by (2.21) is a continuous-in-time dynamical system on D(A), and that for every δt > 0 small enough, {S n δt , n ∈ N} defines a discrete-in-time dynamical system on D(A) (Theorem 3.1). We have: Theorem 5.3. Let δt > 0 be small enough. For every δt ∈ (0, δt ], the discrete dynamical system {S n δt , n ∈ N} possesses an exponential attractor M δt in D(A), and the continuous dynamical system {S 0 (t), t ∈ R + } possesses an exponential attractor M 0 in D(A) such that:

(1) the fractal dimension of M δt is bounded, uniformly with respect to δt ∈ [0, δt ], dim F M δt ≤ c 1 , where c 1 is independent of δt;

(2) M δt attracts the bounded sets of D(A), uniformly with respect to δt ∈ (0, δt ],

i.e. for all δt ∈ (0, δt ],

, n ∈ N, where the positive constant c 2 and the monotonic function Q are independent of δt;

(3) the family {M δt , δt ∈ [0, δt ]} is continuous at 0,

where c 3 and c 4 ∈ (0, 1) are independent of δt and dist sym denotes the symmetric Hausdorff distance between sets, defined by

Proof. We apply Theorem 2.5 in [START_REF] Pierre | Convergence of exponential attractors for a time semi-discrete reaction-diffusion equation[END_REF] with the spaces H = L 2 (Ω) and V = H 1 0 (Ω) and the set B = {v ∈ D(A) : v 2 ≤ M 2 + 1} , where M 2 is the constant in (2.37) and (3.27). We note that V is compactly imbedded in H and that an H-V smoothing property holds, uniformly with respect to δt (Lemma 2.11 and Lemma 3.8). Moreover, B is absorbing in D(A), uniformly with