
HAL Id: hal-04187086
https://hal.science/hal-04187086

Submitted on 24 Aug 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Symbolic transformation of expressions in modular
arithmetic

Jérôme Boillot, Jérôme Feret

To cite this version:
Jérôme Boillot, Jérôme Feret. Symbolic transformation of expressions in modular arithmetic. Static
Analysis: 30th International Symposium, SAS 2023, Oct 2023, Cascais, Portugal. �hal-04187086�

https://hal.science/hal-04187086
https://hal.archives-ouvertes.fr

Symbolic transformation of expressions in
modular arithmetic

Jérôme Boillot1 and Jérôme Feret1,2

1 École Normale Supérieure, Université PSL, Paris, France
2 INRIA, Paris, France

jerome.{boillot,feret}@ens.fr

Abstract. We present symbolic methods to improve the precision of
static analyses of modular integer expressions based on Abstract Inter-
pretation. Like similar symbolic methods, the idea is to simplify on-the-
fly arithmetic expressions before they are given to abstract transfer func-
tions of underlying abstract domains. When manipulating fixed-length
integer data types, casts and overflows generally act like modulo com-
putations which hinder the use of symbolic techniques. The goal of this
article is to formalize how modulo operations can be safely eliminated by
abstracting arbitrary arithmetic expressions into sum, product, or divi-
sion of linear forms with integer coefficients, while simplifying them. We
provide some rules to simplify arithmetic expressions that are involved
in the computation of linear interpolations, while ensuring the soundness
of the transformation.
All these methods have been incorporated within the Astrée static ana-
lyzer that checks for the absence of run-time errors in embedded critical
software, but also in an available toy abstract interpreter. The effects
of our new abstract domain are then evaluated on several code excerpts
from industrial code.

Keywords: Modular Arithmetic · Program Transformation · Sym-
bolic Propagation · Abstract Intepretation · Interpolation.

1 Introduction

An important Computer Science challenge is to prove that given programs can-
not crash. It is particularly needed in critical embedded applications such as
planes, where potential errors can be fatal. Because of Rice’s theorem, we know
that it is impossible to create an analyzer that is both automatic (it does not re-
quire user interaction to finish, and can do so in finite time), sound (any proved

2 J. Boillot, J. Feret.

1 int x, y;
2 if (x >= y) {
3 unsigned int r = (unsigned int) x - y;
4 assert(r == (int64_t) x - y);
5 }

(a) C language

1 𝑋 ← [−231, 231[⨾
2 𝑌 ← [−231, 231[⨾
3 if 𝑋 + −𝑌 ≥ 0 then
4 𝑅 ← ((𝑋 mod [0, 232[) + −(𝑌 mod [0, 232[))

mod [0, 232[⨾↪
5 // 𝑅 = 𝑋 − 𝑌
6 endif

(b) Article’s language

Fig. 1: Distance computation example.

property of the program actually holds), and complete (it is able to prove any
property that holds). Because in general the most precise invariants are not
computable, we decide to drop the completeness constraint. This means such
analyzer can raise alarms that are false-positives. We are particularly interested
in the Abstract Interpretation framework [5,6] and properties of integer expres-
sions. Thus, the static analyzer we will present is parameterized by an auxiliary
numerical abstract domain we will use to compute and represent numerical prop-
erties of program instructions.

There exist different numerical abstract domains that vary in precision, but
also in time and memory costs. For example, we could name the interval do-
main [4] that computes sound variable bounds, and the polyhedra domain [8]
that discovers linear inequalities. In order to prove the correctness of a program,
it is sometimes necessary to retain information about the relationships between
variables (e.g., equalities between variables, or linear inequalities like in the poly-
hedron domain). Such abstract domains are called relational, and their usage can
be very costly. That is why symbolic methods have been developed: to keep rela-
tions between variables by reasoning directly over the arithmetic expressions, and
to apply sound program transformations on-the-fly to ease the analysis. This is
what [21] describes with its abstraction of any arithmetic expressions into linear
forms with interval coefficients. This abstraction allows algebraic simplifications.

When programming in languages, like C, that allow usage of fixed-length
integers, it is important to consider how overflows and casts between different
integer data types are handled. In C, this semantics is detailed in the C Standard
[14]; we take into account that, in addition to explicit casts, some implicit casts
are performed in arithmetic operations (e.g., via the integer promotion). Un-
signed integers do not overflow, the result is reduced modulo the largest value
of the resulting type plus one. Casts also correspond to the use of a modulo.
Thus, if we want to use symbolic methods, it appears necessary to deal with
those modulo computations in the abstract representation.

In this paper, we present symbolic enhancement techniques similar to the
ones described in [21], but that allow safe modulo elimination when it is pos-
sible. Consider, for instance, the program of Fig. 1 that computes the distance
between 𝑋 and 𝑌 when 𝑋 ≥ 𝑌. As for every further introducing examples, we
provide the C code in Fig. 1a and the representation in our internal language
in Fig. 1b. Please note that in all the following examples the int data type is

Symbolic transformation of expressions in modular arithmetic 3

1 int x, p0, p1;
2 unsigned int a = (unsigned int) x - p0;
3 unsigned int b = (unsigned int) p1 - x;
4 if (p1 >= p0) {
5 unsigned int r = a + b;
6 assert(r == (int64_t) p1 - p0);
7 }

(a) C language

1 𝑋 ← [−231, 231[⨾
2 𝑃0 ← [−231, 231[⨾
3 𝑃1 ← [−231, 231[⨾
4 𝐴 ← ((𝑋 mod [0, 232[) + −(𝑃0 mod [0, 232[))

mod [0, 232[⨾↪
5 𝐵 ← ((𝑃1 mod [0, 232[) + −(𝑋 mod [0, 232[))

mod [0, 232[⨾↪
6 if 𝑃1 + −𝑃0 ≥ 0 then
7 𝑅 ← (𝐴 + 𝐵) mod [0, 232[⨾
8 // 𝑅 = 𝑃1 − 𝑃0
9 endif

(b) Article’s language

Fig. 2: Variable elimination example.

1 unsigned int x, x0, x1, y0, y1;
2 if (x0 <= x && x <= x1) {
3 if (x0 != x1 && y0 <= y1) {
4 unsigned int r = y0 + ((uint64_t)

(x-x0) * (y1-y0) / (x1-x0));↪
5 assert(y0 <= r && r <= y1);
6 }
7 }

(a) C language

1 if 𝑋 + −𝑋0 ≥ 0 then
2 if 𝑋 + −𝑋1 ≤ 0 then
3 if 𝑋0 + −𝑋1 ≠ 0 then
4 if 𝑌0 + −𝑌1 ≤ 0 then
5 𝑅 ← 𝑌0 + ((𝑋 + −𝑋0) × (𝑌1 + −𝑌0)) ∕

(𝑋1 + −𝑋0)⨾↪
6 // 𝑌0 ≤ 𝑅 ≤ 𝑌1
7 endif ⨾
8 endif ⨾
9 endif ⨾

10 endif

(b) Article’s language (simplified)

Fig. 3: First example of linear interpolation computation.

consistently represented using a 32-bit format. Nevertheless, this representation
remains a parameter of the analysis. We expect the analyzer to infer that, when
𝑋 ≥ 𝑌 is verified, 𝑅 = 𝑋 − 𝑌. Note that 𝑋 mod [0, 232[≠ 𝑋 and the same
holds with 𝑌. So, traditional abstract domains like integers or polyhedron, or
even linearization, could not infer this invariant. But our modulo elimination
technique allows us to compute it. In our second example in Fig. 2 we would
like to replace the expression 𝐴+𝐵 by 𝑃1−𝑃0 by making the occurrences of the
variable 𝑋 in the expressions 𝐴 and 𝐵 cancel each other. This is made possible
by the symbolic constant propagation domain. In addition, in our latest exam-
ple in Fig. 3 (modulos are omitted for readability), if all conditions are met 𝑅
is the linear interpolation of some function 𝑓 in 𝑋 such that 𝑓(𝑋0) = 𝑌0 and
𝑓(𝑋1) = 𝑌1. Then, 𝑅 should be between 𝑌0 and 𝑌1. The abstract domain we
present is able to compute such invariants thanks to the interpolation detection
step in the reduction heuristic.

Related Work. The problem of analyzing programs with modular computations
has already been addressed in the literature. Accurate results are especially im-
portant when inferring properties about pointer alignments and arrays lookup
parallelization algorithms. The domains of congruences [11], linear congruences
[12,22], trapezoidal congruences [18] have been used in that context. They of-

4 J. Boillot, J. Feret.

fer several trade-offs for describing modular properties on intervals, linear in-
equalities, and rational linear inequalities. Modular arithmetic usually involves
non-convex properties. A generic domain functor has been introduced in [23] to
adapt abstract domains, so they can deal with modular properties.

The granularity of expression assignments is also important. For instance,
while the single step assignment [9] method helps static analysis by decompos-
ing the evaluation of expressions and by distinguishing multiple usages of each
variable, it may also make more difficult symbolic simplifications of expressions.
In contrast, symbolic constant propagation [21] allows composite assignments to
be recombined to form composite expressions that can be simplified more easily.
In the static analyzer Mopsa [16], abstract domains can rewrite expressions by
resolving some aspects (such as pointers, floating point arithmetic), and simplify
them symbolically. Lastly, some work has been done on fixed point arithmetic
in the context of deductive methods [10].

Adapting symbolic simplification approaches in the context of modular arith-
metic is different from detecting modular numerical properties. This is the issue
we address in the present paper. Note that, while we focus on the simplification
of expressions, the analysis of interpolation algorithms also requires precise han-
dling of array lookup procedures. Analyzing array lookup loops and expressions
involved in interpolation algorithms are orthogonal issues. The literature already
describes some methods to address the former one [13,24].

In this work, we use an intermediate language inspired by the one used in [21].
We focus on integer arithmetic rather than floating-point computations, and we
have introduced modulo computations and bound check operators. Moreover, we
have adapted our rewriting relation from the one that is given in [21] by adding
an explicit treatment of error alarms.

Outline. The paper is organized as follows. In Sect. 2, we present some prelimi-
nary results on modular integer arithmetic, which suggest it should be possible
to effectively simplify expressions evaluated over modular rings. In Sect. 3, we in-
troduce a toy arithmetic language that allows modulo computations and bound
checks. The semantics of this language describes two kinds of error alarms: divi-
sions by zero and failed bound checks. In Sect. 4 we explain how the integration
of the expression rewriting technique can be done soundly. Then, in Sect. 5 we
introduce an abstract representation of expressions that can be tuned by the
parameters of a generic numerical abstract domain described in Sect. 6. Such a
generic abstract domain is then instantiated in Sect. 7, by making explicit the
heuristics used to symbolically simplify expressions. Finally, Sect. 8 describes
some aspects of our implementations and an evaluation of the introduced ab-
stract domain over several code excerpts from industrial code.

2 Preliminary Results on Modular Integer Arithmetic

In this section, we give basic properties to reason on Euclidean division and
modular arithmetic. First, we introduce the set of modulo specifications 𝕄 that

Symbolic transformation of expressions in modular arithmetic 5

is defined as follows:

𝕄 ≝ { [𝑙, 𝑢[∣ 𝑙, 𝑢 ∈ ℤ, 𝑙 < 𝑢 } ∪ {ℤ }.

The set 𝕄 contains two kinds of elements. Intervals of the form [𝑙, 𝑢[denote
operations modulo 𝑢 − 𝑙 with result in the interval [𝑙, 𝑢[, whereas the element ℤ
denotes arithmetic operations without modulo. This is formalized in the follow-
ing definition:

Definition 1. We define the modulo of 𝑘 ∈ ℤ by an element of 𝕄 as

𝑘 mod [𝑙, 𝑢[≝ 𝑙 + irem(𝑘 − 𝑙, 𝑢 − 𝑙)
𝑘 mod ℤ ≝ 𝑘

where irem(𝑚, 𝑛) denotes the remainder of the Euclidean division of the integer
𝑚 by the strictly positive integer 𝑛, that is to say the unique integer 𝑟 such that
0 ≤ 𝑟 < 𝑛 and 𝑛 divides 𝑚 − 𝑟.

In particular, when the integer 𝑘 belongs to the interval [𝑙, 𝑢[we have 𝑘 mod
[𝑙, 𝑢[= 𝑘.

Definition 2. An element 𝑚 ∈ 𝕄 is said to be 𝑘-splittable, with 𝑘 a strictly
positive integer, if 𝑚 can be split in 𝑘 sets of same cardinality. We define 𝕊 ∶
ℕ∗ → ℘(𝕄) such that 𝕊(𝑘) is the set of elements of 𝕄 that are 𝑘-splittable. More
formally,

∀𝑘 > 0, 𝕊(𝑘) ≝ { [𝑙, 𝑢[∈ 𝕄 ∣ (𝑘 | (𝑢 − 𝑙)) } ∪ {ℤ }.

Example 1. The intervals [0, 216[and [−215, 215[both are 216-splittable and 28-
splittable.

We use the notion of 𝑘-splittability to reason about the application of consec-
utive modulo computations. In particular, when two modulo operations follow
each other, the inner one can be ignored under some specific conditions. This is
formalized in the following property.

Property 1. Let 𝑛 ∈ ℤ be an integer. Let [𝑙, 𝑢[and 𝑚 be two elements of 𝕄.
If 𝑚 is (𝑢 − 𝑙)-splittable (i.e., if 𝑚 ∈ 𝕊(𝑢 − 𝑙)), then (𝑛 mod 𝑚) mod [𝑙, 𝑢[=
𝑛 mod [𝑙, 𝑢[.

We now give two other properties to simplify consecutive modulo computa-
tions under some conditions.

Property 2. Let 𝑛 ∈ ℤ be an integer. Let [𝑙1, 𝑢1[and [𝑙2, 𝑢2[be two elements of 𝕄
such that [𝑙1, 𝑢1[⊆ [𝑙2, 𝑢2[. Then, (𝑛 mod [𝑙1, 𝑢1[) mod [𝑙2, 𝑢2[= 𝑛 mod [𝑙1, 𝑢1[.

Property 3. Let 𝑛 ∈ ℤ be an integer. Let [𝑙1, 𝑢1[and [𝑙2, 𝑢2[be two elements of
𝕄. We consider 𝛼 ≝ 𝑙1 mod [𝑙2, 𝑢2[. If 𝛼+𝑢1−𝑙1 ≤ 𝑢2 and (𝑢1−𝑙1) | (𝛼−𝑙1), then
we have (𝑛 mod [𝑙1, 𝑢1[) mod [𝑙2, 𝑢2[= 𝑛 mod [𝛼, 𝛼+𝑢1−𝑙1[. This is pictured in
Fig. 4.

6 J. Boillot, J. Feret.

𝑙1 𝑢1 𝑙2 𝛼 𝛼+𝑢1−𝑙1 𝑢2
[] [[]]

mod [𝑙2, 𝑢2[

mod [𝑙2, 𝑢2[

Fig. 4: Translation when applying consecutive modulos.

expr ⩴ 𝑋 𝑋 ∈ 𝒱
| [𝑎, 𝑏] 𝑎, 𝑏 ∈ ℤ, 𝑎 ≤ 𝑏
| −expr
| expr ⋄ expr ⋄ ∈ {+, ×, ∕}
| expr ⋓ expr
| expr mod [𝑙, 𝑢[𝑙, 𝑢 ∈ ℤ, 𝑙 < 𝑢
| bound_check(expr, [𝑙, 𝑢[) 𝑙, 𝑢 ∈ ℤ, 𝑙 < 𝑢

stmt ⩴ 𝑋 ← expr 𝑋 ∈ 𝒱
| if expr ⋈ 0 then stmt ⨾ endif ⋈ ∈ {=,≠, <, ≤, ≥, >}
| while expr ⋈ 0 do stmt ⨾ done ⋈ ∈ {=,≠, <, ≤, ≥, >}
| stmt ⨾ stmt

Fig. 5: Syntax of our extended language.

Note that Prop. 2 is a particular case of Prop. 3. Indeed, with the notations of
Prop. 3, if [𝑙1, 𝑢1[⊆ [𝑙2, 𝑢2[we have 𝛼 = 𝑙1. Then, 𝛼+𝑢1−𝑙1 = 𝑢1 and 𝛼− 𝑙1 = 0.
So, 𝛼 + 𝑢1 − 𝑙1 ≤ 𝑢2 and (𝑢1 − 𝑙1) | (𝛼 − 𝑙1). We can conclude, thanks to Prop. 3,
that (𝑛 mod [𝑙1, 𝑢1[) mod [𝑙2, 𝑢2[= 𝑛 mod [𝑙1, 𝑢1[

We finish this preliminary results section, with few examples about modulo
computations.
Example 2. Let 𝑛 be an integer in ℤ. Then,

– by Prop. 1, (𝑛 mod [−215, 215[) mod [0, 28[= 𝑛 mod [0, 28[,
– because 23 ∈ [0, 28[, 23 mod [0, 28[= 23,
– by Prop. 2, (𝑛 mod [0, 28[) mod [0, 216[= 𝑛 mod [0, 28[,
– by Prop. 3, (𝑛 mod [2, 4[) mod [10, 20[= 𝑛 mod [12, 14[(with 𝛼 = 12).

3 Syntax and Semantics of the Language

3.1 Syntax of the Language

The syntax of our language is introduced in Fig. 5. The analysis that is described
in this paper only refines the result of integer computations. Thus, the descrip-

Symbolic transformation of expressions in modular arithmetic 7

tion of pointers and floating point arithmetic is omitted. We indeed suppose
that lvalue resolution has been partially solved (see [2, Sect. 6.1.3]) and that the
abstraction presented here assigns no information to the value of floating point
variables (which are handled by some other abstract domains of the analyzer).
We focus on integer expressions, which are made of variables, constant inter-
vals, classical arithmetic operations, modulo within a constant modular ring,
and bound checks. A specific operator ⋓ is added to our extended syntax to rep-
resent the value of some sub-expressions. This operator represents the convex
join of two integer expressions, that is any value between its operands. This is
especially helpful to deal with expressions involved in interpolation procedures.
For example, in Fig. 3, if it is defined, the value of 𝑅 is between the values of
𝑌0 and 𝑌1, regardless of their order. We then denote 𝑅 ← 𝑌0 ⋓𝑌1. Assuming we
can establish that 𝑌0 ≤ 𝑌1, it follows that 𝑌0 ≤ 𝑅 ≤ 𝑌1.

The variables involved in the program belong to a finite set, denoted 𝒱.
We use interval constants to represent constants or to model non-determinism
that may be due to some unknown inputs or potentially imprecise abstraction.
Implicit and explicit casts have been decomposed by means of two operators:
as it will be seen in the description of the semantics, the bound check operator
bound_check checks whether the value of an expression does not overflow, and
the modulo operator mod extracts the remainder of the Euclidean division.
Lastly, we assume that bit shifting has been replaced with equivalent arithmetic
operations.

Statements include assignments, sequential composition, conditional branch-
ing (we only consider positive branches, negative ones can be encoded conse-
quently), and loops. The conditions of branching and loops compare expressions
with the value 0. This toy language is enough to encode the semantics of the
integer arithmetic restriction of real-life programming languages like C.

For the rest of the paper, every constant expression of the form [𝛼, 𝛼] with
𝛼 ∈ ℤ is denoted 𝛼cst.

3.2 Concrete Semantics of the Language

We now describe the concrete semantics of our language, that is a mathematical
expression of its behaviors. It is worth noting that, due to the use of intervals
and convex join operators, the evaluation of an expression may induce non-
determinism. Additionally, our semantics tracks erroneous computations.

We introduce a set of possible errors that we note Ω. We assume that Ω
contains in particular two distinct elements 𝜔𝑑 and 𝜔𝑜: the error 𝜔𝑑 stands for a
division by zero, whereas the error 𝜔𝑜 denotes a bound check failure. The other
elements of Ω can be raised by the other domains of the analyzer, especially
during the resolution of the lvalues.

A memory state is a function that maps each variable from the set 𝒱 to an
integer in ℤ. The set of all memory states is denoted ℰ. The concrete semantics
⟦ expr ⟧ ∈ ℰ → (℘(ℤ) × ℘(Ω)) of an expression maps a memory state to sets of
values and errors. To simplify the formulas, given an expression 𝑒 ∈ expr and a
memory state 𝜌 ∈ ℰ, the first component of ⟦ 𝑒 ⟧𝜌 is often written ⟦ 𝑒 ⟧𝑉𝜌 ∈ ℘(ℤ),

8 J. Boillot, J. Feret.

⟦𝑋 ⟧𝜌 ≝ ⟨ { 𝜌(𝑋) }, ∅ ⟩
⟦ [𝑎, 𝑏] ⟧𝜌 ≝ ⟨ { 𝑥 ∈ ℤ ∣ 𝑎 ≤ 𝑥 ≤ 𝑏 }, ∅ ⟩
⟦−𝑒 ⟧𝜌 ≝ ⟨ {−𝑥 ∣ 𝑥 ∈ ⟦ 𝑒 ⟧𝑉𝜌 }, ⟦ 𝑒 ⟧Ω𝜌 ⟩
⟦ 𝑒1 + 𝑒2 ⟧𝜌 ≝ ⟨ { 𝑥 + 𝑦 ∣ 𝑥 ∈ ⟦ 𝑒1 ⟧𝑉𝜌, 𝑦 ∈ ⟦ 𝑒2 ⟧𝑉𝜌 }, ⟦ 𝑒1 ⟧Ω𝜌 ∪ ⟦ 𝑒2 ⟧Ω𝜌 ⟩
⟦ 𝑒1 × 𝑒2 ⟧𝜌 ≝ ⟨ { 𝑥 × 𝑦 ∣ 𝑥 ∈ ⟦ 𝑒1 ⟧𝑉𝜌, 𝑦 ∈ ⟦ 𝑒2 ⟧𝑉𝜌 }, ⟦ 𝑒1 ⟧Ω𝜌 ∪ ⟦ 𝑒2 ⟧Ω𝜌 ⟩
⟦ 𝑒1 ∕ 𝑒2 ⟧𝜌 ≝ ⟨ { truncate(𝑥 ∕ 𝑦) ∣ 𝑥 ∈ ⟦ 𝑒1 ⟧𝑉𝜌, 𝑦 ∈ ⟦ 𝑒2 ⟧𝑉𝜌, 𝑦 ≠ 0 }, ⟦ 𝑒1 ⟧Ω𝜌 ∪ ⟦ 𝑒2 ⟧Ω𝜌 ∪ Ω1 ⟩

with Ω1 ≝ {{ 𝜔𝑑 } if 0 ∈ ⟦ 𝑒2 ⟧𝑉𝜌
∅ otherwise

⟦ 𝑒1 ⋓ 𝑒2 ⟧𝜌 ≝
⟨
{ 𝑧 ∈ ℤ

||||||||
𝑥 ∈ ⟦ 𝑒1 ⟧𝑉𝜌, 𝑦 ∈ ⟦ 𝑒2 ⟧𝑉𝜌
𝑥 ≤ 𝑧 ≤ 𝑦 ∨ 𝑦 ≤ 𝑧 ≤ 𝑥 } , ⟦ 𝑒1 ⟧Ω𝜌 ∪ ⟦ 𝑒2 ⟧Ω𝜌

⟩

⟦ 𝑒 mod [𝑙, 𝑢[⟧𝜌 ≝ ⟨ { 𝑥 mod [𝑙, 𝑢[∣ 𝑥 ∈ ⟦ 𝑒 ⟧𝑉𝜌 }, ⟦ 𝑒 ⟧Ω𝜌 ⟩
⟦bound_check(𝑒, [𝑙, 𝑢[) ⟧𝜌 ≝ ⟨ ⟦ 𝑒 ⟧𝑉𝜌, ⟦ 𝑒 ⟧Ω𝜌 ∪ Ω1 ⟩ with Ω1 ≝ {{ 𝜔𝑜 } if ⟦ 𝑒 ⟧𝑉𝜌 ⊈ [𝑙, 𝑢[

∅ otherwise

Fig. 6: Concrete semantics of expressions.

while the second one is written ⟦ 𝑒 ⟧Ω𝜌 ∈ ℘(Ω). These notations are used in the
inductive definition given in Fig. 6 and also until the rest of the paper.

The evaluation of a variable raises no error, it only gives the value that is
fetched from the memory state. The evaluation of an interval constant raises no
error either. It provides an arbitrary value in the corresponding interval. Clas-
sical arithmetic operators and modulo consist in applying the corresponding
operations element-wise while propagating the errors potentially raised when
evaluating their sub-expressions. Additionally, the result of every division be-
tween two integers is truncated, that is rounded towards zero, while raising the
error 𝜔𝑑 when the denominator can take the value 0. The convex join operator
⋓ outputs any value between the potential values of its operands and propagates
the errors, but does not raise new ones. Finally, bound-checking propagates val-
ues while raising the error 𝜔𝑜 when they do not fit in the interval given as an
argument.

It is worth to note that division by 0 and overflows are handled differently:
executions that perform divisions by 0 are halted (they produce no memory
states), whereas those that cause overflows are continued without modifying the
current value. It corresponds to user-defined semantics assumptions [1], which
are more specific than C standard which assumes the result is non-deterministic.

We now define the concrete semantics of statements. The semantics domain
𝒟 collects both sets of memory states and errors. Thus, it is defined as follows:

𝒟 ≝ ℘(ℰ) × ℘(Ω).

It is equipped with the component-wise join ⊔ and order ⊑.
The concrete semantics of a statement, ⦃ stmt ⦄ ∶ 𝒟 → 𝒟, maps each element

of the semantics domain 𝜌 ∈ 𝒟 to another one. For a given statement, it applies

Symbolic transformation of expressions in modular arithmetic 9

⦃ 𝑋 ← 𝑒 ⦄⟨ 𝑅0, Ω0 ⟩ ≝ ⟨∅,Ω0 ⟩ ⊔
⨆

𝜌∈𝑅0

{ ⟨ { 𝜌[𝑋 ↦ 𝑣] }, ⟦ 𝑒 ⟧Ω𝜌 ⟩ |||| 𝑣 ∈ ⟦ 𝑒 ⟧𝑉𝜌 }

⦃ 𝑒 ⋈ 0? ⦄⟨ 𝑅0, Ω0 ⟩ ≝ ⟨∅,Ω0 ⟩ ⊔
⨆

𝜌∈𝑅0

{ ⟨ { 𝜌 }, ⟦ 𝑒 ⟧Ω𝜌 ⟩ |||| ∃𝑣 ∈ ⟦ 𝑒 ⟧𝑉𝜌, 𝑣 ⋈ 0 }

⦃ 𝑠1 ⨾ 𝑠2 ⦄ ≝ ⦃ 𝑠2 ⦄◦⦃ 𝑠1 ⦄
⦃ if 𝑒 ⋈ 0 then 𝑠⨾ endif ⦄⟨ 𝑅0, Ω0 ⟩ ≝ (⦃ 𝑠 ⦄◦⦃ 𝑒 ⋈ 0? ⦄)⟨ 𝑅0, Ω0 ⟩ ⊔ ⦃ 𝑒 ̸⋈ 0? ⦄⟨ 𝑅0, Ω0 ⟩
⦃while 𝑒 ⋈ 0 do 𝑠⨾ done ⦄⟨ 𝑅0, Ω0 ⟩ ≝ ⦃ 𝑒 ̸⋈ 0? ⦄

(⨆

𝑛∈ℕ
(⦃ 𝑠 ⦄◦⦃ 𝑒 ⋈ 0? ⦄)𝑛⟨ 𝑅0, Ω0 ⟩

)

Fig. 7: Concrete semantics of statements.

the transformation over the possible memory states and accumulates the poten-
tial errors. It is defined by induction over the syntax in Fig. 7. The operator

⨆

refers to the iteration of the binary associative and commutative operator ⊔ over
the elements of the set given as an argument.

Roughly speaking, the set of potential memory states, after assigning an
expression 𝑒 ∈ expr to a variable 𝑋 ∈ 𝒱, is obtained by considering each potential
memory state before the execution of the assignment and each potential value
for the expression in that memory state ; for each combination, the memory
state is updated by taking into account the potential value of the expression.
𝜌[𝑋 ← 𝑥] denotes the function equal to 𝜌 on 𝒱 ⧵{𝑋 } and that maps 𝑋 to 𝑥. The
evaluation of the expression can also yield errors, which are also collected. The
semantics of the sequential composition of two statements is the composition of
their semantics. Lastly, the semantics of conditional branching and loops rely on
the handling of guarding conditions: the execution of the guard restricts the set
of memory states to those that satisfy the corresponding condition. The potential
errors raised when evaluating the expression are also collected. The semantics
of conditional branching apply the semantics of the true branch on the result of
the application of the guard, and join it to the result of the application of the
negation of the guard. Lastly, the semantics of loops is obtained by unfolding
the loop according to its number of iterations.

4 Soundness requirements of expression rewriting

We now introduce a rewriting order over expressions, noted ≼, and parameterized
by a set of error alarms. Rewriting an expression may rely on some conditions
about the current state of the system. Additionally, it can simplify some parts
of the initial expression, which could potentially raise some error alarms. The
set of these error alarms are reported as side-conditions.

Definition 3. The relation ≼Ω1 , with Ω1 ∈ ℘(Ω) a set of potential error alarms,
is defined as follows:

⟨ 𝑅0, Ω0 ⟩ ⊨ 𝑒1 ≼Ω1 𝑒2 ≝ ∀𝜌 ∈ 𝑅0, ⟦ 𝑒1 ⟧𝑉𝜌 ⊆ ⟦ 𝑒2 ⟧𝑉𝜌 ∧ ⟦ 𝑒1 ⟧Ω𝜌 ⊆ ⟦ 𝑒2 ⟧Ω𝜌 ∪ Ω1

10 J. Boillot, J. Feret.

with ⟨ 𝑅0, Ω0 ⟩ ∈ 𝒟 a semantics element and 𝑒1, 𝑒2 ∈ expr two expressions.
The definition of the rewriting relation ≼Ω1 is based on the semantics of

expressions. Given a semantics element ⟨ 𝑅0, Ω0 ⟩ ∈ 𝒟, an expression 𝑒1 can be
rewritten in the expression 𝑒2 if and only if, in every memory state 𝜌 ∈ 𝑅0, the
potential values of the expression 𝑒1 are all potential values of the expression
𝑒2. Yet, simplifications of the expression 𝑒1 may hide error alarms, which are
reported in the set Ω1.
Example 3. We wonder whether the expression 0cst × bound_check(𝑋, [0, 28[)
can be simplified into the expression 0cst. It depends on the potential range of the
variable 𝑋. Let 𝑅0 be a set of memory states. If, for every memory state 𝜌 ∈ 𝑅0,
we have 𝜌(𝑋) ∈ [0, 28[, then ⟨ 𝑅0, ∅ ⟩ ⊨ 0cst × bound_check(𝑋, [0, 28[) ≼∅ 0cst.
Otherwise, we can prove that ⟨ 𝑅0, ∅ ⟩ ⊨ 0cst×bound_check(𝑋, [0, 28[) ≼{𝜔𝑜} 0cst.
We can check that the rewriting order warns about the potential failure of the
bound check, despite the fact that the expression that contains this bound check
has been removed by simplifications.
Example 4. The expression ((𝑋 mod [0, 28[) + −(𝑌 mod [0, 28[)) mod [0, 28[
can be rewritten as 𝑋 − 𝑌 under some specific assumptions. Let 𝑅0 be a set
of memory states. If for every memory state 𝜌 ∈ 𝑅0, we have 𝜌(𝑋), 𝜌(𝑌) ∈
[−27, 27[and 𝜌(𝑋) − 𝜌(𝑌) ∈ [0, 28[, it follows that ⟨ 𝑅0, ∅ ⟩ ⊨ ((𝑋 mod [0, 28[) +
−(𝑌 mod [0, 28[)) mod [0, 28[≼∅ 𝑋+−𝑌. Indeed, either no cast wraps-around,
or exactly two among the three that appear in the expression. In the later case,
they compensate each other.

The following property states the transitivity of the rewriting relation.
Property 4. For every semantics element ⟨ 𝑅0, Ω0 ⟩ ∈ 𝒟, expressions 𝑒1, 𝑒2, 𝑒3 ∈
expr, and sets of error alarms Ω1, Ω

′
1 ∈ ℘(Ω), if ⟨ 𝑅0, Ω0 ⟩ ⊨ 𝑒1 ≼Ω1 𝑒2 and

⟨ 𝑅0, Ω0 ⟩ ⊨ 𝑒2 ≼Ω′
1
𝑒3, then ⟨ 𝑅0, Ω0 ⟩ ⊨ 𝑒1 ≼Ω1∪Ω

′
1
𝑒3.

Transitivity is obtained by evaluating the expression with the same memory
states and by collecting all the error alarms that may be hidden by the expres-
sion rewritings.

In statements, expressions can be rewritten. The following theorem states the
soundness of the replacement of an expression by another one in assignments or
guards. It would also be true for every statement of the language, yet we omit
this result since it is not necessary to prove the soundness of our analysis.
Theorem 1. For every semantics element ⟨ 𝑅0, Ω0 ⟩ ∈ 𝒟, expressions 𝑒, 𝑒′ ∈
expr, set of error alarms Ω1 ∈ ℘(Ω), and variable 𝑋 ∈ 𝒱 such that ⟨ 𝑅0, Ω0 ⟩ ⊨
𝑒 ≼Ω1 𝑒

′, we have:
– ⦃ 𝑉 ← 𝑒 ⦄⟨ 𝑅0, Ω0 ⟩ ⊑ ⟨∅,Ω1 ⟩ ⊔ (⦃𝑉 ← 𝑒′ ⦄⟨ 𝑅0, Ω0 ⟩),
– ⦃ 𝑒 ⋈ 0? ⦄⟨ 𝑅0, Ω0 ⟩ ⊑ ⟨∅,Ω1 ⟩ ⊔ (⦃ 𝑒′ ⋈ 0? ⦄⟨ 𝑅0, Ω0 ⟩).

This way, when an expression is replaced by another one in an assignment or a
guard, while following the rewriting order, all the possible memory states and
error alarms are kept in the result. Note that the approximation may lead to the
introduction of additional memory states or false-negative error alarms.

Symbolic transformation of expressions in modular arithmetic 11

expr♯ ⩴ ℒ□
(
𝑎0 +

∑
𝑋𝑖∈𝒱

𝑎𝑖𝑋𝑖
)
∀𝑖, 𝑎𝑖 ∈ ℤ

| expr♯ ⊞ expr♯
| expr♯ ⊠ expr♯
| expr♯ ⧄ expr♯
| expr♯ ⋓□ expr♯

Fig. 8: Syntax of abstract expressions.

5 Abstract Representation of Expressions

As far as it is possible to totally order their variables, linear expressions have a
canonical representation. It is obtained by factorizing occurrences of each vari-
able and ordering their terms increasingly, with respect to the order on the
variables. We introduce in this section an abstract syntax for expressions, in
which some linear expressions are described canonically. The main goal is to
highlight the patterns that can be simplified symbolically.

5.1 Abstract Syntax of Expression

The abstract syntax of expressions is given in Fig. 8. Apart from linear com-
binations, abstract expressions are defined using the same operators as in the
language syntax. For the sake of rigor, and to distinguish them from their con-
crete counterparts, all the abstract operators are enclosed within a box.

Linear combinations are written as ℒ□
(
𝑎0 +

∑
𝑋𝑖∈𝒱 𝑎𝑖𝑋𝑖

)
with 𝑎0 ∈ ℤ and

∀𝑖, 𝑎𝑖 ∈ ℤ. In particular, we use the convention that every variable in the set 𝒱
has to occur in the expression, would it be with a zero coefficient. This eases the
definition of operations over linear forms. Constants are specific linear combina-
tions, where all coefficients, except potentially the first one, are equal to 0. We
write ℒ□(𝛼) the constant whose first coefficient is equal to 𝛼 ∈ ℤ. The set of all
such abstract expressions is denoted Const♯. A variable is a linear combination
of which all the coefficients are fixed at 0, except that of the variable, which is
equal to 1. It is denoted ℒ□(𝑋). Lastly, variable differences are linear combina-
tions of which all the coefficients are fixed to 0, except for two variables. One of
them has the coefficient 1 and the other −1. The variable difference between 𝑋
and 𝑌, two variables of 𝒱, is written ℒ□(𝑋 − 𝑌).

Intervals are introduced by the means of the convex join operator ⋓□. Lastly,
bound checks and modulo computations are not described. Indeed, bound checks
are assumed to have been eliminated while reporting the potential error alarms.
About modulo computations, abstract expressions are given with an evaluation
context. This context takes the form of a modular ring specified by an element
of 𝕄. Inner modulo computations are assumed to have been resolved, either by
proving that they leave the value of the expression unchanged, or by replacing
them conservatively by an interval.

12 J. Boillot, J. Feret.

The meaning of an abstract expression is defined thanks to a function toExpr
which translates abstract expressions in the set expr♯ back to expressions in the
set expr.

Definition 4. The function toExpr ∶ expr♯ → expr is defined inductively as
follows:

toExpr
(
ℒ□
(
𝑎0 +

∑
𝑋𝑖∈𝒱 𝑎𝑖𝑋𝑖

))
≝ 𝑎0cst + (𝑎1cst𝑋1 + (⋯+ (𝑎𝑛cst𝑋𝑛)))

toExpr(𝑒♯1 ⊞ 𝑒♯2) ≝ toExpr(𝑒♯1) + toExpr(𝑒♯2)
toExpr(𝑒♯1 ⊠ 𝑒♯2) ≝ toExpr(𝑒♯1) × toExpr(𝑒

♯
2)

toExpr(𝑒♯1 ⧄ 𝑒♯2) ≝ toExpr(𝑒♯1) ∕ toExpr(𝑒
♯
2)

toExpr(𝑒♯1 ⋓□ 𝑒♯2) ≝ toExpr(𝑒♯1) ⋓ toExpr(𝑒
♯
2)

6 Generic Abstraction

The translation of classical expressions into abstract ones is parametric, with re-
spect to the choice of an abstract domain, to reason about semantics states. The
abstract domain describes a set of properties about semantics states 𝒟♯, which
are mapped to the least upper bound of the semantics states which satisfy them
by a concretization function 𝛾. It also contains a sound abstract counterpart to
the join operator ⊔ noted ⊔♯, a primitive lfp♯ to approximate the increasing iter-
ation of concrete operators, and two abstract transformers assign♯ and guard♯
to lift the execution of assignments and guards on properties. It also contains
the primitives 𝜄 and reduce. The primitive 𝜄 extracts the range of abstract ex-
pressions and reduce performs sound expression rewriting for all the memory
states contained in the semantics state given as an argument.

Definition 5. An abstract domain consists of a tuple comprising eight elements
⟨𝒟♯, 𝛾, ⊔♯, lfp♯,assign♯,guard♯, 𝜄, reduce ⟩, such that:

5.1 𝒟♯ is a set of properties,
5.2 𝛾 ∶ 𝒟♯ → 𝒟 is a concretization function that, given an abstract element 𝑅♯,

outputs all the memory states and error alarms that verify the property 𝑅♯,
5.3 for every two abstract elements 𝑅♯, 𝑆♯ ∈ 𝒟♯, 𝛾(𝑅♯) ⊔ 𝛾(𝑆♯) ⊑ 𝛾(𝑅♯ ⊔♯ 𝑆♯),
5.4 for every abstract element 𝑅♯ ∈ 𝒟♯ and every abstract transformer 𝔽♯ ∶

𝒟♯ → 𝒟♯, lfp♯
𝑅♯
(𝔽♯) is an abstract element that satisfies

⨆
𝑛∈ℕ 𝔽

𝑛(⟨ 𝑅0, Ω0 ⟩) ⊑
𝛾(lfp♯

𝑅♯
(𝔽♯)) for every semantics element ⟨ 𝑅0, Ω0 ⟩ ∈ 𝒟 and every ⊔-complete

morphism3 𝔽 ∶ 𝒟 → 𝒟 such that:
(i) ⟨ 𝑅0, Ω0 ⟩ ⊑ 𝔽(⟨ 𝑅0, Ω0 ⟩),

(ii) ⟨ 𝑅0, Ω0 ⟩ ⊑ 𝛾(𝑅♯),
(iii) for every abstract element 𝑆♯ ∈ 𝒟♯, (𝔽◦𝛾)(𝑆♯) ⊑ (𝛾◦𝔽♯)(𝑆♯),

3 that is to say 𝔽
(⨆𝑃

)
= ⨆{𝔽(⟨ 𝑅0, Ω0 ⟩) ∣ ⟨ 𝑅0, Ω0 ⟩ ∈ 𝑃 } for every set 𝑃 ⊆ 𝒟.

Symbolic transformation of expressions in modular arithmetic 13

⦃ 𝑋 ← 𝑒 ⦄♯ ≝ assign♯(𝑋, 𝐸)
⦃ 𝑠1 ⨾ 𝑠2 ⦄♯ ≝ ⦃ 𝑠2 ⦄♯◦⦃ 𝑠1 ⦄♯

⦃ if 𝑒 ⋈ 0 then 𝑠⨾ endif ⦄♯𝑅♯ ≝ ((⦃ 𝑠 ⦄♯◦guard♯(𝑒,⋈))𝑅♯) ⊔ guard♯(𝑒, ̸⋈)𝑅♯

⦃while 𝑒 ⋈ 0 do 𝑠⨾ done ⦄♯𝑅♯ ≝ guard♯(𝑒, ̸⋈)(lfp♯ [𝑋♯ ↦ 𝑅♯ ⊔♯ (⦃ 𝑠 ⦄♯◦guard♯(𝑒,⋈))𝑋♯])

Fig. 9: Abstract semantics.

5.5 for every variable 𝑋 ∈ 𝒱, and every expression 𝑒 ∈ expr, assign♯(𝑋, 𝑒) ∶
𝐷♯ → 𝐷♯ is a function that satisfies (⦃ 𝑋 ← 𝑒 ⦄◦𝛾)𝑅♯ ⊑ (𝛾◦assign♯(𝑋, 𝑒))𝑅♯
for every abstract element 𝑅♯ ∈ 𝒟♯,

5.6 for every comparison relation ⋈ ∈ {=,≠, <, ≤, ≥, >}, and every expression 𝑒 ∈
expr, guard♯(𝑒,⋈) ∶ 𝐷♯ → 𝐷♯ is a function that satisfies (⦃ 𝑒 ⋈ 0? ⦄◦𝛾)𝑅♯ ⊑
(𝛾◦guard♯(𝑒,⋈))𝑅♯ for every abstract element 𝑅♯ ∈ 𝒟♯,

5.7 for every expression 𝑒 ∈ expr, 𝜄(𝑒) : 𝒟♯ → 𝕀 is a function that satisfies
⟦ 𝑒 ⟧𝑉𝜌 ⊆ 𝜄(𝑒)𝑅♯ for every abstract element 𝑅♯ ∈ 𝒟♯ and for every memory
state 𝜌 ∈ 𝑅0 with ⟨ 𝑅0, Ω0 ⟩ = 𝛾(𝑅♯) and 𝕀 ≝ {∅ } ∪ { [𝑎, 𝑏] ∣ 𝑎 ∈ {−∞} ∪ℤ, 𝑏 ∈
𝑍 ∪ {+∞}, 𝑎 ≤ 𝑏 }, the set of intervals over ℤ ∪ {−∞,+∞},

5.8 for every abstract expression 𝑒♯, reduce(𝑒♯) ∶ 𝒟♯ → expr♯ is an abstract ex-
pression transformer such that the rewriting relation 𝛾(𝑅♯) ⊨ toExpr(𝑒♯) ≼∅
toExpr(reduce(𝑒♯)𝑅♯) holds for every abstract element 𝑅♯.

The lfp♯ operator is usually described as an increasing iteration, followed by a
decreasing iteration. These are defined by the means of a base abstract element,
a widening operator, and a narrowing operator [7]. We now assume that such an
abstract domain has been chosen.

The abstract semantics of a statement ⦃ stmt ⦄♯ ∶ 𝒟♯ → 𝒟♯ maps a prop-
erty about semantics states, before applying the statement stmt, to the prop-
erty that is satisfied after applying this statement. It is obtained by lifting the
concrete semantics (e.g. see Fig. 7) in the abstract domain. Its definition is
given in Fig. 9. Each concrete operation is replaced with its abstract counter-
part. The abstraction of loops requires more explanations. In order to apply
the abstract operator lfp♯, we must ensure that the first argument is a sound
approximation of a monotonic function, and that the second argument is an
abstraction of a pre-fixpoint of this function. Hence, we replace the function
(⦃ 𝑠 ⦄◦⦃ 𝑒 ⋈ 0? ⦄) from the iteration, in the concrete semantics, by the function
⟨ 𝑅0, Ω0 ⟩ ↦ ⟨𝑅0, Ω0 ⟩ ⊔ (⦃ 𝑠 ⦄◦⦃ 𝑒 ⋈ 0? ⦄)⟨ 𝑅0, Ω0 ⟩, where ⟨ 𝑅0, Ω0 ⟩ is the semantics
state just before interpreting the loop. This does not change the result of the
concrete iterations.

We can now state the soundness of the abstract semantics.

Theorem 2. Let ⟨ 𝑅0, Ω0 ⟩ ∈ 𝒟 be a semantics state. Let 𝑅♯ ∈ 𝒟♯ be an abstract
state. Let 𝑠 ∈ stmt be a statement. Then ⟨ 𝑅0, Ω0 ⟩ ⊑ 𝛾(𝑅♯) ⟹ ⦃ 𝑠 ⦄⟨ 𝑅0, Ω0 ⟩ ⊑
𝛾(⦃ 𝑠 ⦄♯𝑅♯).

14 J. Boillot, J. Feret.

Theorem. 2 states that the abstract semantics ignores no concrete behavior.
Nevertheless, it may introduce fictitious ones due to the abstraction.

6.1 Primitives over abstract expressions
We now introduce two primitives that operate over abstract expressions.

The opposite function pushes unary minus to the leafs of abstract expressions
(that are linear forms).

Definition 6. The function opposite ∶ expr♯ → expr♯ is defined inductively as
follows:

opposite
(
ℒ□
(
𝑎0 +

∑
𝑋𝑖∈𝒱 𝑎𝑖𝑋𝑖

))
≝ ℒ□

(
−𝑎0 +

∑
𝑋𝑖∈𝒱 (−𝑎𝑖)𝑋𝑖

)

opposite(𝑒♯1 ⊞ 𝑒♯2) ≝ opposite(𝑒♯1) ⊞ opposite(𝑒♯2)
opposite(𝑒♯1 ⊠ 𝑒♯2) ≝ opposite(𝑒♯1) ⊠ 𝑒♯2
opposite(𝑒♯1 ⧄ 𝑒♯2) ≝ opposite(𝑒♯1) ⧄ 𝑒♯2
opposite(𝑒♯1 ⋓□ 𝑒♯2) ≝ opposite(𝑒♯1) ⋓□ opposite(𝑒♯2)

This way, the opposite of a linear form is obtained by taking the opposite
of each coefficient. The function opposite propagates over the sub-expressions
of the ⊞ and the ⋓□ operators. Lastly, the opposite of a product or a quotient
between two sub-expressions is obtained by propagating it to only one of them
(the first one has been chosen arbitrarily).

We now introduce an operator to propagate a modulo computation over an
abstract expression. Given an abstract expression and a modulo specification, it
applies the modulo on the expression.
Definition 7. For any abstract expression 𝑒♯ ∈ expr♯ and any modulo specifica-
tion 𝑚 ∈ 𝕄, the function rmMod(𝑒,𝑚) ∶ 𝒟♯ → expr♯ is defined as follows:

rmMod(𝑒♯, 𝑚)𝑅♯ ≝

⎧
⎪
⎪
⎨
⎪
⎪
⎩

𝑒♯ if 𝑚 = ℤ,
ℒ□(𝛼 mod 𝑚) else if 𝑒♯ = ℒ□(𝛼) with 𝛼 ∈ ℤ,

𝑒♯ else if 𝜄(toExpr(𝑒♯))𝑅♯ ⊆ 𝑚,
reduce(ℒ□(𝑙) ⋓□ ℒ□(𝑢−1))𝑅♯ otherwise, with 𝑚 = [𝑙, 𝑢[.

In the previous definition, if the modulo specification is equal to the set ℤ,
nothing has to be done. When the abstract expression is a constant, the modulo
computation can be directly applied on the constant. Lastly, if the value of the
abstract expression ranges within the interval of the modulo, then the modulo
computation can be safely discarded. In all other cases, no information can be
kept about the expression. It is then replaced with the interval of the modular
ring (or more precisely its reduction).

The following theorem states that any abstract expression that is evaluated
over a modular ring can be rewritten in the expression in which the modulo
computation has been forced, that is to say the output of the function rmMod.
Moreover, this rewrite does not hide any potential error alarms.

Symbolic transformation of expressions in modular arithmetic 15

Theorem 3. For all abstract value 𝑅♯ ∈ 𝒟♯, abstract expression 𝑒♯ ∈ expr♯, and
potential modular ring 𝑚 ∈ 𝕄, the following property holds,

𝛾(𝑅♯) ⊨ toExpr(𝑒♯) mod 𝑚 ≼∅ toExpr(rmMod(𝑒♯, 𝑚)).

Example 5. We give two examples of elimination of modulo computations. We
compute the result of the abstract expression ℒ□(0) ⋓□ ℒ□(25), that intuitively
denotes the interval [0, 25], respectively modulo [0, 28[and [10, 26[. We as-
sume that the primitive 𝜄 provides the exact range of this expression, that
is to say that 𝜄(toExpr(ℒ□(0) ⋓□ ℒ□(25)))𝑅♯ = 𝜄(0cst ⋓ 25cst) = [0, 25]. Since
the interval [0, 25] is included in the interval [0, 28[, the corresponding mod-
ulo computation can be eliminated without modifying the abstract expression.
We obtain rmMod(ℒ□(0) ⋓□ ℒ□(25), [0, 28[)𝑅♯ = ℒ□(0) ⋓□ ℒ□(25). In the second
case, the result of the modulo computation cannot be described precisely as
an abstract expression. It is then soundly replaced by the abstract expression
reduce(ℒ□(10) ⋓□ ℒ□(25))𝑅♯. We keep the primitive reduce uninterpreted, since
it is a parameter of our abstraction.

6.2 Translation from Classical to Abstract Expressions

We now have all the material needed to define the translation of classical ex-
pressions into abstract ones. Given an expression 𝑒 ∈ expr, its translation ⦅ 𝑒 ⦆ ∶
𝒟♯ → expr♯ × 𝕄 × ℘(Ω) is a function that maps an abstract element 𝑅♯ to a
triple (𝑒♯, 𝑚,Ω𝑒). Remember that abstract expressions do not have modulo oper-
ators. However, the element 𝑚 ∈ 𝕄 stands for a modulo computation to be ap-
plied on the potential values of the abstract expression. This way, the outermost
modulo computation can be kept precisely, whereas inner modulo computations
must be translated conservatively. This can be done thanks to the rmMod opera-
tor, yet it may yield a loss of information. Bound checks also cannot be described
in abstract expressions, so potential bound check failures are reported in the set
Ω𝑒. The translation is only valid for the semantics states satisfying the property
𝑅♯ (i.e., for the states in 𝛾(𝑅♯)). Thus, the abstract element 𝑅♯ should be used
to drive the translation process to get a more accurate result.

The translation ⦅ 𝑒 ⦆𝑅♯ of an expression 𝑒, in the context of an abstract ele-
ment 𝑅♯, is defined inductively and by cases by the means of a set of inference
rules.

Variable. A variable is replaced by a linear combination where all the coeffi-
cients are set to 0, except the one corresponding to the variable which is set to 1.
Such a replacement hides no error alarms, and the abstract expression obtained
this way can be interpreted in ℤ. This is formalized in the following inference
rule.

Variable
𝑋 ∈ 𝒱

⦅𝑋 ⦆𝑅♯ ≝ (ℒ□(𝑋),ℤ,∅)

16 J. Boillot, J. Feret.

Interval. An interval is encoded by the means of the convex join operator ⋓□.
The bounds of the interval are given as operands (their order has been chosen
arbitrarily). Then, the reduce operator is applied to potentially simplify the
resulting abstract expression. This translation yields no potential errors and its
result can be interpreted in ℤ. This is formalized in the following inference rule.

Interval
𝑎, 𝑏 ∈ ℤ 𝑎 ≤ 𝑏

⦅ [𝑎, 𝑏] ⦆𝑅♯ ≝ (reduce(ℒ□(𝑎) ⋓□ ℒ□(𝑏))𝑅♯, ℤ,∅)

Unary minus. The translation of an expression starting with a unary minus is
defined inductively. First, the argument is translated, which provides an abstract
expression, a modulo specification, and a set of potential errors. The primitive
opposite is then applied to the abstract expression, which yields no additional
error alarms. Furthermore, when the abstract expression is evaluated over a
modular ring, the ring is kept the same, but the elements of the potential modular
interval are also negated.

This is formalized in the two following inference rules, which distinguish two
cases according to whether the translation of the argument can be interpreted
in ℤ, or in a modular ring.

OppositeNoMod
(𝑒♯, ℤ,Ω𝑒) ≝ ⦅ 𝑒 ⦆𝑅♯

⦅−𝑒 ⦆𝑅♯ ≝ (reduce(opposite(𝑒♯))𝑅♯, ℤ,Ω𝑒)

OppositeMod
(𝑒♯, [𝑙, 𝑢[, Ω𝑒) ≝ ⦅ 𝑒 ⦆𝑅♯

⦅−𝑒 ⦆𝑅♯ ≝ (reduce(opposite(𝑒♯))𝑅♯, [−𝑢+1,−𝑙+1[, Ω𝑒)

Convex join. An expression of the form 𝑒1 ⋓ 𝑒2 is translated thanks to its
abstract counterpart ⋓□. First, the sub-expressions are translated, which provides
abstract expressions, modulo specifications, and sets of potential errors. The
outermost modulo computations are conservatively suppressed using the rmMod
primitive before the results are passed to the ⋓□ abstract operator. The final
result may be simplified by the means of the reduce operator before being
interpreted in ℤ. No additional potential errors are collected. This is formalized
in the following inference rule.

ConvexJoin

(𝑒♯1, 𝑚1, Ω1) ≝ ⦅ 𝑒1 ⦆𝑅♯ (𝑒♯2, 𝑚2, Ω2) ≝ ⦅ 𝑒2 ⦆𝑅♯

𝑒′♯1 ≝ rmMod(𝑒♯1, 𝑚1)𝑅♯ 𝑒′♯2 ≝ rmMod(𝑒♯2, 𝑚2)𝑅♯

⦅ 𝑒1 ⋓ 𝑒2 ⦆𝑅♯ ≝ (reduce(𝑒′♯1 ⋓□ 𝑒′♯2)𝑅
♯, ℤ,Ω1 ∪ Ω2)

Addition. According to the result of the translation of its arguments, more or
less precise inference rules can be used to translate a sum of two expressions.

Whenever both operands are translated into constants, whether they need
to be respectively interpreted in modular rings or not, the potential application
of the modulo operations can be directly applied on the constant values. The

Symbolic transformation of expressions in modular arithmetic 17

result can be interpreted in ℤ. Whenever exactly one operand is translated into
a constant, and the other one must be interpreted in modular arithmetic, the
potential modulo operator of the constant expression can be directly applied.
Then, the result is added to the other abstract expression and to the bounds
of its modular ring. The resulting abstract expression may be simplified by the
means of the reduce operator. In the context of real programming languages,
branching is generally not limited to comparisons to 0. Then, we would like to
take advantage of the algebraic simplifications of our abstract domain and rewrite
e1 == e2 into e1 - e2 == 0. We then need a rule that simplifies addition of
abstract expressions interpreted in the same modular ring that sum to ℒ□(0).
In such a case, the result is ℒ□(0) and can be interpreted in ℤ. Otherwise, the
operator rmMod is used to remove modulo operators in both translations of the
arguments. It yields abstract expressions which can be interpreted in ℤ, but may
result in loss of information. The resulting abstract expression can be potentially
simplified by the means of the reduce parametric operator.

In all cases, the computation yields no additional error alarms. This is formal-
ized in the following four inference rules (we recall that by convention 𝛼 mod ℤ
is equal to 𝛼 for every integer 𝛼 ∈ ℤ).

Plus2Const

𝛼1 ∈ ℤ ∶ (ℒ□(𝛼1),𝑚1, Ω1) ≝ ⦅ 𝑒1 ⦆𝑅♯
𝛼2 ∈ ℤ ∶ (ℒ□(𝛼2),𝑚2, Ω2) ≝ ⦅ 𝑒2 ⦆𝑅♯

⦅ 𝑒1 + 𝑒2 ⦆𝑅♯ ≝ (ℒ□(𝛼1 mod 𝑚1 + 𝛼2 mod 𝑚2), ℤ,Ω𝑖 ∪ Ω𝑗)

PlusConst

𝑖, 𝑗 ∈ {1, 2} ∶ 𝑖 ≠ 𝑗 𝛼 ∈ ℤ ∶ (ℒ□(𝛼),𝑚𝑖 , Ω𝑖) ≝ ⦅ 𝑒𝑖 ⦆𝑅♯

(𝑒♯𝑗 , [𝑙𝑗 , 𝑢𝑗[, Ω𝑗) ≝ ⦅ 𝑒𝑗 ⦆𝑅♯ 𝛼′ ≝ 𝛼 mod 𝑚𝑖 𝑒♯𝑗 ∉ Const♯

⦅ 𝑒1 + 𝑒2 ⦆𝑅♯ ≝ (reduce(ℒ□(𝛼′) ⊞ 𝑒♯𝑗)𝑅
♯, [𝑙𝑗+𝛼′, 𝑢𝑗+𝛼′[, Ω𝑖 ∪ Ω𝑗)

PlusEqZero

(𝑒♯1, [𝑙1, 𝑢1[, Ω1) ≝ ⦅ 𝑒1 ⦆𝑅♯

(𝑒♯2, [𝑙2, 𝑢2[, Ω2) ≝ ⦅ 𝑒2 ⦆𝑅♯ reduce(𝑒♯1 ⊞ 𝑒♯2)𝑅
♯ = ℒ□(0)

𝑙2 = −𝑢1 + 1 𝑢2 = −𝑙1 + 1 𝑒♯1 ∉ Const♯ 𝑒♯2 ∉ Const♯

⦅ 𝑒1 + 𝑒2 ⦆𝑅♯ ≝ (ℒ□(0), ℤ,Ω1 ∪ Ω2)

PlusNoMod

(𝑒♯1, 𝑚1, Ω1) ≝ ⦅ 𝑒1 ⦆𝑅♯ (𝑒♯2, 𝑚2, Ω2) ≝ ⦅ 𝑒2 ⦆𝑅♯

𝑒′♯1 ≝ rmMod(𝑒♯1, 𝑚1)𝑅♯ 𝑒′♯2 ≝ rmMod(𝑒♯2, 𝑚2)𝑅♯
neither the rule Plus2Const nor PlusConst nor PlusEqZero can be applied

⦅ 𝑒1 + 𝑒2 ⦆𝑅♯ ≝ (reduce(𝑒′♯1 ⊞ 𝑒′♯2)𝑅
♯, ℤ,Ω1 ∪ Ω2)

Note that in case one argument is translated into a constant and the other one
into an abstract expression interpreted in ℤ, then applying the rmMod operator
produces no loss of information. Thus, the rule PlusNoMod is enough.

Multiplication. The translation of a multiplication between two expressions
works similarly.

18 J. Boillot, J. Feret.

In the case both operands are translated into constants, the potential appli-
cation of the modulo operation can be directly applied on the constant values.
The result can then be interpreted in ℤ. Whenever exactly one operand is trans-
lated into a constant and the other abstract expression must be interpreted in
modular arithmetic, the potential modulo operator of the constant expression
can be directly applied on the constant value. The resulting abstract expres-
sion is multiplied by the constant and then potentially simplified by the reduce
operator. The update of the modular interval depends on the sign of the con-
stant, which splits the inference rule into three ones, depending on whether the
constant is positive, zero, or negative. In all other cases, the rmMod operator
is used to suppress the modulo computations in both arguments translations.
Once again, the resulting abstract expression can be potentially simplified by
the means of the reduce parametric operator.

In all cases, the computation yields no additional error alarms. This is for-
malized in the following five inference rules.

Mult2Const

𝛼1 ∈ ℤ ∶ (ℒ□(𝛼1),𝑚1, Ω1) ≝ ⦅ 𝑒1 ⦆𝑅♯
𝛼2 ∈ ℤ ∶ (ℒ□(𝛼2),𝑚2, Ω2) ≝ ⦅ 𝑒2 ⦆𝑅♯

⦅ 𝑒1 × 𝑒2 ⦆𝑅♯ ≝ (ℒ□((𝛼1 mod 𝑚1) × (𝛼2 mod 𝑚2)), ℤ,Ω𝑖 ∪ Ω𝑗)

MultPosConst

𝑖, 𝑗 ∈ {1, 2} ∶ 𝑖 ≠ 𝑗
𝛼 ∈ ℤ ∶ (ℒ□(𝛼),𝑚𝑖 , Ω𝑖) ≝ ⦅ 𝑒𝑖 ⦆𝑅♯ (𝑒♯𝑗 , [𝑙𝑗 , 𝑢𝑗[, Ω𝑗) ≝ ⦅ 𝑒𝑗 ⦆𝑅♯

𝛼′ ≝ 𝛼 mod 𝑚𝑖 𝛼′ > 0 𝑒♯𝑗 ∉ Const♯

⦅ 𝑒1 × 𝑒2 ⦆𝑅♯ ≝ (reduce(𝑒♯𝑗 ⊠ ℒ□(𝛼′))𝑅♯, [𝑙𝑗×𝛼′, 𝑢𝑗×𝛼′[, Ω𝑖 ∪ Ω𝑗)

MultZeroConst

𝑖, 𝑗 ∈ {1, 2} ∶ 𝑖 ≠ 𝑗
𝛼 ∈ ℤ ∶ (ℒ□(𝛼),𝑚𝑖 , Ω𝑖) ≝ ⦅ 𝑒𝑖 ⦆𝑅♯ (𝑒♯𝑗 , 𝑚𝑗 , Ω𝑗) ≝ ⦅ 𝑒𝑗 ⦆𝑅♯

𝛼′ ≝ 𝛼 mod 𝑚𝑖 𝛼′ = 0 𝑒♯𝑗 ∉ Const♯

⦅ 𝑒1 × 𝑒2 ⦆𝑅♯ ≝ (ℒ□(0), ℤ,Ω𝑖 ∪ Ω𝑗)

MultNegConst

𝑖, 𝑗 ∈ {1, 2} ∶ 𝑖 ≠ 𝑗
𝛼 ∈ ℤ ∶ (ℒ□(𝛼),𝑚𝑖 , Ω𝑖) ≝ ⦅ 𝑒𝑖 ⦆𝑅♯ (𝑒♯𝑗 , [𝑙𝑗 , 𝑢𝑗[, Ω𝑗) ≝ ⦅ 𝑒𝑗 ⦆𝑅♯

𝛼′ ≝ 𝛼 mod 𝑚𝑖 𝛼′ < 0 𝑒♯𝑗 ∉ Const♯

⦅ 𝑒1 × 𝑒2 ⦆𝑅♯ ≝ (reduce(𝑒♯𝑗 ⊠ ℒ□(𝛼′))𝑅♯, [𝑢𝑗𝛼′+1, 𝑙𝑗𝛼′+1[,Ω𝑖 ∪ Ω𝑗)

MultNoMod

(𝑒♯1, 𝑚1, Ω1) ≝ ⦅ 𝑒1 ⦆𝑅♯ (𝑒♯2, 𝑚2, Ω2) ≝ ⦅ 𝑒2 ⦆𝑅♯

𝑒′♯1 ≝ rmMod(𝑒♯1, 𝑚1)𝑅♯ 𝑒′♯2 ≝ rmMod(𝑒♯2, 𝑚2)𝑅♯
neither the rule Mult2Const nor MultPosConst

nor MultZeroConst nor MultNegConst can be applied

⦅ 𝑒1 × 𝑒2 ⦆𝑅♯ ≝ (reduce(𝑒′♯1 ⊠ 𝑒′♯2)𝑅
♯, ℤ,Ω1 ∪ Ω2)

Symbolic transformation of expressions in modular arithmetic 19

Division. Propagating modular computations across divisions is quite tricky.
Indeed, it can be done precisely only when the following conditions are met.
First, the numerator has to be positive. We then consider the modulo interval
of the numerator. The denominator has to be a nonzero constant that divides
both bounds of this interval (or the bounds of the interval that contains the
opposite values when the constant is negative). In addition, this interval must
not include both negative (i.e., < 0) and positive (i.e., > 0) values. That is why
two inference rules are provided, depending on the sign of both the denominator
and the elements of the modulo interval. In such a case, the abstract expression
is obtained by reducing the result of the application of the ⧄ operator to the
translation of its operands, thanks to the reduce primitive. This expression can
be evaluated in modular arithmetic: the resulting modular ring is obtained by
dividing by the constant both bounds of the modular ring of the numerator (or
its opposite when the constant is negative). Because the constant is not 0, the
computation does not yield additional error alarms. In all other cases, the rmMod
operator is used to suppress the modulo computations in both translations of
its arguments, and its result can be directly interpreted in ℤ, at the cost of a
possible loss of information. The resulting abstract expression can be potentially
simplified by the means of the reduce parametric operator. Such computation
also has to collect the potential error alarm 𝜔𝑑 when the primitive 𝜄 is unable to
prove that the value of the denominator cannot be 0.

This is formalized in the following three inference rules.

DivPosConst

𝛼′ ∈ ℤ ∶ (𝑒♯1, [𝛼
′𝑙1, 𝛼′𝑢1[, Ω1) ≝ ⦅ 𝑒1 ⦆𝑅♯

𝛼 ∈ ℤ ∶ (ℒ□(𝛼),𝑚2, Ω2) ≝ ⦅ 𝑒2 ⦆𝑅♯ 𝛼′ ≝ 𝛼 mod 𝑚2
𝛼′ > 0 𝜄(toExpr(𝑒♯1))𝑅

♯ ⊆ [0, +∞[𝑙1 ≥ 0

⦅ 𝑒1 ∕ 𝑒2 ⦆𝑅♯ ≝ (reduce(𝑒♯1 ⧄ ℒ□(𝛼′))𝑅♯, [𝑙1, 𝑢1[, Ω1 ∪ Ω2)

DivNegConst

𝛼′ ∈ ℤ ∶ (𝑒♯1, [𝛼
′(𝑢1−1), 𝛼′(𝑙1−1)[, Ω1) ≝ ⦅ 𝑒1 ⦆𝑅♯

𝛼 ∈ ℤ ∶ (ℒ□(𝛼),𝑚2, Ω2) ≝ ⦅ 𝑒2 ⦆𝑅♯ 𝛼′ ≝ 𝛼 mod 𝑚2
𝛼′ < 0 𝜄(toExpr(𝑒♯1))𝑅

♯ ⊆ [0, +∞[𝑢1 ≤ 1

⦅ 𝑒1 ∕ 𝑒2 ⦆𝑅♯ ≝ (reduce(𝑒♯1 ⧄ ℒ□(𝛼′))𝑅♯, [𝑙1, 𝑢1[, Ω1 ∪ Ω2)

DivNoMod

(𝑒♯1, 𝑚1, Ω1) ≝ ⦅ 𝑒1 ⦆𝑅♯

(𝑒♯2, 𝑚2, Ω2) ≝ ⦅ 𝑒2 ⦆𝑅♯ 𝑒′♯1 ≝ rmMod(𝑒′1, 𝑚1)𝑅♯

𝑒′♯2 ≝ rmMod(𝑒′2, 𝑚2)𝑅♯ Ω3 ≝ {{ 𝜔𝑑 } if 0 ∈ 𝜄(toExpr(𝑒′♯2))𝑅
♯

∅ otherwise
neither the rule DivPosConst nor DivNegConst can be applied

⦅ 𝑒1 ∕ 𝑒2 ⦆𝑅♯ ≝ (reduce(𝑒′♯1 ⧄ 𝑒′♯2)𝑅
♯, ℤ,Ω1 ∪ Ω2 ∪ Ω3)

Bound check. Bound check expressions may warn about potential overflows
and underflows. First, the expression in the argument of the bound check is
translated. Then, if its potential values can be proven to be necessarily within the

20 J. Boillot, J. Feret.

bounds checked, no additional alarm has to be collected. Otherwise, a potential
error 𝜔𝑜 is collected.

Different methods can be used to compute the range of possible values of
the translated expression. Whenever the interval of the outermost modulo of
the inner expression is included in the interval of the bound check, there is no
additional alarm to record. Otherwise, the primitive rmMod is used to eliminate
the outermost modulo applied to the abstract expression. Then, the 𝜄 primitive is
used to collect the range of the result. This range is checked against the bounds
of the bound check.

This is formalized in the following two inference rules.

BoundCheckMod
(𝑒♯, 𝑚,Ω𝑒) ≝ ⦅ 𝑒 ⦆𝑅♯ 𝑚 ⊆ [𝑙, 𝑢[

⦅bound_check(𝑒, [𝑙, 𝑢[) ⦆𝑅♯ ≝ (𝑒♯, 𝑚,Ω𝑒)

BoundCheckNoMod

(𝑒♯, 𝑚,Ω𝑒) ≝ ⦅ 𝑒 ⦆𝑅♯ 𝑚 ⊈ [𝑙, 𝑢[

Ω1 ≝ {{ 𝜔𝑜 } if 𝜄(toExpr(rmMod(𝑒♯, 𝑚)𝑅♯))𝑅♯ ⊈ [𝑙, 𝑢[
∅ otherwise

⦅bound_check(𝑒, [𝑙, 𝑢[) ⦆𝑅♯ ≝ (𝑒♯, 𝑚,Ω𝑒 ∪ Ω1)

Modulo. The latest inference rules aim to propagate the outermost modulo
computation in expressions of the form 𝑒 mod [𝑙, 𝑢[into the sub-expression 𝑒.
The premises of these conditions are not mutually exclusive. They are displayed
according to their levels of priority. That is, only the first inference rule that can
be applied is applied. In all following rules, any alarms encountered during the
translation of sub-expressions are propagated, but no extra alarms are forwarded.

We begin with the case of a sum of two expressions such that the modulo
specifications of the two abstract translations of the operands are compatible
with the outermost modulo computation of the main expression. This compati-
bility is checked thanks to the notion of 𝑘-splittability. If they are compatible, the
modulo specifications of the translations of both sub-expressions are discarded.
Then, the abstract counterpart of the sum is used. Lastly, the resulting abstract
expression is simplified by the means of the reduce parametric operator. This
is formalized in the following inference rule.

ModPlusExpr

(𝑒♯1, 𝑚1, Ω1) ≝ ⦅ 𝑒1 ⦆𝑅♯

(𝑒♯2, 𝑚2, Ω2) ≝ ⦅ 𝑒2 ⦆𝑅♯ 𝑚1 ∈ 𝕊(𝑢3 − 𝑙3) 𝑚2 ∈ 𝕊(𝑢3 − 𝑙3)

⦅ (𝑒1 + 𝑒2) mod [𝑙3, 𝑢3[⦆𝑅♯ ≝ (reduce(𝑒♯1 ⊞ 𝑒♯2)𝑅
♯, [𝑙3, 𝑢3[, Ω1 ∪ Ω2)

The case of a product between two sub-expressions works exactly the same
way. This is formalized in the following inference rule.

ModMultExpr

(𝑒♯1, 𝑚1, Ω1) ≝ ⦅ 𝑒1 ⦆𝑅♯

(𝑒♯2, 𝑚2, Ω2) ≝ ⦅ 𝑒2 ⦆𝑅♯ 𝑚1 ∈ 𝕊(𝑢3 − 𝑙3) 𝑚2 ∈ 𝕊(𝑢3 − 𝑙3)

⦅ (𝑒1 × 𝑒2) mod [𝑙3, 𝑢3[⦆𝑅♯ ≝ (reduce(𝑒♯1 ⊠ 𝑒♯2)𝑅
♯, [𝑙3, 𝑢3[, Ω1 ∪ Ω2)

Symbolic transformation of expressions in modular arithmetic 21

For any other expression, or when the modulo computations are not com-
patible, the sub-expression 𝑒 of the modulo computation is translated, which
provides the specifications of a potential inner modulo computation 𝑚. Then,
the application of the modulo 𝑚 is followed by the application of the initial
modulo [𝑙, 𝑢[. We now introduce three cases, according to specific properties of
𝑚 and [𝑙, 𝑢[to simplify these modulo computations.

As seen in Prop.1, when one modulo computation follows another, the inner
one can be discarded provided that the outer one is compatible with it. The com-
patibility between those modulo computations is checked thanks to the notion
of 𝑘-splittability. This is formalized in the following inference rule.

ModIdentity
(𝑒♯, 𝑚,Ω𝑒) ≝ ⦅ 𝑒 ⦆𝑅♯ 𝑚 ∈ 𝕊(𝑢 − 𝑙)
⦅ 𝑒 mod [𝑙, 𝑢[⦆𝑅♯ ≝ (𝑒♯, [𝑙, 𝑢[, Ω𝑒)

As seen in Prop. 3, in some cases, the outermost modulo interval is large
enough and compatible with the modular ring of the translated sub-expression.
This happens when elements of the second interval are only translated when
applying the modulo on the first interval. In such a case, we return the sub-
expression without forgetting to translate the bounds of its modular ring. We
can then discard the outermost modulo of the main expression. This is formalized
in the following inference rule.

ModTranslation

(𝑒♯, [𝑙′, 𝑢′[, Ω𝑒) ≝ ⦅ 𝑒 ⦆𝑅♯
𝛼 ≝ 𝑙′ mod [𝑙, 𝑢[𝛼 + 𝑢′ − 𝑙′ ≤ 𝑢 (𝑢′ − 𝑙′) | (𝛼 − 𝑙′)

⦅ 𝑒 mod [𝑙, 𝑢[⦆𝑅♯ ≝ (𝑒♯, [𝛼, 𝛼+𝑢′−𝑙′[, Ω𝑒)

When no other rules can be applied the primitive rmMod is used to eliminate
the modulo specifications from the translated sub-expression, and the result
is returned along the outermost modulo from the main expression as modular
specifications. This is formalized in the following inference rule.

ModIdentityNoMod
(𝑒♯, 𝑚,Ω𝑒) ≝ ⦅ 𝑒 ⦆𝑅♯

⦅ 𝑒 mod [𝑙, 𝑢[⦆𝑅♯ ≝ (rmMod(𝑒♯, 𝑚)𝑅♯, [𝑙, 𝑢[, Ω𝑒)

The following theorem states that the evaluation of a translated expression
keeps all the possible values of the evaluation of the original expression. More-
over, the set of potential error alarms returned by the translation contains at
least all the potential error alarms of the evaluation of the original expression.
This is a stronger statement than the one needed to rewrite expressions, that
corresponds to the corollary below, because the error alarms that may be yield
by the evaluation of the abstract expression are discarded.

Theorem 4. For all abstract element 𝑅♯ and every expression 𝑒 ∈ expr, with
⟨ 𝑅0, Ω0 ⟩ ≝ 𝛾(𝑅♯) and (𝑒♯, 𝑚,Ω𝑒) ≝ ⦅ 𝑒 ⦆𝑅♯, then

∀𝜌 ∈ 𝑅0, ⟦ 𝑒 ⟧Ω𝜌 ⊆ Ω𝑒 ∧ ⟦ 𝑒 ⟧𝑉𝜌 ⊆ {
⟦ toExpr(𝑒♯) ⟧𝑉𝜌 if 𝑚 = ℤ,
⟦ toExpr(𝑒♯) mod [𝑙, 𝑢[⟧𝑉𝜌 if 𝑚 = [𝑙, 𝑢[.

By abuse of notation, we allow the syntactic sugar 𝑒 mod ℤ that represents 𝑒.

22 J. Boillot, J. Feret.

Corollary 1 (of Theorem. 4). For all abstract element 𝑅♯ and expression
𝑒 ∈ expr, with ⟨ 𝑅0, Ω0 ⟩ ≝ 𝛾(𝑅♯), and (𝑒♯, 𝑚,Ω𝑒) ≝ ⦅ 𝑒 ⦆𝑅♯, the following rewriting
property holds:

⟨ 𝑅0, Ω0 ⟩ ⊨ 𝑒 ≼Ω𝑒 toExpr(𝑒
♯) mod 𝑚.

6.3 Integration with a Numerical Abstract Domain

We introduce a new numerical abstract domain with expression abstraction,
noted 𝒟♯

ℒ, that is identical to 𝒟♯ except for the assignment and guard statements.
For any expression 𝑒 ∈ expr and any abstract element 𝑅♯ ∈ 𝒟♯, let us denote

(𝑒♯, 𝑚,Ω𝑒) ≝ ⦅ 𝑒 ⦆𝑅♯. Then,
assign♯ℒ(𝑋, 𝑒)𝑅♯ ≝ ⟨∅,Ω𝑒 ⟩ ⊔ assign♯(𝑋, toExpr(rmMod(𝑒♯, 𝑚)𝑅♯))𝑅♯
guard♯ℒ(𝑒,⋈)𝑅♯ ≝ ⟨∅,Ω𝑒 ⟩ ⊔ guard♯(toExpr(rmMod(𝑒♯, 𝑚)𝑅♯),⋈)𝑅♯

The soundness of these rewritings comes from Theorems. 1 and 3, as well as
Corollary. 1.

7 Instantiation of the generic framework

In this section, we provide more explicit definitions for the 𝜄 and reduce prim-
itives of our parametric abstraction. The other components are supposed to be
defined in an underlying domain.

7.1 Intervalization

During the expression abstraction, the 𝜄 primitive is used multiple times, either
to verify that modulo computations and bound checks can be safely suppressed,
or to check that simplifications can be performed, as in the DivPosConst in-
ference rule. Thus, it appears that the more this primitive is precise, the more
translations of expression will be precise.

A first possibility would be to represent the possible values of every expression
by intervals over ℤ as presented in [4]. However, this method lacks the ability to
represent relations between variables, which can be necessary to simplify modulo
computations. For instance, in the program example introduced at the beginning
of the paper Fig. 1, in order to suppress the modulo computations it is necessary
to check that 𝑋 ≥ 𝑌 holds. Thus, a domain able to represent the range of vari-
ables and the inequalities between pairs of variable, as the pentagon domain [17],
is enough for our current study cases. However, it would be possible to use more
precise abstract domains such as the difference bound matrices domain [19] that
detects upper-bounds of the difference between pairs of variables, the octagon
abstract domain [20] that handles inequalities of the form ±𝑋 ±𝑌 ≤ 𝑐 with 𝑋,𝑌
variables and 𝑐 a constant, or the polyhedron abstract domain [8] that keeps
trace of linear inequality properties. Although using relational domains might
be costly, it is possible to limit it by restraining the number of variables involved
in the numerical constraints by a method named packing [2].

Symbolic transformation of expressions in modular arithmetic 23

7.2 Simplification of abstract expressions

We now introduce a reduce implementation, denoted as reduce0, that is a
heuristic which attempts to simplify abstract expressions without concealing
potential error alarms. The purpose of this function is to achieve maximum
expression canonization by using linear forms whenever possible.

The reduction reduce0(𝑒♯)𝑅♯ of an abstract expression 𝑒♯, in the context of
an abstract element 𝑅♯, is defined inductively and by cases, by the means of
a set of inference rules. Their premises are mutually exclusive, except for the
NoReduce rule that is used only when no other rule can be applied.

Addition. When ℒ□(0) (that is the translation of 0cst) is summed with another
abstract expression, the latter abstract expression is returned. This is because
0cst is a neutral element of (expr, +). Also, when linear forms are summed, we
return the canonical linear form of their sum. Lastly, when a linear form is added
to a convex join expression, the addition is distributed over the operands of the
convex join. In such case, it is possible to reduce both the new additions and
the resulting abstract expression in order to simplify them. Those behaviors are
formalized in the three following inference rules. If neither of the three can be
applied, no reduction is performed.

PlusZero
𝑖, 𝑗 ∈ {1, 2} ∶ 𝑖 ≠ 𝑗 𝑒♯𝑖 = ℒ□(0)

reduce0(𝑒
♯
1 ⊞ 𝑒♯2)𝑅

♯ ≝ 𝑒♯𝑗

PlusLinearForms

𝑒♯1 = ℒ□(𝑎0 +
∑

𝑋𝑖∈𝒱
𝑎𝑖𝑋𝑖) 𝑒♯1 ≠ ℒ□(0)

𝑒♯2 = ℒ□(𝑏0 +
∑

𝑋𝑖∈𝒱
𝑏𝑖𝑋𝑖) 𝑒♯2 ≠ ℒ□(0)

reduce0(𝑒
♯
1 ⊞ 𝑒♯2)𝑅

♯ ≝ ℒ□((𝑎0 + 𝑏0) +
∑

𝑋𝑖∈𝒱
(𝑎𝑖 + 𝑏𝑖)𝑋𝑖)

PlusConvexJoin

𝑖, 𝑗 ∈ {1, 2} ∶ 𝑖 ≠ 𝑗
𝑒♯𝑖 = 𝑒♯𝑖,1 ⋓□ 𝑒♯𝑖,2 𝑒♯𝑗 = ℒ□(𝛼0 +

∑
𝑋𝑖∈𝒱

𝑎𝑖𝑋𝑖) 𝑒♯𝑗 ≠ ℒ□(0)

𝑒′♯1 ≝ reduce0(𝑒
♯
𝑖,1 ⊞ 𝑒♯𝑗)𝑅

♯ 𝑒′♯2 ≝ reduce0(𝑒
♯
𝑖,2 ⊞ 𝑒♯𝑗)𝑅

♯

reduce0(𝑒
♯
1 ⊞ 𝑒♯2)𝑅

♯ ≝ reduce0(𝑒
′♯
1 ⋓□ 𝑒′♯2)𝑅

♯

Multiplication. Multiplying a linear form by a constant is the same thing as
multiplying the linear form component-wise to its coefficients. One could think
this reduction could hide potential errors when the multiplication is performed
with 0. However, this is not possible because evaluation of linear forms does not
trigger errors. Also, when a linear form is multiplied by a convex join expression,
the multiplication is distributed over the operands of the convex join. In such
case, it is possible to reduce both the new products and the resulting abstract
expression in order to simplify them. Those reductions are formalized in the two

24 J. Boillot, J. Feret.

following inference rules. If neither of the two can be applied, no reduction is
performed.

MultConst
𝑖, 𝑗 ∈ {1, 2} ∶ 𝑖 ≠ 𝑗 𝑒♯𝑖 = ℒ□(𝑎0 +

∑
𝑋𝑖∈𝒱

𝑎𝑖𝑋𝑖) 𝑒♯𝑗 = ℒ□(𝑏0)

reduce0(𝑒
♯
1 ⊠ 𝑒♯2)𝑅

♯ ≝ ℒ□((𝑎0 × 𝑏0) +
∑

𝑋𝑖∈𝒱
(𝑎𝑖 × 𝑏0)𝑋𝑖)

MultConvexJoin

𝑖, 𝑗 ∈ {1, 2} ∶ 𝑖 ≠ 𝑗
𝑒♯𝑖 = 𝑒♯𝑖,1 ⋓□ 𝑒♯𝑖,2 𝑒♯𝑗 = ℒ□(𝛼0 +

∑
𝑋𝑖∈𝒱

𝑎𝑖𝑋𝑖)

𝑒′♯1 ≝ reduce0(𝑒
♯
𝑖,1 ⊠ 𝑒♯𝑗)𝑅

♯ 𝑒′♯2 ≝ reduce0(𝑒
♯
𝑖,2 ⊠ 𝑒♯𝑗)𝑅

♯

reduce0(𝑒
♯
1 ⊠ 𝑒♯2)𝑅

♯ ≝ reduce0(𝑒
′♯
1 ⋓□ 𝑒′♯2)𝑅

♯

Division. The only rule introduced for specific reduction of abstract division
expressions is the division of a linear form by a nonzero constant that divides all
the coefficients of the linear form. In such a case, the resulting linear form is the
original one divided component-wise by the coefficient. Like for the reduction
rules of multiplication expressions, no errors can be hidden during this process
because evaluation of linear forms does not trigger errors. If it cannot be applied,
no reduction is performed.

DivConst
𝑒♯2 = ℒ□(𝑏0) 𝑏 ≠ 0 𝑒♯1 = ℒ□((𝑎0 × 𝑏0) +

∑
𝑋𝑖∈𝒱

(𝑎𝑖 × 𝑏0)𝑋𝑖)

reduce0(𝑒
♯
1 ⧄ 𝑒♯2)𝑅

♯ ≝ ℒ□(𝑎0 +
∑

𝑋𝑖∈𝒱
𝑎𝑖𝑋𝑖)

Convex Join. The convex join operator abstracts an idempotent, associative,
and commutative operator. This can be exploited in the three following rules. If
none of the three can be applied, no reduction is performed.

ConvexJoinIdem1
𝑒♯1 = 𝑒♯2 𝑒♯1 contains no ⋓□

reduce0(𝑒
♯
1 ⋓□ 𝑒♯2)𝑅

♯ ≝ 𝑒♯1

ConvexJoinIdem2

𝑖, 𝑗 ∈ {1, 2} ∶ 𝑖 ≠ 𝑗
𝑒♯𝑖 = 𝑒♯𝑖,1 ⋓□ 𝑒♯𝑖,2 𝑒♯𝑗 = 𝑒♯𝑖,1 ∨ 𝑒

♯
𝑗 = 𝑒♯𝑖,2 𝑒♯𝑗 contains no ⋓□

reduce0(𝑒
♯
1 ⋓□ 𝑒♯2)𝑅

♯ ≝ 𝑒♯𝑖

ConvexJoinIdem3

𝑒♯1 ≠ 𝑒♯2
𝑒♯1 = 𝑒♯1,1 ⋓□ 𝑒♯1,2 𝑒♯2 = 𝑒♯2,1 ⋓□ 𝑒♯2,2 𝑖, 𝑗 ∈ {1, 2} ∶ 𝑖 ≠ 𝑗

𝑒♯1,𝑖 = 𝑒♯2,1 ∨ 𝑒
♯
1,𝑖 = 𝑒♯2,2 𝑒♯1,𝑖 contains no ⋓□

reduce0(𝑒
♯
1 ⋓□ 𝑒♯2)𝑅

♯ ≝ reduce0(𝑒
♯
1,𝑗 ⋓□ 𝑒♯2)𝑅

♯

Symbolic transformation of expressions in modular arithmetic 25

1 unsigned int x, a;
2 int16_t b;
3 if (a <= x && x-a <= 256 && b >= 0) {
4 int16_t r = ((x - a) * b) >> 8;
5 assert(0 <= r && r <= b);
6 }

(a) C language

1 if 𝑋 + −𝐴 ≥ 0 then
2 if 𝑋 + −𝐴 ≤ 28 then
3 if 𝐵 ≥ 0 then
4 𝑅 ← ((𝑋 + −𝐴) × 𝐵) ∕ 28⨾
5 // 0 ≤ 𝑅 ≤ 𝐵
6 endif
7 endif
8 endif

(b) Article’s language (simplified)

Fig. 10: Second example of linear interpolation computation.

Default rule. As described earlier, if no other reduction rule can be applied, the
abstract expression is returned unmodified. This is formalized in the following
inference rule that has no premises.

NoReduce
reduce0(𝑒♯)𝑅♯ ≝ 𝑒♯

The soundness of the reduction rules of reduce0 is stated in the following
theorem.

Theorem 5. The reduce0 operator we introduced is a reduce operator as de-
scribed in Def. 5.8.

7.3 Linear Interpolation

One advantage of handling abstract expressions in the reduce function is that
they are potentially simpler than the original expressions (e.g., without modulo
computations). Moreover, this function is applied during several stages of the
reduction. Thus, it is possible to introduce new reduction rules that try to match
patterns in order to simplify the matched abstract expressions.

We illustrate this method with the interpolation detection step that aims at
finding and simplifying linear interpolation patterns. This step consists in the
introduction of two new inference rules in reduce0. The first one matches a
product of a linear form ℒ□(𝑋 −𝐴) and an abstract expression 𝑒♯𝑧, quotient by a
linear form ℒ□(𝐵 − 𝐴) with 𝐴, 𝐵, 𝑋 ∈ 𝒱. It claims the quotient can be reduced
to ℒ□(0) ⋓□ 𝑒♯𝑧 (or more precisely its reduction) when the denominator is nonzero
and 𝑋 is between 𝐴 and 𝐵. This is the rule that can be used in the program
example given at the beginning of the paper in Fig. 3. The second inductive rule
introduced is quite similar, but the denominator is a strictly positive constant.
Under the condition that 𝑋−𝐴 is between 0 and 𝑘𝑑, with 𝑘 the maximum nonzero
integer that verifies the property (that exists because ℕ∗ is well-founded), the
reduction rule returns ℒ□(0) ⋓□ (𝑒♯𝑧 ⊠ ℒ□(𝑘)) (modulo two reductions). This rule
can, for example, be used to prove that, in Fig. 10, 0 ≤ 𝑅 ≤ 𝐵 holds if 𝑅
is assigned. If these induction rules cannot be applied, the usual default rule
NoReduce is used.

26 J. Boillot, J. Feret.

Interp1

𝑦, 𝑧 ∈ {1, 2} ∶ 𝑦 ≠ 𝑧
𝑋,𝐴, 𝐵 ∈ 𝒱 𝑒♯𝑦 ≝ ℒ□(𝑋 − 𝐴) 𝜄(𝐵 − 𝐴)𝑅♯ ⊆ [1, +∞[

𝜄(𝑋 − 𝐴)𝑅♯ ⊆ [0, +∞[𝜄(𝐵 − 𝑋)𝑅♯ ⊆ [0, +∞[

reduce0((𝑒
♯
1 ⊠ 𝑒♯2) ⧄ ℒ□(𝐵 − 𝐴))𝑅♯ ≝ reduce0(ℒ□(0) ⋓□ 𝑒♯𝑧)𝑅♯

Interp2

𝑦, 𝑧 ∈ {1, 2} ∶ 𝑦 ≠ 𝑧 𝑑 ∈ ℕ∗ 𝑋,𝐴 ∈ 𝒱
𝑒♯𝑦 = ℒ□(𝑋 − 𝐴) 𝑘 ≝ min{ 𝑘 ∈ ℕ∗ ∣ 𝜄(𝑋 − 𝐴)𝑅♯ ⊆ [0, 𝑘𝑑] }

𝑒′♯𝑧 ≝ reduce0(𝑒
♯
𝑧 ⊠ ℒ□(𝑘))𝑅♯

reduce0((𝑒
♯
1 ⊠ 𝑒♯2) ⧄ ℒ□(𝑑))𝑅♯ ≝ reduce0(ℒ□(0) ⋓□ 𝑒′♯𝑧)𝑅♯

In this section, we have introduced a reduction heuristic over abstract ex-
pressions. We have then presented that we can take advantage of the simplified
form of the abstract expressions to recognize patterns, such as linear interpola-
tions. Even if they allow some flexibility (e.g., commutation of the operands in
multiplications), the capability to recognize all linear interpolations can cause
the number of rules to explode. It can then be interesting to memoize the result
of pattern recognition so that further iterations would explore fewer cases.

8 Implementation presentation

All the methods we have described have been implemented in the Astrée [1,2]
static analyzer but also in an extra toy abstract interpreter of C code [3] we
submitted along this article to emphasize our work. Some implementation details
and results of our artifact are detailed in this section.

The approach we have presented in this paper is sensitive to program trans-
formations, and particularly to the usage of temporary variables, as in Fig. 2
In the implementations we also use adopted the Symbolic Constant Propagation
methods [21] to eliminate them by propagating and simplifying the expressions
assigned to them. A strategy has to be provided to the symbolic constant prop-
agation domain to decide which variable substitute by its expression. The one
we currently use consists in propagating the expressions as soon as they still
contain variables.

The artifact has been evaluated on several code excerpts from industrial
code. The improvement of both the analysis time and the number of false-alarms
returned by the analyzer when adding the rewriting abstract domain that we
presented is summarized in Fig. 11. The comparison has been made using three
different underlying abstract domains implemented in the library Apron [15]:
intervals (boxes), octagons, and polyhedra. If the analysis times out (after 5
seconds), the corresponding bars are hatched and the bar height is set to the
height of the graph, so other bars are not flattened.

The C code excerpts that have been tested are the following ones:
– fig1.c, fig2.c, fig3.c and fig10.c respectively correspond to Figs. 1, 2,

3, and 10,
– fig1_promo.c and fig2_promo.c respectively correspond to Figs. 1 and 2

with the extra usage of integer promotion instead of unsigned data type,

Symbolic transformation of expressions in modular arithmetic 27

– fig3+mod.c corresponds to Fig. 3 with the extra usage of variable differences
as introduced in Fig. 1,

– promo{1,2,3}.c present different counter-intuitive effects of integer promo-
tion in C code,

– div0.c is a demonstration that rewritings do not hide potential errors, in
particular divisions by zero that are discarded during the rewriting,

– bilinear.c computes a bilinear interpolation that consists in 8 nested linear
interpolations. Its exact range then has to be proven.
The results of our artifact 11 show that, as soon as the underlying abstract

domain is able to prove obligation inequalities, the symbolic domain is able
to eliminate inner modulo computations and discover more precise numerical
properties. In general, the overhead cost is compensated by the fact that, due
to the increase of accuracy, the time spent in the other domains is reduced.

9 Conclusion

We have proposed in this article a method to safely rewrite arithmetic expres-
sions into simpler ones. In particular, modulo computations, that are frequent
in the semantics of real-world programming languages, are safely discarded ;
either by proving that they can be precisely described, or by replacing them
conservatively. Then, a reduction operator has been introduced to achieve maxi-
mum expression canonization by using linear forms to the fullest extent possible.
Those reductions allow us to match and simplify expression patterns, such as
linear interpolations, for a low cost. Nevertheless, this technique remains gen-
eral and could be used with other patterns. This method has been implemented
within the Astrée static analyzer, and a toy abstract interpreter that is avail-
able. An evaluation of the accuracy and the overhead cost induced by the new
abstract domain has been presented and supports its effectiveness in the pres-
ence of modulo computations. The cost is generally compensated by the fact
that, due to the increase of accuracy, the time spent in the other domains is
reduced.

The reduction operator can be easily tuned to adapt to a wider class of
interpolation scheme or other application domains. We would like to investigate
further the accuracy of our analysis in a wider context and develop further
refinement of the reduction operator.

Acknowledgements We thank the anonymous referees for their constructive
comments and suggestions. Furthermore, we extend our gratitude to Josselin
Giet, Marc Chevalier and Antoine Miné for granting us permission to publish
a toy abstract interpreter they created, which served as the foundation for our
artifact.

28 J. Boillot, J. Feret.

(a) Analysis time comparison. (b) Number of false alarms comparison.

Fig. 11: Comparison of the analysis of C files with and without the usage of the
rewriting abstract domain, respectively with the interval, octagon, and polyhe-
dron abstract domain as the underlying one.

Symbolic transformation of expressions in modular arithmetic 29

References

1. Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Mon-
niaux, D., Rival, X.: Design and implementation of a special-purpose static pro-
gram analyzer for safety-critical real-time embedded software. In: The Essence
of Computation, Complexity, Analysis, Transformation. Springer (2002). https:
//doi.org/10.1007/3-540-36377-7_5

2. Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Mon-
niaux, D., Rival, X.: A static analyzer for large safety-critical software. In: Pro-
gramming Language Design and Implementation. ACM (2003). https://doi.org/
10.1145/781131.781153

3. Boillot, J., Feret, J.: Artifact for "symbolic transformation of expressions in mod-
ular arithmetic" (2023). https://doi.org/10.5281/zenodo.8186873

4. Cousot, P., Cousot, R.: Static determination of dynamic properties of programs.
In: International Symposium on Programming. Dunod (1976). https://doi.org/10.
1145/390019.808314

5. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Principles
of Programming Languages. ACM (1977). https://doi.org/10.1145/512950.512973

6. Cousot, P., Cousot, R.: Abstract interpretation and application to logic programs.
Journal of Logic Programming (1992). https://doi.org/10.1016/0743-1066(92)
90030-7

7. Cousot, P., Cousot, R.: Comparing the Galois connection and widening/narrowing
approaches to abstract interpretation, invited paper. In: Programming Language
Implementation and Logic Programming. Springer (1992). https://doi.org/10.
1007/3-540-55844-6_142

8. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables
of a program. In: Principles of Programming Languages. ACM (1978). https://doi.
org/10.1145/512760.512770

9. Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N., Zadeck, F.K.: Efficiently
computing static single assignment form and the control dependence graph. Trans-
actions on Programming Languages and Systems (1991). https://doi.org/10.1145/
115372.115320

10. Gallois-Wong, D.: Formalisation en Coq des algorithmes de filtre numérique cal-
culés en précision finie. (Coq formalization of digital filter algorithms computed
using finite precision arithmetic). Ph.D. thesis, University of Paris-Saclay, France
(2021), https://tel.archives-ouvertes.fr/tel-03202580

11. Granger, P.: Static analysis of arithmetical congruences. International Journal of
Computer Mathematics (1989). https://doi.org/10.1080/00207168908803778

12. Granger, P.: Static analysis of linear congruence equalities among variables of a pro-
gram. In: International Joint Conference on Theory and Practice of Software De-
velopment on Colloquium on Trees in Algebra and Programming. Springer (1991).
https://doi.org/10.1007/3-540-53982-4_10

13. Halbwachs, N., Péron, M.: Discovering properties about arrays in simple programs.
In: Programming Language Design and Implementation. ACM (2008). https://doi.
org/10.1145/1375581.1375623

14. ISO: International Standard ISO/IEC 9899:1999. International Organization for
Standardization (2007), http://www.open-std.org/jtc1/sc22/wg14/www/docs/
n1256.pdf

https://doi.org/10.1007/3-540-36377-7_5
https://doi.org/10.1007/3-540-36377-7_5
https://doi.org/10.1007/3-540-36377-7_5
https://doi.org/10.1007/3-540-36377-7_5
https://doi.org/10.1145/781131.781153
https://doi.org/10.1145/781131.781153
https://doi.org/10.1145/781131.781153
https://doi.org/10.1145/781131.781153
https://doi.org/10.5281/zenodo.8186873
https://doi.org/10.5281/zenodo.8186873
https://doi.org/10.1145/390019.808314
https://doi.org/10.1145/390019.808314
https://doi.org/10.1145/390019.808314
https://doi.org/10.1145/390019.808314
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/512950.512973
https://doi.org/10.1016/0743-1066(92)90030-7
https://doi.org/10.1016/0743-1066(92)90030-7
https://doi.org/10.1016/0743-1066(92)90030-7
https://doi.org/10.1016/0743-1066(92)90030-7
https://doi.org/10.1007/3-540-55844-6_142
https://doi.org/10.1007/3-540-55844-6_142
https://doi.org/10.1007/3-540-55844-6_142
https://doi.org/10.1007/3-540-55844-6_142
https://doi.org/10.1145/512760.512770
https://doi.org/10.1145/512760.512770
https://doi.org/10.1145/512760.512770
https://doi.org/10.1145/512760.512770
https://doi.org/10.1145/115372.115320
https://doi.org/10.1145/115372.115320
https://doi.org/10.1145/115372.115320
https://doi.org/10.1145/115372.115320
https://tel.archives-ouvertes.fr/tel-03202580
https://doi.org/10.1080/00207168908803778
https://doi.org/10.1080/00207168908803778
https://doi.org/10.1007/3-540-53982-4_10
https://doi.org/10.1007/3-540-53982-4_10
https://doi.org/10.1145/1375581.1375623
https://doi.org/10.1145/1375581.1375623
https://doi.org/10.1145/1375581.1375623
https://doi.org/10.1145/1375581.1375623
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1256.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1256.pdf

30 J. Boillot, J. Feret.

15. Jeannet, B., Miné, A.: Apron: A library of numerical abstract domains for static
analysis. In: Computer Aided Verification. Springer (2009). https://doi.org/10.
1007/978-3-642-02658-4_52

16. Journault, M., Miné, A., Monat, R., Ouadjaout, A.: Combinations of reusable
abstract domains for a multilingual static analyzer. In: Verified Software.
Theories, Tools, and Experiments. Springer (2020). https://doi.org/10.1007/
978-3-030-41600-3_1

17. Logozzo, F., Fähndrich, M.: Pentagons: A weakly relational abstract domain for
the efficient validation of array accesses. In: Symposium on Applied Computing.
ACM (2008). https://doi.org/10.1016/j.scico.2009.04.004

18. Masdupuy, F.: Array abstractions using semantic analysis of trapezoid congru-
ences. In: International Conference on Supercomputing. ACM (1992). https://doi.
org/10.1145/143369.143414

19. Miné, A.: A new numerical abstract domain based on difference-bound matri-
ces. In: Programs as Data Objects. Springer (2001). https://doi.org/10.1007/
3-540-44978-7_10

20. Mine, A.: The octagon abstract domain. In: Proceedings Eighth Working Confer-
ence on Reverse Engineering. IEEE Computer Society (2001). https://doi.org/10.
1109/WCRE.2001.957836

21. Miné, A.: Symbolic methods to enhance the precision of numerical abstract do-
mains. In: Verification, Model Checking, and Abstract Interpretation. Springer
(2006). https://doi.org/10.1007/11609773_23

22. Müller-Olm, M., Seidl, H.: Analysis of modular arithmetic. In: Program-
ming Languages and Systems. Springer (2005). https://doi.org/10.1007/
978-3-540-31987-0_5

23. Simon, A., King, A.: Taming the wrapping of integer arithmetic. In: Static Analysis
Symposium. Springer (2007). https://doi.org/10.1007/978-3-540-74061-2_8

24. Venet, A.: The gauge domain: Scalable analysis of linear inequality invari-
ants. In: Computer Aided Verification. Springer (2012). https://doi.org/10.1007/
978-3-642-31424-7_15

https://doi.org/10.1007/978-3-642-02658-4_52
https://doi.org/10.1007/978-3-642-02658-4_52
https://doi.org/10.1007/978-3-642-02658-4_52
https://doi.org/10.1007/978-3-642-02658-4_52
https://doi.org/10.1007/978-3-030-41600-3_1
https://doi.org/10.1007/978-3-030-41600-3_1
https://doi.org/10.1007/978-3-030-41600-3_1
https://doi.org/10.1007/978-3-030-41600-3_1
https://doi.org/10.1016/j.scico.2009.04.004
https://doi.org/10.1016/j.scico.2009.04.004
https://doi.org/10.1145/143369.143414
https://doi.org/10.1145/143369.143414
https://doi.org/10.1145/143369.143414
https://doi.org/10.1145/143369.143414
https://doi.org/10.1007/3-540-44978-7_10
https://doi.org/10.1007/3-540-44978-7_10
https://doi.org/10.1007/3-540-44978-7_10
https://doi.org/10.1007/3-540-44978-7_10
https://doi.org/10.1109/WCRE.2001.957836
https://doi.org/10.1109/WCRE.2001.957836
https://doi.org/10.1109/WCRE.2001.957836
https://doi.org/10.1109/WCRE.2001.957836
https://doi.org/10.1007/11609773_23
https://doi.org/10.1007/11609773_23
https://doi.org/10.1007/978-3-540-31987-0_5
https://doi.org/10.1007/978-3-540-31987-0_5
https://doi.org/10.1007/978-3-540-31987-0_5
https://doi.org/10.1007/978-3-540-31987-0_5
https://doi.org/10.1007/978-3-540-74061-2_8
https://doi.org/10.1007/978-3-540-74061-2_8
https://doi.org/10.1007/978-3-642-31424-7_15
https://doi.org/10.1007/978-3-642-31424-7_15
https://doi.org/10.1007/978-3-642-31424-7_15
https://doi.org/10.1007/978-3-642-31424-7_15

Symbolic transformation of expressions in modular arithmetic 31

A Appendix

A.1 Definitions only required in the Appendix

Definition 8. Let us consider the equational logic associated to arithmetic ex-
pressions with the following equivalence relation 𝑒1 ≡ 𝑒2 ≝ ∀𝜌 ∈ ℰ, ⟦ 𝑒1 ⟧𝜌 =
⟦ 𝑒2 ⟧𝜌.
In particular, 𝑒1 ≡ 𝑒2 ⟹ ∀⟨𝑅0, Ω0 ⟩ ∈ 𝐷, ⟨ 𝑅0, Ω0 ⟩ ⊨ 𝑒1 ≼∅ 𝑒2.

We note that semantics of addition, opposite, and multiplication of expres-
sions is exactly the couple made of:

– the set of the corresponding operation on ℤ over the elements of the evalua-
tion of the operands,

– the errors raised by the evaluation of the operands.
Then, one can check that (expr, +), (expr, ×) are commutative monoids in this
equational theory. In particular, + and × satisfy commutativity and associativity
with respectively { 𝑥 ∈ expr ∣ 𝑥 ≡ 0cst } and { 𝑥 ∈ expr ∣ 𝑥 ≡ 1cst } as neu-
tral elements. Moreover, the unary minus is an involution that distributes over
(expr, +).

A.2 Rewriting lemma

Lemma 1. The following rewriting relation is satisfied:

𝛾(𝑅♯) ⊨ toExpr(𝑒♯) mod 𝑚 ≼∅ toExpr(reduce(𝑒♯)𝑅♯) mod 𝑚,

for every 𝑅♯ ∈ 𝐷♯. 𝑒♯ ∈ expr♯, and 𝑚 ∈ 𝕄.

Proof. Let 𝜌 ∈ 𝑅0 with ⟨ 𝑅0, Ω0 ⟩ ≝ 𝛾(𝑅♯), then
⟦ toExpr(𝑒♯) mod 𝑚⟧𝜌
≝ ⟨ { 𝑥 mod 𝑚 ∣ 𝑥 ∈ ⟦ toExpr(𝑒♯) ⟧𝑉𝜌 }, ⟦ toExpr(𝑒♯) ⟧Ω𝜌 ⟩
⊑ ⟨ { 𝑥′ mod 𝑚 ∣ 𝑥′ ∈ ⟦ toExpr(reduce(𝑒♯)𝑅♯) ⟧𝑉𝜌 }, ⟦ toExpr(reduce(𝑒♯)𝑅♯) ⟧Ω𝜌 ⟩

(by using Def. 5.8)
⊑ ⟦ toExpr(reduce(𝑒♯)𝑅♯) mod 𝑚⟧𝜌

⊓⊔

A.3 Modular arithmetic

Lemma 2. ∀𝑛 ∈ ℤ,𝑚 ∈ ℕ∗, − irem(𝑛,𝑚) = −𝑚 + 1 + irem(𝑚 − 𝑛 − 1,𝑚)

Proof. Let 𝑞1, 𝑞2 ∈ ℤ and 𝑟1, 𝑟2 ∈ [0,𝑚[such that 𝑛 = 𝑞1𝑚+𝑟1 and 𝑚−𝑛−1 =
𝑞2𝑚 + 𝑟2. We have 𝑟1 = irem(𝑛,𝑚) and 𝑟2 = irem(𝑚 − 𝑛 − 1,𝑚).
We want to prove that 𝑟1 −𝑚 + 1 + 𝑟2 = 0.
𝑟1 −𝑚 + 1 + 𝑟2
= (𝑛 − 𝑞1𝑚) −𝑚 + 1 + (𝑚 − 𝑛 − 1 − 𝑞2𝑚)

32 J. Boillot, J. Feret.

= −𝑚(𝑞1 + 𝑞2)

Moreover, because 𝑚 > 0, both − irem(𝑛,𝑚) and −𝑚 + 1 + irem(𝑚 − 𝑛 + 1,𝑚)
are between −𝑚 + 1 and 0. Then, the difference of those expressions is between
−𝑚 + 1 and 𝑚 − 1. So, 𝑞1 + 𝑞2 = 0 and the property is proved.

⊓⊔

Lemma 3. ∀𝑎, 𝑏 ∈ ℤ, [𝑙1, 𝑢1[, [𝑙2, 𝑢2[, [𝑙3, 𝑢3[∈ 𝕄 such that (𝑢3 − 𝑙3) | (𝑢1 − 𝑙1)
and (𝑢3 − 𝑙3) | (𝑢2 − 𝑙2), then (𝑎 mod [𝑙1, 𝑢1[+ 𝑏 mod [𝑙2, 𝑢2[) mod [𝑙3, 𝑢3[= (𝑎 +
𝑏) mod [𝑙3, 𝑢3[.

Proof. ∀𝑖, ∆𝑖 ≝ 𝑢𝑖 − 𝑙𝑖. Let 𝑘1, 𝑘2 ∈ ℤ such that ∆1 = 𝑘1∆3 and ∆2 = 𝑘2∆3.
Let 𝑞1, 𝑞2 ∈ ℤ such that irem(𝑎 − 𝑙1, ∆1) = 𝑎 − 𝑙1 − 𝑞1∆1 and irem(𝑏 − 𝑙2, ∆2) =
𝑏 − 𝑙2 − 𝑞2∆2. Then,
(𝑎 mod [𝑙1, 𝑢1[+ 𝑏 mod [𝑙2, 𝑢2[) mod [𝑙3, 𝑢3[
= (𝑙1 + irem(𝑎 − 𝑙1, ∆1) + 𝑙2 + irem(𝑏 − 𝑙2, ∆2)) mod [𝑙3, 𝑢3[
= (𝑎 − 𝑞1𝑘1∆3 + 𝑏 − 𝑞2𝑘2∆3) mod [𝑙3, 𝑢3[
= 𝑙3 + irem(𝑎 − 𝑞1𝑘1∆3 + 𝑏 − 𝑞2𝑘2∆3 − 𝑙3, ∆3)
= 𝑙3 + irem(𝑎 + 𝑏 − 𝑙3, ∆3)
= (𝑎 + 𝑏) mod [𝑙3, 𝑢3[

⊓⊔

Lemma 4. ∀𝑎, 𝑏 ∈ ℤ, [𝑙1, 𝑢1[, [𝑙2, 𝑢2[, [𝑙3, 𝑢3[∈ 𝕄 such that (𝑢3 − 𝑙3) | (𝑢1 − 𝑙1)
and (𝑢3 − 𝑙3) | (𝑢2 − 𝑙2), then ((𝑎 mod [𝑙1, 𝑢1[) × (𝑏 mod [𝑙2, 𝑢2[)) mod [𝑙3, 𝑢3[=
(𝑎 × 𝑏) mod [𝑙3, 𝑢3[.

Proof. ∀𝑖, ∆𝑖 ≝ 𝑢𝑖 − 𝑙𝑖. Let 𝑘1, 𝑘2 ∈ ℤ such that ∆1 = 𝑘1∆3 and ∆2 = 𝑘2∆3.
Let 𝑞1, 𝑞2 ∈ ℤ such that irem(𝑎 − 𝑙1, ∆1) = 𝑎 − 𝑙1 − 𝑞1∆1 and irem(𝑏 − 𝑙2, ∆2) =
𝑏 − 𝑙2 − 𝑞2∆2. Then,
((𝑎 mod [𝑙1, 𝑢1[) × (𝑏 mod [𝑙2, 𝑢2[)) mod [𝑙3, 𝑢3[
≝ ((𝑙1 + irem(𝑎 − 𝑙1, ∆1)) × (𝑙2 + irem(𝑏 − 𝑙2, ∆2))) mod [𝑙3, 𝑢3[
= ((𝑎 − 𝑞1𝑘1∆3) × (𝑏 − 𝑞2𝑘2∆3)) mod [𝑙3, 𝑢3[
= (𝑎 × 𝑏 + ∆3(∆3𝑞1𝑞2𝑘1𝑘2 − 𝑞1𝑘1𝑏 − 𝑞2𝑘2𝑎)) mod [𝑙3, 𝑢3[
≝ 𝑙3 + irem(𝑎 × 𝑏 + ∆3(∆3𝑞1𝑞2𝑘1𝑘2 − 𝑞1𝑘1𝑏 − 𝑞2𝑘2𝑎) − 𝑙3, ∆3)
= 𝑙3 + irem(𝑎 × 𝑏 − 𝑙3, ∆3)
≝ (𝑎 × 𝑏) mod [𝑙3, 𝑢3[

⊓⊔

Symbolic transformation of expressions in modular arithmetic 33

A.4 Proof of Theorem. 1

Proof.
– ⦃ 𝑉 ← 𝑒 ⦄⟨ 𝑅0, Ω0 ⟩

≝ ⟨∅,Ω0 ⟩ ⊔
⨆
{ ⟨ { 𝜌[𝑋 ↦ 𝑣] }, ⟦ 𝑒 ⟧Ω𝜌 ⟩ ∣ 𝜌 ∈ 𝑅0, 𝑣 ∈ ⟦ 𝑒 ⟧𝑉𝜌 }

⊑ ⟨∅,Ω0 ⟩ ⊔
⨆
{ ⟨ { 𝜌[𝑋 ↦ 𝑣′] }, ⟦ 𝑒′ ⟧Ω𝜌 ∪ Ω1 ⟩ ∣ 𝜌 ∈ 𝑅0, 𝑣′ ∈ ⟦ 𝑒′ ⟧𝑉𝜌 }

(because ⟦ 𝑒 ⟧𝑉𝜌 ⊆ ⟦ 𝑒′ ⟧𝑉𝜌 and ⟦ 𝑒 ⟧Ω𝜌 ⊆ ⟦ 𝑒′ ⟧Ω𝜌 ∪ Ω1)

⊑ ⟨∅,Ω1 ⟩ ⊔ ⟨∅,Ω0 ⟩ ⊔
⨆
{ ⟨ { 𝜌[𝑋 ↦ 𝑣′] }, ⟦ 𝑒′ ⟧Ω𝜌 ⟩ ∣ 𝜌 ∈ 𝑅0, 𝑣′ ∈ ⟦ 𝑒′ ⟧𝑉𝜌 }

⊑ ⟨∅,Ω1 ⟩ ⊔ ⦃𝑉 ← 𝑒′ ⦄⟨ 𝑅0, Ω0 ⟩

– ⦃ 𝑒 ⋈ 0? ⦄⟨ 𝑅0, Ω0 ⟩
≝ ⟨∅,Ω0 ⟩ ⊔

⨆
{ ⟨ { 𝜌 }, ⟦ 𝑒 ⟧Ω𝜌 ⟩ ∣ 𝜌 ∈ 𝑅0, 𝑣 ∈ ⟦ 𝑒 ⟧𝑉𝜌, 𝑣 ⋈ 0 }

⊑ ⟨∅,Ω0 ⟩ ⊔
⨆
{ ⟨ { 𝜌 }, ⟦ 𝑒′ ⟧Ω𝜌 ∪ Ω1 ⟩ ∣ 𝜌 ∈ 𝑅0, 𝑣′ ∈ ⟦ 𝑒′ ⟧𝑉𝜌, 𝑣′ ⋈ 0 }

(because ⟦ 𝑒 ⟧𝑉𝜌 ⊆ ⟦ 𝑒′ ⟧𝑉𝜌 and ⟦ 𝑒 ⟧Ω𝜌 ⊆ ⟦ 𝑒′ ⟧Ω𝜌 ∪ Ω1)

⊑ ⟨∅,Ω1 ⟩ ⊔ ⟨∅,Ω0 ⟩ ⊔
⨆
{ ⟨ { 𝜌 }, ⟦ 𝑒′ ⟧Ω𝜌 ⟩ ∣ 𝜌 ∈ 𝑅0, 𝑣′ ∈ ⟦ 𝑒′ ⟧𝑉𝜌, 𝑣′ ⋈ 0 }

⊑ ⟨∅,Ω1 ⟩ ⊔ ⦃ 𝑒′ ⋈ 0? ⦄⟨ 𝑅0, Ω0 ⟩
⊓⊔

A.5 Proof of Theorem. 3

Proof. We prove it by case analysis over rmMod:

1. The reflexivity of ≼ is enough to conclude.
2. toExpr(ℒ□(𝛼)) mod 𝑚 ≡ toExpr(ℒ□(𝛼 mod 𝑚)) is enough to conclude.
3. The soundness criteria of 𝜄 stated in Def. 5.7 combined with the premise of

the inference rule give that ∀𝜌 ∈ 𝑅0, ⟦ toExpr(𝑒♯) ⟧𝑉𝜌 ⊆ [𝑙, 𝑢[.
Then, toExpr(𝑒♯) mod [𝑙, 𝑢[≡ toExpr(𝑒♯).

4. ∀𝜌 ∈ 𝑅0, ⟦ toExpr(𝑒♯) mod [𝑙, 𝑢[⟧𝑉𝜌 ⊆ [𝑙, 𝑢[.
In addition, toExpr(ℒ□(𝑙) ⋓□ ℒ□(𝑢−1)) ≡ [𝑙, 𝑢[and by using Def. 5.8 we get
⟨ 𝑅0, Ω0 ⟩ ⊨ toExpr([𝑙, 𝑢[) ≼∅ toExpr(reduce(ℒ□(𝑙) ⋓□ ℒ□(𝑢−1))𝑅♯).

⊓⊔

A.6 Proof of Theorem. 4

We prove Theorem. 4 by induction over the rules.

Case Variable. toExpr(ℒ□(1 × 𝑋)) = 1cst × 𝑋 ≡ 𝑋 is enough to conclude.

Case Interval. toExpr(ℒ□(𝑎) ⋓□ ℒ□(𝑏)) ≡ [𝑎, 𝑏], then
⟨ 𝑅0, Ω0 ⟩ ⊨ [𝑎, 𝑏] ≼∅ toExpr(reduce(ℒ□(𝑎) ⋓□ ℒ□(𝑏))𝑅♯) (by Def. 5.8)

34 J. Boillot, J. Feret.

Case OppositeNoMod. We suppose

∀𝜌 ∈ 𝑅0, ⟦ 𝑒 ⟧Ω𝜌 ⊆ Ω𝑒 ∧ ⟦ 𝑒 ⟧𝑉𝜌 ⊆ ⟦ toExpr(𝑒♯) ⟧𝑉𝜌

We want to prove

∀𝜌 ∈ 𝑅0, ⟦ −𝑒 ⟧Ω𝜌 ⊆ Ω𝑒 ∧ ⟦−𝑒 ⟧𝑉𝜌 ⊆ ⟦ toExpr(reduce(opposite(𝑒♯))𝑅♯) ⟧𝑉𝜌

First, we prove by structural induction over 𝑒♯ that

(− toExpr(𝑒♯)) ≡ toExpr(opposite(𝑒♯))

We will prove the division case that is not trivial:
– Case 𝑒♯ ≝ 𝑒♯1 ⧄ 𝑒♯2:

We suppose (− toExpr(𝑒♯1)) ≡ toExpr(opposite(𝑒♯1)), and we prove that
(− toExpr(𝑒♯1 ⧄ 𝑒♯2) ≡ toExpr(opposite(𝑒♯1) ⧄ 𝑒♯2).

But first, let us remember that

∀𝑥 ∈ ℝ, truncate(𝑥) ≝ {
⌊𝑥⌋ if 𝑥 ≥ 0
⌈𝑥⌉ if 𝑥 < 0

Then, if 𝑥 ≥ 0,− truncate(𝑥) ≝ −⌊𝑥⌋ = ⌈−𝑥⌉ ≝ truncate(−𝑥),
and if 𝑥 < 0,− truncate(𝑥) ≝ −⌈𝑥⌉ = ⌊−𝑥⌋ ≝ truncate(−𝑥).
Let 𝜌 ∈ ℰ, 𝑒1 ≝ toExpr(𝑒♯1), 𝑒2 ≝ toExpr(𝑒♯2) and 𝑒′1 ≝ toExpr(opposite(𝑒♯1)),
then
⟦− toExpr(𝑒♯1 ⧄ 𝑒♯2) ⟧𝜌

≝
⟨
{− truncate(𝑥 ∕ 𝑦)

|||||||
𝑥 ∈ ⟦ 𝑒1 ⟧𝑉𝜌
𝑦 ∈ ⟦ 𝑒2 ⟧𝑉𝜌, 𝑦 ≠ 0 } , ⟦ 𝑒1 ⟧

Ω𝜌 ∪ ⟦ 𝑒2 ⟧Ω𝜌 ∪
{𝜔𝑑 if 0 ∈ ⟦ 𝑒2 ⟧𝑉𝜌 }

⟩

=
⟨
{ truncate(−𝑥 ∕ 𝑦)

|||||||
𝑥 ∈ ⟦ 𝑒1 ⟧𝑉𝜌
𝑦 ∈ ⟦ 𝑒2 ⟧𝑉𝜌, 𝑦 ≠ 0 } , ⟦ 𝑒1 ⟧

Ω𝜌 ∪ ⟦ 𝑒2 ⟧Ω𝜌 ∪
{𝜔𝑑 if 0 ∈ ⟦ 𝑒2 ⟧𝑉𝜌 }

⟩

=
⟨
{ truncate(𝑥′ ∕ 𝑦)

|||||||
𝑥′ ∈ ⟦−𝑒1 ⟧𝑉𝜌
𝑦 ∈ ⟦ 𝑒2 ⟧𝑉𝜌, 𝑦 ≠ 0 } , ⟦ 𝑒1 ⟧

Ω𝜌 ∪ ⟦ 𝑒2 ⟧Ω𝜌 ∪
{𝜔𝑑 if 0 ∈ ⟦ 𝑒2 ⟧𝑉𝜌 }

⟩

=
⟨
{ truncate(𝑥′ ∕ 𝑦)

|||||||
𝑥′ ∈ ⟦ 𝑒′1 ⟧

𝑉𝜌
𝑦 ∈ ⟦ 𝑒2 ⟧𝑉𝜌, 𝑦 ≠ 0 } , ⟦ 𝑒

′
1 ⟧

Ω𝜌 ∪ ⟦ 𝑒2 ⟧Ω𝜌 ∪
{𝜔𝑑 if 0 ∈ ⟦ 𝑒2 ⟧𝑉𝜌 }

⟩

(by induction hypothesis)

≝ ⟦ toExpr(opposite(𝑒♯1) ⧄ 𝑒♯2) ⟧𝜌

So, − toExpr(𝑒♯1 ⧄ 𝑒♯2) ≡ toExpr(opposite(𝑒♯1) ⧄ 𝑒♯2).
Then, ⟨ 𝑅0, Ω0 ⟩ ⊨ − toExpr(𝑒♯) ≼∅ toExpr(opposite(𝑒♯)). We use Def. 5.8 to get
⟨ 𝑅0, Ω0 ⟩ ⊨ − toExpr(𝑒♯) ≼∅ toExpr(reduce(opposite(𝑒♯))𝑅♯) and we finally con-
clude by using the induction hypothesis.

Symbolic transformation of expressions in modular arithmetic 35

Case OppositeMod. We suppose

∀𝜌 ∈ 𝑅0, ⟦ 𝑒 ⟧Ω𝜌 ⊆ Ω𝑒 ∧ ⟦ 𝑒 ⟧𝑉𝜌 ⊆ ⟦ toExpr(𝑒♯) mod [𝑙, 𝑢[⟧𝑉𝜌

We want to prove

∀𝜌 ∈ 𝑅0, ⟦ −𝑒 ⟧Ω𝜌 ⊆ Ω𝑒 ∧
⟦ 𝑒 ⟧𝑉𝜌 ⊆ ⟦ toExpr(reduce(opposite(𝑒♯))𝑅♯) mod [−𝑢+1,−𝑙+1[⟧𝑉𝜌

Let 𝜌 ∈ 𝑅0, then
⟦−𝑒 ⟧𝜌
≝ ⟨ {−𝑥 ∣ 𝑥 ∈ ⟦ 𝑒 ⟧𝑉𝜌 }, ⟦ 𝑒 ⟧Ω𝜌 ⟩
⊑ ⟨ {−(𝑥 mod [𝑙, 𝑢[) ∣ 𝑥 ∈ ⟦ toExpr(𝑒♯) ⟧𝑉𝜌 }, Ω𝑒 ⟩ (by induction hypothesis)
⊑ ⟨ {−(𝑙 + irem(𝑥 − 𝑙, 𝑢 − 𝑙)) ∣ 𝑥 ∈ ⟦ toExpr(𝑒♯) ⟧𝑉𝜌 }, Ω𝑒 ⟩
⊑ ⟨ { −𝑙 − (𝑢−𝑙) + 1 + irem((𝑢−𝑙) − (𝑥 − 𝑙) − 1, 𝑢−𝑙) ∣ 𝑥 ∈ ⟦ toExpr(𝑒♯) ⟧𝑉𝜌 }, Ω𝑒 ⟩

(by using Lemma. 2)
⊑ ⟨ { (−𝑢+1) + irem(−𝑥 − (−𝑢+1), (−𝑙+1) − (−𝑢+1)) ∣ 𝑥 ∈ ⟦ toExpr(𝑒♯) ⟧𝑉𝜌 }, Ω𝑒 ⟩
⊑ ⟨ { (−𝑥) mod [−𝑢+1,−𝑙+1[∣ 𝑥 ∈ ⟦ toExpr(𝑒♯) ⟧𝑉𝜌 }, Ω𝑒 ⟩
⊑ ⟨ ⟦ toExpr(opposite(𝑒♯)) mod [−𝑢+1,−𝑙+1[⟧𝑉𝜌,Ω𝑒 ⟩

(by reusing the lemma proved in the rule OppositeNoMod)
⊑ ⟨ ⟦ toExpr(reduce(opposite(𝑒♯))𝑅♯) mod [−𝑢+1,−𝑙+1[⟧𝑉𝜌,Ω𝑒 ⟩

(by using Lemma. 1)

Case ConvexJoin. We suppose

∀𝑖, ∀𝜌 ∈ 𝑅0, ⟦ 𝑒𝑖 ⟧Ω𝜌 ⊆ Ω𝑖 ∧ ⟦ 𝑒𝑖 ⟧𝑉𝜌 ⊆ ⟦ toExpr(𝑒♯𝑖) mod 𝑚𝑖 ⟧𝑉𝜌

and we want to prove

∀𝜌 ∈ 𝑅0, ⟦ 𝑒1 ⋓ 𝑒2 ⟧Ω𝜌 ⊆ Ω1 ∪ Ω2 ∧

⟦ 𝑒1⋓𝑒2 ⟧𝑉𝜌 ⊆ ⟦ toExpr(reduce(rmMod(𝑒♯1, 𝑚1)𝑅♯ ⋓□ rmMod(𝑒♯2, 𝑚2)𝑅♯)𝑅♯) ⟧𝑉𝜌

Let 𝜌 ∈ 𝑅0, then
⟦ 𝑒1 ⋓ 𝑒2 ⟧𝜌

≝
⟨
{ 𝑦 ∈ ℤ

|||||||
∃𝑥1 ∈ ⟦ 𝑒1 ⟧𝑉𝜌, 𝑥2 ∈ ⟦ 𝑒2 ⟧𝑉𝜌,
𝑥1 ≤ 𝑦 ≤ 𝑥2 ∨ 𝑥2 ≤ 𝑦 ≤ 𝑥1

} , ⟦ 𝑒1 ⟧Ω𝜌 ∪ ⟦ 𝑒2 ⟧Ω𝜌
⟩

⊑
⟨ ⎧

⎨
⎩

𝑦 ∈ ℤ

|||||||||||||

∃𝑥1 ∈ ⟦ toExpr(𝑒♯1) mod 𝑚1 ⟧𝑉𝜌,
∃𝑥2 ∈ ⟦ toExpr(𝑒♯2) mod 𝑚2 ⟧𝑉𝜌,
𝑥1 ≤ 𝑦 ≤ 𝑥2 ∨ 𝑥2 ≤ 𝑦 ≤ 𝑥1

⎫

⎬
⎭

, Ω1 ∪ Ω2
⟩

(by induction hypothesis)

36 J. Boillot, J. Feret.

⊑
⟨⎧

⎨
⎩

𝑦 ∈ ℤ

|||||||||||||

∃𝑥1 ∈ ⟦ toExpr(rmMod(𝑒♯1, 𝑚1)𝑅♯) ⟧𝑉𝜌,
∃𝑥2 ∈ ⟦ toExpr(rmMod(𝑒♯2, 𝑚2)𝑅♯) ⟧𝑉𝜌,
𝑥1 ≤ 𝑦 ≤ 𝑥2 ∨ 𝑥2 ≤ 𝑦 ≤ 𝑥1

⎫

⎬
⎭

, Ω1 ∪ Ω2
⟩

(by Theorem. 3)

⊑ ⟨ ⟦ toExpr(rmMod(𝑒♯1, 𝑚1)𝑅♯ ⋓□ rmMod(𝑒♯2, 𝑚2)𝑅♯) ⟧𝑉𝜌,Ω1 ∪ Ω2 ⟩

⊑ ⟨ ⟦ toExpr(reduce(rmMod(𝑒♯1, 𝑚1)𝑅♯ ⋓□ rmMod(𝑒♯2, 𝑚2)𝑅♯)𝑅♯) ⟧𝑉𝜌,Ω1 ∪ Ω2 ⟩
(with Def. 5.8)

Case PlusConst. We suppose

∀𝜌 ∈ 𝑅0, ⟦ 𝑒𝑖 ⟧Ω𝜌 ⊆ Ω𝑖 ∧ ⟦ 𝑒𝑖 ⟧𝑉𝜌 ⊆ { 𝛼′ }

∀𝜌 ∈ 𝑅0, ⟦ 𝑒𝑗 ⟧Ω𝜌 ⊆ Ω𝑗 ∧ ⟦ 𝑒𝑗 ⟧𝑉𝜌 ⊆ ⟦ toExpr(𝑒♯𝑗) mod [𝑙𝑗 , 𝑢𝑗[⟧𝑉𝜌

and, because 𝑒𝑖 + 𝑒𝑗 ≡ 𝑒𝑗 + 𝑒𝑖, we want to prove

∀𝜌 ∈ 𝑅0, ⟦ 𝑒1 + 𝑒2 ⟧Ω𝜌 ⊆ Ω1 ∪ Ω2 ∧

⟦ 𝑒1 + 𝑒2 ⟧𝑉𝜌 ⊆ ⟦ toExpr(reduce(ℒ□(𝛼′) ⊞ 𝑒♯𝑗)𝑅
♯) mod [𝑙𝑗+𝛼′, 𝑢𝑗+𝛼′[⟧𝑉𝜌

Let 𝜌 ∈ 𝑅0 and 𝑒′𝑗 ≝ toExpr(𝑒♯𝑗), then
⟦ 𝑒𝑖 + 𝑒𝑗 ⟧𝜌
≝ ⟨ { 𝑥 + 𝑦 ∣ 𝑥 ∈ ⟦ 𝑒𝑖 ⟧𝑉𝜌, 𝑦 ∈ ⟦ 𝑒𝑗 ⟧𝑉𝜌 }, ⟦ 𝑒𝑖 ⟧Ω𝜌 ∪ ⟦ 𝑒𝑗 ⟧Ω𝜌 ⟩
⊑ ⟨ { 𝛼′ + 𝑦 mod [𝑙𝑗 , 𝑢𝑗[∣ 𝑦 ∈ ⟦ 𝑒′𝑗 ⟧

𝑉𝜌 }, Ω𝑖 ∪ Ω𝑗 ⟩ (by inductive hypothesis)

⊑ ⟨ { 𝛼′ + 𝑙𝑗 + irem(𝑦 − 𝑙𝑗 , 𝑢𝑗 − 𝑙𝑗) ∣ 𝑦 ∈ ⟦ 𝑒′𝑗 ⟧
𝑉𝜌 }, Ω𝑖 ∪ Ω𝑗 ⟩

⊑ ⟨ { (𝛼′ + 𝑙𝑗) + irem((𝛼′ + 𝑦) − (𝑙𝑗 + 𝛼′), 𝑢𝑗 − 𝑙𝑗) ∣ 𝑦 ∈ ⟦ 𝑒′𝑗 ⟧
𝑉𝜌 }, Ω𝑖 ∪ Ω𝑗 ⟩

⊑ ⟨ { (𝛼′ + 𝑦) mod [𝛼′+𝑙𝑗 , 𝛼′+𝑢𝑗[∣ 𝑦 ∈ ⟦ 𝑒′𝑗 ⟧
𝑉𝜌 }, Ω𝑖 ∪ Ω𝑗 ⟩

⊑ ⟨ ⟦ toExpr(ℒ□(𝛼′) ⊞ 𝑒𝑗) ⟧𝑉𝜌,Ω𝑖 ∪ Ω𝑗 ⟩
⊑ ⟨ ⟦ toExpr(reduce(ℒ□(𝛼′) ⊞ 𝑒𝑗)𝑅♯) ⟧𝑉𝜌,Ω𝑖 ∪ Ω𝑗 ⟩ (by using Lemma. 1)

Case PlusEqZero. We suppose

∀𝜌 ∈ 𝑅0, ⟦ 𝑒1 ⟧Ω𝜌 ⊆ Ω1 ∧ ⟦ 𝑒1 ⟧𝑉𝜌 ⊆ ⟦ toExpr(𝑒♯1) mod [𝑙1, 𝑢1[⟧𝑉𝜌

∀𝜌 ∈ 𝑅0, ⟦ 𝑒2 ⟧Ω𝜌 ⊆ Ω2 ∧ ⟦ 𝑒2 ⟧𝑉𝜌 ⊆ ⟦ toExpr(𝑒♯2) mod [−𝑢1+1,−𝑙1+1[⟧𝑉𝜌

and we want to prove

∀𝜌 ∈ 𝑅0, ⟦ 𝑒1 + 𝑒2 ⟧Ω𝜌 ⊆ Ω1 ∪ Ω2 ∧ ⟦ 𝑒1 + 𝑒2 ⟧𝑉𝜌 ⊆ ⟦ toExpr(ℒ□(0)) ⟧𝑉𝜌

Let 𝜌 ∈ 𝑅0, then
⟦ 𝑒1 + 𝑒2 ⟧𝜌

Symbolic transformation of expressions in modular arithmetic 37

≝ ⟨ { 𝑥 + 𝑦 ∣ 𝑥 ∈ ⟦ 𝑒1 ⟧𝑉𝜌, 𝑦 ∈ ⟦ 𝑒2 ⟧𝑉𝜌 }, ⟦ 𝑒1 ⟧Ω𝜌 ∪ ⟦ 𝑒2 ⟧Ω𝜌 ⟩

⊑
⟨
{ 𝑥

′ mod [𝑙1, 𝑢1[+
𝑦′ mod [−𝑢1+1,−𝑙1+1[

|||||||||

𝑥′ ∈ ⟦ toExpr(𝑒♯1) ⟧
𝑉𝜌,

𝑦′ ∈ ⟦ toExpr(𝑒♯2) ⟧
𝑉𝜌

} , Ω1 ∪ Ω2
⟩

(by inductive hypothesis)

Because of Def. 5.8 and reduce(𝑒♯1⊞𝑒♯2)𝑅
♯ = ℒ□(0), if 𝑥′ ∈ ⟦ toExpr(𝑒♯1) ⟧

𝑉𝜌 and
𝑦′ ∈ ⟦ toExpr(𝑒♯2) ⟧

𝑉𝜌, then 𝑥′ = −𝑦′. By applying mod [𝑙1, 𝑢1[on both sides
of the equality we obtain 𝑥′ mod [𝑙1, 𝑢1[= (−𝑦′) mod [𝑙1, 𝑢1[. By reusing the
lemma proved in the rule OppositeMod we finally get 𝑥′ mod [𝑙1, 𝑢1[+ 𝑦′ mod
[−𝑢1+1,−𝑙1+1[= 0. Then,
⟦ 𝑒1 + 𝑒2 ⟧𝜌
⊑ ⟨ { 0 }, Ω1 ∪ Ω2 ⟩
⊑ ⟨ ⟦ toExpr(ℒ□(0)) ⟧𝑉𝜌,Ω1 ∪ Ω2 ⟩

Case PlusNoMod. We suppose

∀𝑖, ∀𝜌 ∈ 𝑅0, ⟦ 𝑒𝑖 ⟧Ω𝜌 ⊆ Ω𝑖 ∧ ⟦ 𝑒𝑖 ⟧𝑉𝜌 ⊆ ⟦ toExpr(𝑒♯𝑖) mod 𝑚𝑖 ⟧𝑉𝜌

and we want to prove

∀𝜌 ∈ 𝑅0, ⟦ 𝑒1 + 𝑒2 ⟧Ω𝜌 ⊆ Ω1 ∪ Ω2 ∧

⟦ 𝑒1 + 𝑒2 ⟧𝑉𝜌 ⊆ ⟦ toExpr(reduce(rmMod(𝑒♯1, 𝑚1)𝑅♯⊞rmMod(𝑒♯2, 𝑚2)𝑅♯)𝑅♯) ⟧𝑉𝜌

Let 𝜌 ∈ 𝑅0 and ∀𝑖, 𝑒′𝑖 ≝ toExpr(rmMod(𝑒♯𝑖 , 𝑚𝑖)𝑅♯), then
⟦ 𝑒1 + 𝑒2 ⟧𝜌
≝ ⟨ { 𝑥 + 𝑦 ∣ 𝑥 ∈ ⟦ 𝑒1 ⟧𝑉𝜌, 𝑦 ∈ ⟦ 𝑒2 ⟧𝑉𝜌 }, ⟦ 𝑒1 ⟧Ω𝜌 ∪ ⟦ 𝑒2 ⟧Ω𝜌 ⟩
⊑ ⟨ { 𝑥 + 𝑦 ∣ 𝑥 ∈ ⟦ 𝑒′1 ⟧

𝑉𝜌, 𝑦 ∈ ⟦ 𝑒′2 ⟧
𝑉𝜌 }, Ω1 ∪ Ω2 ⟩

(by using Theorem. 3 with the induction hypotheses)

Then, we conclude by using the Def. 5.8.

Case Plus2Const. We suppose

∀𝑖, ∀𝜌 ∈ 𝑅0, ⟦ 𝑒𝑖 ⟧Ω𝜌 ⊆ Ω𝑖 ∧ ⟦ 𝑒𝑖 ⟧𝑉𝜌 ⊆ { 𝛼𝑖 mod 𝑚𝑖 }

and we want to prove

∀𝜌 ∈ 𝑅0, ⟦ 𝑒1 + 𝑒2 ⟧Ω𝜌 ⊆ Ω1 ∪ Ω2 ∧ ⟦ 𝑒1 + 𝑒2 ⟧𝑉𝜌 ⊆ { 𝛼1 mod 𝑚1 + 𝛼2 mod 𝑚2 }

We reuse the case PlusNoMod (before the reduce function is applied) that
gives us, for every 𝜌 ∈ 𝑅0,
⟦ 𝑒1 + 𝑒2 ⟧𝜌
⊑ ⟨ { 𝑥 + 𝑦 ∣ 𝑥 ∈ ⟦ (𝛼1 mod 𝑚1)cst ⟧𝑉𝜌, 𝑦 ∈ ⟦ (𝛼2 mod 𝑚2)cst ⟧𝑉𝜌 }, Ω1 ∪ Ω2 ⟩
⊑ ⟨ ⟦ (𝛼1 mod 𝑚1 + 𝛼2 mod 𝑚2)cst ⟧𝑉𝜌,Ω1 ∪ Ω2 ⟩

38 J. Boillot, J. Feret.

Case MultPosConst. We suppose

∀𝜌 ∈ 𝑅0, ⟦ 𝑒𝑖 ⟧Ω𝜌 ⊆ Ω𝑖 ∧ ⟦ 𝑒𝑖 ⟧𝑉𝜌 ⊆ { 𝛼′ }

∀𝜌 ∈ 𝑅0, ⟦ 𝑒𝑗 ⟧Ω𝜌 ⊆ Ω𝑗 ∧ ⟦ 𝑒𝑗 ⟧𝑉𝜌 ⊆ ⟦ toExpr(𝑒♯𝑗) mod [𝑙𝑗 , 𝑢𝑗[⟧𝑉𝜌

and, because 𝑒𝑖 × 𝑒𝑗 ≡ 𝑒𝑗 × 𝑒𝑖, we want to prove

∀𝜌 ∈ 𝑅0, ⟦ 𝑒1 × 𝑒2 ⟧Ω𝜌 ⊆ Ω1 ∪ Ω2 ∧

⟦ 𝑒1 × 𝑒2 ⟧𝑉𝜌 ⊆ ⟦ toExpr(reduce(ℒ□(𝛼′) ⊠ 𝑒♯𝑗)𝑅
♯) mod [𝑙𝑗𝛼′, 𝑢𝑗𝛼′[⟧𝑉𝜌

Let 𝜌 ∈ 𝑅0 and 𝑒′𝑗 ≝ toExpr(𝑒♯𝑗), then
⟦ 𝑒𝑖 × 𝑒𝑗 ⟧𝜌
≝ ⟨ { 𝑥 × 𝑦 ∣ 𝑥 ∈ ⟦ 𝑒𝑖 ⟧𝑉𝜌, 𝑦 ∈ ⟦ 𝑒𝑗 ⟧𝑉𝜌 }, ⟦ 𝑒𝑖 ⟧Ω𝜌 ∪ ⟦ 𝑒𝑗 ⟧Ω𝜌 ⟩
⊑ ⟨ { 𝛼′ × (𝑦 mod [𝑙𝑗 , 𝑢𝑗[) ∣ 𝑦 ∈ ⟦ 𝑒′𝑗 ⟧

𝑉𝜌 }, Ω𝑖 ∪ Ω𝑗 ⟩ (by induction hypotheses)

⊑ ⟨ { 𝛼′ × (𝑙𝑗 + irem(𝑦 − 𝑙𝑗 , 𝑢𝑗 − 𝑙𝑗)) ∣ 𝑦 ∈ ⟦ 𝑒′𝑗 ⟧
𝑉𝜌 }, Ω𝑖 ∪ Ω𝑗 ⟩

⊑ ⟨ { 𝛼′𝑙𝑗 + irem(𝛼′𝑦 − 𝛼′𝑙𝑗 , 𝛼′𝑢𝑗 − 𝛼′𝑙𝑗) ∣ 𝑦 ∈ ⟦ 𝑒′𝑗 ⟧
𝑉𝜌 }, Ω𝑖 ∪ Ω𝑗 ⟩

⊑ ⟨ { (𝛼′ × 𝑦) mod [𝛼′𝑙𝑗 , 𝛼′𝑢𝑗[∣ 𝑦 ∈ ⟦ 𝑒′𝑗 ⟧
𝑉𝜌 }, Ω𝑖 ∪ Ω𝑗 ⟩ (because 𝛼′ > 0)

⊑ ⟨ ⟦ toExpr(ℒ□(𝛼′) ⊠ 𝑒𝑗) mod [𝛼′𝑙𝑗 , 𝛼′𝑢𝑗[⟧𝑉𝜌,Ω𝑖 ∪ Ω𝑗 ⟩
⊑ ⟨ ⟦ toExpr(reduce(ℒ□(𝛼′) ⊠ 𝑒𝑗)𝑅♯) mod [𝛼′𝑙𝑗 , 𝛼′𝑢𝑗[⟧𝑉𝜌,Ω𝑖 ∪ Ω𝑗 ⟩

(by using Lemma. 1)

Case MultZeroConst. We suppose

∀𝜌 ∈ 𝑅0, ⟦ 𝑒𝑖 ⟧Ω𝜌 ⊆ Ω𝑖 ∧ ⟦ 𝑒𝑖 ⟧𝑉𝜌 ⊆ { 0 }

∀𝜌 ∈ 𝑅0, ⟦ 𝑒𝑗 ⟧Ω𝜌 ⊆ Ω𝑗 ∧ ⟦ 𝑒𝑗 ⟧𝑉𝜌 ⊆ ⟦ toExpr(𝑒♯𝑗) mod [𝑙𝑗 , 𝑢𝑗[⟧𝑉𝜌

and, because 𝑒𝑖 × 𝑒𝑗 ≡ 𝑒𝑗 × 𝑒𝑖, we want to prove

∀𝜌 ∈ 𝑅0, ⟦ 𝑒1 × 𝑒2 ⟧Ω𝜌 ⊆ Ω1 ∪ Ω2 ∧ ⟦ 𝑒1 × 𝑒2 ⟧𝑉𝜌 ⊆ { 0 }

Let 𝜌 ∈ 𝑅0, then
⟦ 𝑒𝑖 × 𝑒𝑗 ⟧𝜌
≝ ⟨ { 𝑥 × 𝑦 ∣ 𝑥 ∈ ⟦ 𝑒𝑖 ⟧𝑉𝜌, 𝑦 ∈ ⟦ 𝑒𝑗 ⟧𝑉𝜌 }, ⟦ 𝑒𝑖 ⟧Ω𝜌 ∪ ⟦ 𝑒𝑗 ⟧Ω𝜌 ⟩
⊑ ⟨ { 0 × 𝑦 ∣ 𝑦 ∈ ⟦ 𝑒𝑗 ⟧𝑉𝜌 }, Ω𝑖 ∪ Ω𝑗 ⟩ (by induction hypotheses)
⊑ ⟨ { 0 }, Ω𝑖 ∪ Ω𝑗 ⟩
⊑ ⟨ ⟦ toExpr(ℒ□(0)) ⟧𝑉𝜌,Ω𝑖 ∪ Ω𝑗 ⟩

Case MultNegConst. We suppose

∀𝜌 ∈ 𝑅0, ⟦ 𝑒𝑖 ⟧Ω𝜌 ⊆ Ω𝑖 ∧ ⟦ 𝑒𝑖 ⟧𝑉𝜌 ⊆ { 𝛼′ }

Symbolic transformation of expressions in modular arithmetic 39

∀𝜌 ∈ 𝑅0, ⟦ 𝑒𝑗 ⟧Ω𝜌 ⊆ Ω𝑗 ∧ ⟦ 𝑒𝑗 ⟧𝑉𝜌 ⊆ ⟦ toExpr(𝑒♯𝑗) mod [𝑙𝑗 , 𝑢𝑗[⟧𝑉𝜌

and, because 𝑒𝑖 × 𝑒𝑗 ≡ 𝑒𝑗 × 𝑒𝑖, we want to prove

∀𝜌 ∈ 𝑅0, ⟦ 𝑒1 × 𝑒2 ⟧Ω𝜌 ⊆ Ω1 ∪ Ω2 ∧

⟦ 𝑒1 × 𝑒2 ⟧𝑉𝜌 ⊆ ⟦ toExpr(reduce(ℒ□(𝛼′) ⊠ 𝑒♯𝑗)𝑅
♯) mod [𝑢𝑗𝛼′+1, 𝑙𝑗𝛼′+1[⟧𝑉𝜌

We do the same proof as in the case MultPosConst, except that
𝛼′ × (𝑦 mod [𝑙𝑗 , 𝑢𝑗[)
= −((−𝛼′) × (𝑦 mod [𝑙𝑗 , 𝑢𝑗[))
= −((−𝛼′ × 𝑦) mod [−𝛼′𝑙𝑗 , −𝛼′𝑢𝑗[) (because −𝛼′ > 0)
= (𝛼′ × 𝑦) mod [𝛼′𝑢𝑗+1, 𝛼′𝑙𝑗+1[

(with the same arguments as in the case OppositeMod)

Case MultNoMod. We suppose

∀𝑖, ∀𝜌 ∈ 𝑅0, ⟦ 𝑒𝑖 ⟧Ω𝜌 ⊆ Ω𝑖 ∧ ⟦ 𝑒𝑖 ⟧𝑉𝜌 ⊆ ⟦ toExpr(𝑒♯𝑖) mod 𝑚𝑖 ⟧𝑉𝜌

and we want to prove

∀𝜌 ∈ 𝑅0, ⟦ 𝑒1 × 𝑒2 ⟧Ω𝜌 ⊆ Ω1 ∪ Ω2 ∧ ⟦ 𝑒1 × 𝑒2 ⟧𝑉𝜌 ⊆

⟦ toExpr(reduce(rmMod(𝑒♯1, 𝑚1)𝑅♯ ⊠ rmMod(𝑒♯2, 𝑚2)𝑅♯)𝑅♯) ⟧𝑉𝜌

Let 𝜌 ∈ 𝑅0 and ∀𝑖, 𝑒′𝑖 ≝ toExpr(rmMod(𝑒♯𝑖 , 𝑚𝑖)𝑅♯), then
⟦ 𝑒1 × 𝑒2 ⟧𝜌
≝ ⟨ { 𝑥 × 𝑦 ∣ 𝑥 ∈ ⟦ 𝑒1 ⟧𝑉𝜌, 𝑦 ∈ ⟦ 𝑒2 ⟧𝑉𝜌 }, ⟦ 𝑒1 ⟧Ω𝜌 ∪ ⟦ 𝑒2 ⟧Ω𝜌 ⟩
⊑ ⟨ { 𝑥 × 𝑦 ∣ 𝑥 ∈ ⟦ 𝑒′1 ⟧

𝑉𝜌, 𝑦 ∈ ⟦ 𝑒′2 ⟧
𝑉𝜌 }, Ω1 ∪ Ω2 ⟩

(by using Theorem. 3 with the induction hypotheses)

Then, we conclude by using the Def. 5.8.

Case Mult2Const. We suppose

∀𝑖, ∀𝜌 ∈ 𝑅0, ⟦ 𝑒𝑖 ⟧Ω𝜌 ⊆ Ω𝑖 ∧ ⟦ 𝑒𝑖 ⟧𝑉𝜌 ⊆ { 𝛼𝑖 mod 𝑚𝑖 }

and we want to prove

∀𝜌 ∈ 𝑅0, ⟦ 𝑒1 × 𝑒2 ⟧Ω𝜌 ⊆ Ω1 ∪ Ω2 ∧ ⟦ 𝑒1 × 𝑒2 ⟧𝑉𝜌 ⊆ { (𝛼1 mod 𝑚1) × (𝛼2 mod 𝑚2) }

We reuse the case MultNoMod (before the reduce function is applied) that
gives us, for every 𝜌 ∈ 𝑅0,
⟦ 𝑒1 × 𝑒2 ⟧𝜌
⊑ ⟨ { 𝑥 × 𝑦 ∣ 𝑥 ∈ ⟦ (𝛼1 mod 𝑚1)cst ⟧𝑉𝜌, 𝑦 ∈ ⟦ (𝛼2 mod 𝑚2)cst ⟧𝑉𝜌 }, Ω1 ∪ Ω2 ⟩
⊑ ⟨ ⟦ ((𝛼1 mod 𝑚1) × (𝛼2 mod 𝑚2))cst ⟧𝑉𝜌,Ω1 ∪ Ω2 ⟩

40 J. Boillot, J. Feret.

Case DivPosConst. We suppose

∀𝜌 ∈ 𝑅0, ⟦ 𝑒1 ⟧Ω𝜌 ⊆ Ω1 ∧ ⟦ 𝑒1 ⟧𝑉𝜌 ⊆ ⟦ toExpr(𝑒♯1) mod [𝛼′𝑙1, 𝛼′𝑢1[⟧𝑉𝜌
∀𝜌 ∈ 𝑅0, ⟦ 𝑒2 ⟧Ω𝜌 ⊆ Ω2 ∧ ⟦ 𝑒2 ⟧𝑉𝜌 ⊆ { 𝛼′ }

and we want to prove

∀𝜌 ∈ 𝑅0, ⟦ 𝑒1 ∕ 𝑒2 ⟧Ω𝜌 ⊆ Ω1 ∪ Ω2 ∧

⟦ 𝑒1 ∕ 𝑒2 ⟧𝑉𝜌 ⊆ ⟦ toExpr(reduce(𝑒♯1 ⧄ ℒ□(𝛼′))𝑅♯) mod [𝑙1, 𝑢1[⟧𝑉𝜌

Let 𝜌 ∈ 𝑅0 and 𝑒′1 ≝ toExpr(𝑒♯1), then
⟦ 𝑒1 ∕ 𝑒2 ⟧𝜌

≝
⟨
{ truncate(𝑥 ∕ 𝑦)

|||||||
𝑥 ∈ ⟦ 𝑒1 ⟧𝑉𝜌
𝑦 ∈ ⟦ 𝑒2 ⟧𝑉𝜌, 𝑦 ≠ 0 } , ⟦ 𝑒1 ⟧

Ω𝜌 ∪ ⟦ 𝑒2 ⟧Ω𝜌 ∪
{𝜔𝑑 if 0 ∈ ⟦ 𝑒2 ⟧𝑉𝜌 }

⟩

⊑ ⟨ { truncate((𝑥 mod [𝛼′𝑙1, 𝛼′𝑢1[) ∕ 𝛼′) ∣ 𝑥 ∈ ⟦ 𝑒′1 ⟧
𝑉𝜌 }, Ω1 ∪ Ω2 ⟩

(by induction hypotheses)
⊑ ⟨ { truncate((𝑥 − 𝑞𝛼′(𝑢1 − 𝑙1)) ∕ 𝛼′) ∣ 𝑥 ∈ ⟦ 𝑒′1 ⟧

𝑉𝜌 }, Ω1 ∪ Ω2 ⟩
(with 𝑞 ∈ ℤ such that irem(𝑥 − 𝑙1𝛼′, 𝛼′(𝑢1 − 𝑙1)) = 𝑥 − 𝑙1𝛼′ − 𝑞𝛼′(𝑢1 − 𝑙1))

⊑ ⟨ { truncate(𝑥 ∕ 𝛼′ − 𝑞(𝑢1 − 𝑙1)) ∣ 𝑥 ∈ ⟦ 𝑒′1 ⟧
𝑉𝜌 }, Ω1 ∪ Ω2 ⟩

⊑ ⟨ { truncate(𝑥 ∕ 𝛼′) − 𝑞(𝑢1 − 𝑙1) ∣ 𝑥 ∈ ⟦ 𝑒′1 ⟧
𝑉𝜌 }, Ω1 ∪ Ω2 ⟩

(because 𝑥 ∕ 𝛼′ − 𝑞(𝑢1 − 𝑙1) is positive (because of the choice of 𝑞) and 𝑥 ∕ 𝛼′ is
also positive (because 𝑥 ≥ 0 and 𝛼′ ≥ 0))
⊑ ⟨ { 𝑙1 + (truncate(𝑥 ∕ 𝛼′) − 𝑙1 − 𝑞(𝑢1 − 𝑙1)) ∣ 𝑥 ∈ ⟦ 𝑒′1 ⟧

𝑉𝜌 }, Ω1 ∪ Ω2 ⟩
⊑ ⟨ { truncate(𝑥 ∕ 𝛼′) mod [𝑙1, 𝑢1[∣ 𝑥 ∈ ⟦ 𝑒′1 ⟧

𝑉𝜌 }, Ω1 ∪ Ω2 ⟩
(because truncate(𝑥 ∕ 𝛼′) − 𝑙1 − 𝑞(𝑢1 − 𝑙1) ∈ [0, 𝑢1−𝑙1[by definition of 𝑞)

⊑ ⟨ ⟦ toExpr(𝑒′1 ⧄ ℒ□(𝛼′)) mod [𝑙1, 𝑢1[⟧𝑉𝜌,Ω1 ∪ Ω2 ⟩
⊑ ⟨ ⟦ toExpr(reduce(toExpr(𝑒′1 ⧄ ℒ□(𝛼′)))𝑅♯) mod [𝑙1, 𝑢1[⟧𝑉𝜌,Ω1 ∪ Ω2 ⟩

(by using Lemma. 1)

Case DivNegConst. We suppose

∀𝜌 ∈ 𝑅0, ⟦ 𝑒1 ⟧Ω𝜌 ⊆ Ω1 ∧ ⟦ 𝑒1 ⟧𝑉𝜌 ⊆ ⟦ toExpr(𝑒♯1) mod [𝛼′(𝑢1−1), 𝛼′(𝑙1−1)[⟧𝑉𝜌
∀𝜌 ∈ 𝑅0, ⟦ 𝑒2 ⟧Ω𝜌 ⊆ Ω2 ∧ ⟦ 𝑒2 ⟧𝑉𝜌 ⊆ { 𝛼′ }

and we want to prove

∀𝜌 ∈ 𝑅0, ⟦ 𝑒1 ∕ 𝑒2 ⟧Ω𝜌 ⊆ Ω1 ∪ Ω2 ∧

⟦ 𝑒1 ∕ 𝑒2 ⟧𝑉𝜌 ⊆ ⟦ toExpr(reduce(𝑒♯1 ⧄ ℒ□(𝛼′))𝑅♯) mod [𝑙1, 𝑢1[⟧𝑉𝜌

Symbolic transformation of expressions in modular arithmetic 41

Let 𝜌 ∈ 𝑅0, then
⟦ 𝑒1 ∕ 𝑒2 ⟧𝜌
= ⟦−(𝑒1 ∕ (−𝑒2)) ⟧𝜌 (as proven in case OppositeNoMod)
⊑ ⟨ {−(truncate(𝑥 ∕ (−𝛼′)) mod [−𝑢1+1,−𝑙1+1[) ∣ 𝑥 ∈ ⟦ 𝑒1 ⟧𝑉𝜌 }, Ω1 ∪ Ω2 ⟩

(by reusing the proof of case DivPosConst)
⊑ ⟨ { truncate(𝑥 ∕ 𝛼′) mod [𝑙1, 𝑢1[∣ 𝑥 ∈ ⟦ 𝑒1 ⟧𝑉𝜌 }, Ω1 ∪ Ω2 ⟩

(by reusing the proof of case OppositeMod)
⊑ ⟨ ⟦ toExpr(𝑒′1 ⧄ ℒ□(𝛼′)) mod [𝑙1, 𝑢1[⟧𝑉𝜌,Ω1 ∪ Ω2 ⟩
⊑ ⟨ ⟦ toExpr(reduce(toExpr(𝑒′1 ⧄ ℒ□(𝛼′)))𝑅♯) mod [𝑙1, 𝑢1[⟧𝑉𝜌,Ω1 ∪ Ω2 ⟩

(by using Lemma. 1)

Case DivNoMod. We suppose

∀𝑖, ∀𝜌 ∈ 𝑅0, ⟦ 𝑒𝑖 ⟧Ω𝜌 ⊆ Ω𝑖 ∧ ⟦ 𝑒𝑖 ⟧𝑉𝜌 ⊆ ⟦ toExpr(𝑒♯𝑖) mod 𝑚𝑖 ⟧𝑉𝜌

and we want to prove

∀𝜌 ∈ 𝑅0, ⟦ 𝑒1 ∕ 𝑒2 ⟧Ω𝜌 ⊆ Ω1 ∪ Ω2 ∪ {𝜔𝑑 if 0 ∈ ⟦ 𝑒2 ⟧𝑉𝜌 } ∧

⟦ 𝑒1 ∕ 𝑒2 ⟧𝑉𝜌 ⊆ ⟦ toExpr(reduce(rmMod(𝑒♯1, 𝑚1)𝑅♯ ⧄ rmMod(𝑒♯2, 𝑚2)𝑅♯)𝑅♯) ⟧𝑉𝜌

Let 𝜌 ∈ 𝑅0 and ∀𝑖, 𝑒′𝑖 ≝ toExpr(rmMod(𝑒♯𝑖 , 𝑚𝑖)𝑅♯), then
⟦ 𝑒1 × 𝑒2 ⟧𝜌

≝
⟨
{ truncate(𝑥 ∕ 𝑦)

|||||||
𝑥 ∈ ⟦ 𝑒1 ⟧𝑉𝜌
𝑦 ∈ ⟦ 𝑒2 ⟧𝑉𝜌, 𝑦 ≠ 0 } , ⟦ 𝑒1 ⟧

Ω𝜌 ∪ ⟦ 𝑒2 ⟧Ω𝜌 ∪
{𝜔𝑑 if 0 ∈ ⟦ 𝑒2 ⟧𝑉𝜌 }

⟩

⊑
⟨
{ truncate(𝑥′ ∕ 𝑦′)

||||||||
𝑥′ ∈ ⟦ 𝑒′1 ⟧

𝑉𝜌
𝑦′ ∈ ⟦ 𝑒′2 ⟧

𝑉𝜌, 𝑦′ ≠ 0 } , Ω1 ∪ Ω2 ∪ {𝜔𝑑 if 0 ∈ ⟦ 𝑒′2 ⟧
𝑉𝜌 }

⟩

(by using Theorem. 3 with the induction hypotheses)

⊑
⟨
{ truncate(𝑥′ ∕ 𝑦′)

||||||||
𝑥′ ∈ ⟦ 𝑒′1 ⟧

𝑉𝜌
𝑦′ ∈ ⟦ 𝑒′2 ⟧

𝑉𝜌, 𝑦′ ≠ 0 } , Ω1 ∪ Ω2 ∪ {𝜔𝑑 if 0 ∈ 𝜄(𝑒′2)𝑅
♯ }
⟩

(by using Def. 5.7)

Then, we conclude by using the Def. 5.8.

Case BoundCheckMod. We suppose

∀𝜌 ∈ 𝑅0, ⟦ 𝑒 ⟧Ω𝜌 ⊆ Ω𝑒 ∧ ⟦ 𝑒 ⟧𝑉𝜌 ⊆ ⟦ toExpr(𝑒♯) mod 𝑚⟧𝑉𝜌

and we want to prove

∀𝜌 ∈ 𝑅0, ⟦bound_check(𝑒, [𝑙, 𝑢[) ⟧Ω𝜌 ⊆ Ω𝑒 ∧
⟦bound_check(𝑒, [𝑙, 𝑢[) ⟧𝑉𝜌 ⊆ ⟦ toExpr(𝑒♯) mod 𝑚⟧𝑉𝜌

42 J. Boillot, J. Feret.

Let 𝜌 ∈ 𝑅0 and 𝑒′ ≝ toExpr(𝑒♯) mod 𝑚, then
⟦bound_check(𝑒, [𝑙, 𝑢[) ⟧𝜌
≝ ⟨ ⟦ 𝑒 ⟧𝑉𝜌, ⟦ 𝑒 ⟧Ω𝜌 ∪ {𝜔0 if ⟦ 𝑒 ⟧𝑉𝜌 ⊈ [𝑙, 𝑢[} ⟩
⊑ ⟨ ⟦ 𝑒′ ⟧𝑉𝜌,Ω𝑒 ∪ {𝜔0 if ⟦ 𝑒′ ⟧𝑉𝜌 ⊈ [𝑙, 𝑢[} ⟩ (by induction hypothesis)
⊑ ⟨ ⟦ 𝑒′ ⟧𝑉𝜌,Ω𝑒 ⟩ (by definition of ⟦ ∙ mod 𝑚⟧𝑉𝜌, ⟦ 𝑒′ ⟧𝑉𝜌 ⊆ 𝑚 ⊆ [𝑙, 𝑢[)

Case BoundCheckNoMod. We suppose

∀𝜌 ∈ 𝑅0, ⟦ 𝑒 ⟧Ω𝜌 ⊆ Ω𝑒 ∧ ⟦ 𝑒 ⟧𝑉𝜌 ⊆ ⟦ toExpr(𝑒♯) mod 𝑚⟧𝑉𝜌

and we want to prove

∀𝜌 ∈ 𝑅0, ⟦bound_check(𝑒, [𝑙, 𝑢[) ⟧Ω𝜌 ⊆ Ω𝑒 ∪ Ω1 ∧
⟦bound_check(𝑒, [𝑙, 𝑢[) ⟧𝑉𝜌 ⊆ ⟦ toExpr(𝑒♯) mod 𝑚⟧𝑉𝜌

Let 𝜌 ∈ 𝑅0, then
⟦bound_check(𝑒, [𝑙, 𝑢[) ⟧𝜌
≝ ⟨ ⟦ 𝑒 ⟧𝑉𝜌, ⟦ 𝑒 ⟧Ω𝜌 ∪ {𝜔𝑜 if ⟦ 𝑒 ⟧𝑉𝜌 ⊈ [𝑙, 𝑢[} ⟩
⊑ ⟨ ⟦ toExpr(𝑒♯) mod 𝑚⟧𝑉𝜌,Ω𝑒 ∪ {𝜔𝑜 if ⟦ toExpr(𝑒♯) mod 𝑚⟧𝑉𝜌 ⊈ [𝑙, 𝑢[} ⟩

(by induction hypothesis)
⊑ ⟨ ⟦ toExpr(𝑒♯) mod 𝑚⟧𝑉𝜌,Ω𝑒 ∪ Ω1 ⟩ (by using Def. 5.7)

Case ModPlusExpr. We suppose

∀𝑖, ∀𝜌 ∈ 𝑅0, ⟦ 𝑒𝑖 ⟧Ω𝜌 ⊆ Ω𝑖 ∧ ⟦ 𝑒𝑖 ⟧𝑉𝜌 ⊆ ⟦ toExpr(𝑒♯𝑖) mod 𝑚𝑖 ⟧𝑉𝜌

and we want to prove

∀𝜌 ∈ 𝑅0, ⟦ (𝑒1 + 𝑒2) mod [𝑙3, 𝑢3[⟧Ω𝜌 ⊆ Ω1 ∪ Ω2 ∧

⟦ (𝑒1 + 𝑒2) mod [𝑙3, 𝑢3[⟧𝑉𝜌 ⊆ ⟦ toExpr(reduce(𝑒♯1 ⊞ 𝑒♯2)𝑅
♯) mod [𝑙3, 𝑢3[⟧𝑉𝜌

For 𝑖 ∈ {1, 2},𝑚′
𝑖 ≝ {

[𝑙, 𝑢[if 𝑚𝑖 = [𝑙, 𝑢[
[𝑙3, 𝑢3[if 𝑚𝑖 = ℤ

Let 𝜌 ∈ 𝑅0, 𝑒′1 ≝ toExpr(𝑒♯1) and 𝑒′2 ≝ toExpr(𝑒♯2), then
⟦ (𝑒1 + 𝑒2) mod [𝑙3, 𝑢3[⟧𝜌
≝ ⟨ { (𝑥 + 𝑦) mod [𝑙3, 𝑢3[∣ 𝑥 ∈ ⟦ 𝑒1 ⟧𝑉𝜌, 𝑦 ∈ ⟦ 𝑒2 ⟧𝑉𝜌 }, ⟦ 𝑒1 ⟧Ω𝜌 ∪ ⟦ 𝑒2 ⟧Ω𝜌 ⟩

⊑
⟨
{ ((𝑥 mod 𝑚1) + (𝑦 mod 𝑚2)) mod [𝑙3, 𝑢3[

||||||||
𝑥 ∈ ⟦ 𝑒′1 ⟧

𝑉𝜌
𝑦 ∈ ⟦ 𝑒′2 ⟧

𝑉𝜌 } , Ω1 ∪ Ω2
⟩

(by induction hypotheses)

Symbolic transformation of expressions in modular arithmetic 43

⊑
⟨
{ ((𝑥 mod 𝑚′

1) + (𝑦 mod 𝑚′
2)) mod [𝑙3, 𝑢3[

||||||||
𝑥 ∈ ⟦ 𝑒′1 ⟧

𝑉𝜌
𝑦 ∈ ⟦ 𝑒′2 ⟧

𝑉𝜌 } , Ω1 ∪ Ω2
⟩

(by applying Lemma. 3 in the reverse direction and simplifying the modulos)
⊑ ⟨ { (𝑥 + 𝑦) mod [𝑙3, 𝑢3[∣ 𝑥 ∈ ⟦ 𝑒′1 ⟧

𝑉𝜌, 𝑦 ∈ ⟦ 𝑒′2 ⟧
𝑉𝜌 }, Ω1 ∪ Ω2 ⟩

(by applying Lemma. 3)

⊑ ⟨ ⟦ toExpr(𝑒♯1 ⊞ 𝑒♯2) mod [𝑙3, 𝑢3[⟧𝑉𝜌,Ω1 ∪ Ω2 ⟩

⊑ ⟨ ⟦ toExpr(reduce(𝑒♯1 ⊞ 𝑒♯2)𝑅
♯) mod [𝑙3, 𝑢3[⟧𝑉𝜌,Ω1 ∪ Ω2 ⟩

(by using Lemma. 1)

Case ModMultExpr. We suppose

∀𝑖, ∀𝜌 ∈ 𝑅0, ⟦ 𝑒𝑖 ⟧Ω𝜌 ⊆ Ω𝑖 ∧ ⟦ 𝑒𝑖 ⟧𝑉𝜌 ⊆ ⟦ toExpr(𝑒♯𝑖) mod 𝑚𝑖 ⟧𝑉𝜌

and we want to prove

∀𝜌 ∈ 𝑅0, ⟦ (𝑒1 × 𝑒2) mod [𝑙3, 𝑢3[⟧Ω𝜌 ⊆ Ω1 ∪ Ω2 ∧

⟦ (𝑒1 × 𝑒2) mod [𝑙3, 𝑢3[⟧𝑉𝜌 ⊆ ⟦ toExpr(reduce(𝑒♯1 ⊠ 𝑒♯2)𝑅
♯) mod [𝑙3, 𝑢3[⟧𝑉𝜌

For 𝑖 ∈ {1, 2},𝑚′
𝑖 ≝ {

[𝑙, 𝑢[if 𝑚𝑖 = [𝑙, 𝑢[
[𝑙3, 𝑢3[if 𝑚𝑖 = ℤ

Let 𝜌 ∈ 𝑅0, 𝑒′1 ≝ toExpr(𝑒♯1) and 𝑒′2 ≝ toExpr(𝑒♯2), then
⟦ (𝑒1 × 𝑒2) mod [𝑙3, 𝑢3[⟧𝜌
≝ ⟨ { (𝑥 × 𝑦) mod [𝑙3, 𝑢3[∣ 𝑥 ∈ ⟦ 𝑒1 ⟧𝑉𝜌, 𝑦 ∈ ⟦ 𝑒2 ⟧𝑉𝜌 }, ⟦ 𝑒1 ⟧Ω𝜌 ∪ ⟦ 𝑒2 ⟧Ω𝜌 ⟩

⊑
⟨
{ ((𝑥 mod 𝑚1) × (𝑦 mod 𝑚2)) mod [𝑙3, 𝑢3[

||||||||
𝑥 ∈ ⟦ 𝑒′1 ⟧

𝑉𝜌
𝑦 ∈ ⟦ 𝑒′2 ⟧

𝑉𝜌 } , Ω1 ∪ Ω2
⟩

(by induction hypotheses)

⊑
⟨
{ ((𝑥 mod 𝑚′

1) × (𝑦 mod 𝑚
′
2)) mod [𝑙3, 𝑢3[

||||||||
𝑥 ∈ ⟦ 𝑒′1 ⟧

𝑉𝜌
𝑦 ∈ ⟦ 𝑒′2 ⟧

𝑉𝜌 } , Ω1 ∪ Ω2
⟩

(by applying Lemma. 4 in the reverse direction and simplifying the modulos)
⊑ ⟨ { (𝑥 × 𝑦) mod [𝑙3, 𝑢3[∣ 𝑥 ∈ ⟦ 𝑒′1 ⟧

𝑉𝜌, 𝑦 ∈ ⟦ 𝑒′2 ⟧
𝑉𝜌 }, Ω1 ∪ Ω2 ⟩

(by applying Lemma. 4)

⊑ ⟨ ⟦ toExpr(𝑒♯1 ⊠ 𝑒♯2) mod [𝑙3, 𝑢3[⟧𝑉𝜌,Ω1 ∪ Ω2 ⟩

⊑ ⟨ ⟦ toExpr(reduce(𝑒♯1 ⊠ 𝑒♯2)𝑅
♯) mod [𝑙3, 𝑢3[⟧𝑉𝜌,Ω1 ∪ Ω2 ⟩

(by using Lemma. 1)

Case ModIdentity. We suppose

∀𝜌 ∈ 𝑅0, ⟦ 𝑒 ⟧Ω𝜌 ⊆ Ω𝑒 ∧ ⟦ 𝑒 ⟧𝑉𝜌 ⊆ ⟦ toExpr(𝑒♯) mod 𝑚⟧𝑉𝜌

44 J. Boillot, J. Feret.

and we want to prove

∀𝜌 ∈ 𝑅0, ⟦ 𝑒 mod [𝑙, 𝑢[⟧Ω𝜌 ⊆ Ω𝑒 ∧
⟦ 𝑒 mod [𝑙, 𝑢[⟧𝑉𝜌 ⊆ ⟦ toExpr(𝑒♯) mod [𝑙, 𝑢[⟧𝑉𝜌

Let 𝜌 ∈ 𝑅0, then
⟦ 𝑒 mod [𝑙, 𝑢[⟧𝜌
≝ ⟨ { 𝑥 mod [𝑙, 𝑢[∣ 𝑥 ∈ ⟦ 𝑒 ⟧𝑉𝜌 }, ⟦ 𝑒 ⟧Ω𝜌 ⟩
⊑ ⟨ { (𝑥 mod 𝑚) mod [𝑙, 𝑢[∣ 𝑥 ∈ ⟦ toExpr(𝑒♯) ⟧𝑉𝜌 }, Ω𝑒 ⟩

(by induction hypothesis)
⊑ ⟨ { 𝑥 mod [𝑙, 𝑢[∣ 𝑥 ∈ ⟦ toExpr(𝑒♯) ⟧𝑉𝜌 }, Ω𝑒 ⟩

(by using Prop. 1, because 𝑚 ∈ 𝕊(𝑢 − 𝑙))

Case ModTranslation. We suppose

∀𝜌 ∈ 𝑅0, ⟦ 𝑒 ⟧Ω𝜌 ⊆ Ω𝑒 ∧ ⟦ 𝑒 ⟧𝑉𝜌 ⊆ ⟦ toExpr(𝑒♯) mod [𝑙′, 𝑢′[⟧𝑉𝜌

and we want to prove

∀𝜌 ∈ 𝑅0, ⟦ 𝑒 mod [𝑙, 𝑢[⟧Ω𝜌 ⊆ Ω𝑒 ∧
⟦ 𝑒 mod [𝑙, 𝑢[⟧𝑉𝜌 ⊆ ⟦ toExpr(𝑒♯) mod [𝛼, 𝛼+𝑢′−𝑙′[⟧𝑉𝜌

Let 𝜌 ∈ 𝑅0 and 𝑒′ ≝ toExpr(𝑒♯), then
⟦ 𝑒 mod [𝑙, 𝑢[⟧𝜌
≝ ⟨ { 𝑥 mod [𝑙, 𝑢[∣ 𝑥 ∈ ⟦ 𝑒 ⟧𝑉𝜌 }, ⟦ 𝑒 ⟧Ω𝜌 ⟩
⊑ ⟨ { (𝑥 mod [𝑙′, 𝑢′[) mod [𝑙, 𝑢[∣ 𝑥 ∈ ⟦ 𝑒′ ⟧𝑉𝜌 }, Ω𝑒 ⟩ (by induction hypothesis)
⊑ ⟨ { (𝑙′ + (𝑥 mod [𝑙′, 𝑢′[− 𝑙′)) mod [𝑙, 𝑢[∣ 𝑥 ∈ ⟦ 𝑒′ ⟧𝑉𝜌 }, Ω𝑒 ⟩
⊑ ⟨ { (𝛼 + (𝑥 mod [𝑙′, 𝑢′[− 𝑙′)) mod [𝑙, 𝑢[∣ 𝑥 ∈ ⟦ 𝑒′ ⟧𝑉𝜌 }, Ω𝑒 ⟩

(by using Lemma. 3)
⊑ ⟨ { (𝛼 + irem(𝑥 − 𝑙′, 𝑢′ − 𝑙′)) mod [𝑙, 𝑢[∣ 𝑥 ∈ ⟦ 𝑒′ ⟧𝑉𝜌 }, Ω𝑒 ⟩
⊑ ⟨ { 𝛼 + irem(𝑥 − 𝑙′, 𝑢′ − 𝑙′) ∣ 𝑥 ∈ ⟦ 𝑒′ ⟧𝑉𝜌 }, Ω𝑒 ⟩

(because 𝛼 + irem(𝑥 − 𝑙′, 𝑢′ − 𝑙′) ⊆ [𝛼, 𝛼+𝑢′−𝑙′[, 𝛼 ≥ 𝑙 and 𝛼+𝑢′−𝑙′ ≤ 𝑢)
⊑ ⟨ { 𝛼 + irem((𝑥 − 𝛼) + (𝛼 − 𝑙′), 𝑢′ − 𝑙′) ∣ 𝑥 ∈ ⟦ 𝑒′ ⟧𝑉𝜌 }, Ω𝑒 ⟩
⊑ ⟨ { 𝛼 + irem(𝑥 − 𝛼, 𝑢′ − 𝑙′) ∣ 𝑥 ∈ ⟦ 𝑒′ ⟧𝑉𝜌 }, Ω𝑒 ⟩ (because (𝑢′ − 𝑙′) | (𝛼 − 𝑙′))
⊑ ⟨ { 𝑥 mod [𝛼, 𝛼+𝑢′−𝑙′[∣ 𝑥 ∈ ⟦ 𝑒′ ⟧𝑉𝜌 }, Ω𝑒 ⟩

Case ModIdentityNoMod. We suppose

∀𝜌 ∈ 𝑅0, ⟦ 𝑒 ⟧Ω𝜌 ⊆ Ω𝑒 ∧ ⟦ 𝑒 ⟧𝑉𝜌 ⊆ ⟦ toExpr(𝑒♯) mod 𝑚⟧𝑉𝜌

and we want to prove

Symbolic transformation of expressions in modular arithmetic 45

∀𝜌 ∈ 𝑅0, ⟦ 𝑒 mod [𝑙, 𝑢[⟧Ω𝜌 ⊆ Ω𝑒 ∧
⟦ 𝑒 mod [𝑙, 𝑢[⟧𝑉𝜌 ⊆ ⟦ toExpr(rmMod(𝑒♯, 𝑚)𝑅♯) ⟧𝑉𝜌

Let 𝜌 ∈ 𝑅0, then
⟦ 𝑒 mod [𝑙, 𝑢[⟧𝜌
≝ ⟨ { 𝑥 mod [𝑙, 𝑢[∣ 𝑥 ∈ ⟦ 𝑒 ⟧𝑉𝜌 }, ⟦ 𝑒 ⟧Ω𝜌 ⟩
⊑ ⟨ { 𝑥 mod [𝑙, 𝑢[∣ 𝑥 ∈ ⟦ toExpr(𝑒♯) ⟧𝑉𝜌 }, Ω𝑒 ⟩ (by induction hypothesis)
⊑ ⟨ { 𝑥 mod [𝑙, 𝑢[∣ 𝑥 ∈ ⟦ toExpr(rmMod(𝑒♯, 𝑚)𝑅♯) ⟧𝑉𝜌 }, Ω𝑒 ⟩ (with Theorem. 3)

⊓⊔

A.7 Proof of Corollary. 1

Let 𝜌 ∈ 𝑅0, then
⟦ 𝑒 ⟧𝜌
≝ ⟨ ⟦ 𝑒 ⟧𝑉𝜌, ⟦ 𝑒 ⟧Ω𝜌 ⟩
⊑ ⟨ ⟦ toExpr(𝑒♯) mod 𝑚⟧𝑉𝜌,Ω𝑒 ∪ ⟦ toExpr(𝑒♯) mod 𝑚⟧Ω𝜌 ⟩

(by using Theorem. 4)
⊑ ⟦ toExpr(𝑒♯) mod 𝑚⟧𝜌 ⊔ ⟨∅,Ω𝑒 ⟩

Then, ⟨ 𝑅0, Ω0 ⟩ ⊨ 𝑒 ≼Ω𝑒 toExpr(𝑒
♯) mod 𝑚.

⊓⊔

A.8 Proof of Theorem. 5

We first introduce the function nbNodes ∶ expr♯ → ℕ∗ that counts the number
of nodes of abstract expressions with the following inductive definition:

nbNodes
(
ℒ□
(
𝑎0 +

∑
𝑋𝑖∈𝒱 𝑎𝑖𝑋𝑖

))
≝ 1

nbNodes(𝑒♯1 ⊞ 𝑒♯2) ≝ 1 + nbNodes(𝑒♯1) + nbNodes(𝑒♯2)
nbNodes(𝑒♯1 ⊠ 𝑒♯2) ≝ 1 + nbNodes(𝑒♯1) + nbNodes(𝑒♯2)
nbNodes(𝑒♯1 ⧄ 𝑒♯2) ≝ 1 + nbNodes(𝑒♯1) + nbNodes(𝑒♯2)
nbNodes(𝑒♯1 ⋓□ 𝑒♯2) ≝ 1 + nbNodes(𝑒♯1) + nbNodes(𝑒♯2)

Then, we prove by strong induction over the number of nodes that the the-
orem holds for convex join abstract expressions if we suppose it holds for the
inner abstract expressions:

Lemma 5. For every abstract expression 𝑒♯ ≝ 𝑒♯1 ⋓□ 𝑒♯2 with 𝑛1 ≝ nbNodes(𝑒♯1)
and 𝑛2 ≝ nbNodes(𝑒♯2) such that
∀𝑖, ⟨ 𝑅0, Ω0 ⟩ ⊨ toExpr(𝑒♯𝑖) ≼∅ toExpr(reduce0(𝑒

♯
𝑖)𝑅

♯), then
⟨ 𝑅0, Ω0 ⟩ ⊨ toExpr(𝑒♯) ≼∅ toExpr(reduce0(𝑒♯)𝑅♯).

46 J. Boillot, J. Feret.

Proof. We suppose the lemma holds for every abstract expression 𝑒′♯ ≝ 𝑒′♯1 ⋓□ 𝑒′♯2
with 𝑛′1 ≝ nbNodes(𝑒′♯1) and 𝑛′2 ≝ nbNodes(𝑒′♯2) such that 𝑛′1+𝑛

′
2 < 𝑛1+𝑛2. Only

4 rules of reduce0 can be applied:

Case ConvexJoinIdem1. Let 𝜌 ∈ 𝑅0, then
⟦ toExpr(𝑒♯1 ⋓□ 𝑒♯1) ⟧𝜌

≝
⟨ ⎧

⎨
⎩

𝑧 ∈ ℤ

|||||||||||||

𝑥 ∈ ⟦ toExpr(𝑒♯1) ⟧
𝑉𝜌,

𝑦 ∈ ⟦ toExpr(𝑒♯1) ⟧
𝑉𝜌,

𝑥 ≤ 𝑧 ≤ 𝑦 ∨ 𝑦 ≤ 𝑧 ≤ 𝑥

⎫

⎬
⎭

, ⟦ toExpr(𝑒♯1) ⟧
Ω𝜌 ∪ ⟦ toExpr(𝑒♯1) ⟧

Ω𝜌
⟩

= ⟨ { 𝑧 ∈ ℤ ∣ 𝑧 ∈ ⟦ toExpr(𝑒♯1) ⟧
𝑉𝜌 }, ⟦ toExpr(𝑒♯1) ⟧

Ω𝜌 ⟩
(because ⟦ toExpr(𝑒♯1) ⟧

𝑉𝜌 is a singleton due to the absence of ⋓□ operator)

= ⟦ toExpr(𝑒♯1) ⟧𝜌

Case ConvexJoinIdem2. We prove this case by reusing the previous case in
addition to the associativity and commutativity properties of the convex join.

Case ConvexJoinIdem3. We prove that

⟨ 𝑅0, Ω0 ⟩ ⊨ toExpr(𝑒♯1 ⋓□ 𝑒♯2) ≼∅ toExpr(𝑒♯1,𝑗 ⋓□ 𝑒♯2)

holds by reusing the case ConvexJoinIdem1 in addition to the associativity and
commutativity of the convex join. We conclude with the induction hypothesis,
because nbNodes(𝑒♯1,𝑗 ⋓□ 𝑒♯2) < nbNodes(𝑒♯1 ⋓□ 𝑒♯2).

Case NoReduce. The reflexivity of ≡ is enough to conclude.
⊓⊔

Now this lemma is proven, we prove the general case by strong induction
over the number of nodes of abstract expressions.

Initialization. The only abstract expressions that have a number of nodes equal
to 1 are linear forms. Moreover, only the NoReduce rule can be used on such
abstract expressions. Then, the property is proved by reflexivity of ≡.

Heredity. We want to prove that, for any abstract expression 𝑒♯ with a number
of nodes 𝑛 ∈ ℕ∗, ⟨ 𝑅0, Ω0 ⟩ ⊨ toExpr(𝑒♯) ≼∅ toExpr(reduce0(𝑒♯)𝑅♯) holds if we
suppose that for every abstract expression 𝑒′♯ ∈ expr♯ such that nbNodes(𝑒′♯) < 𝑛
the property also holds.

Case PlusZero. This case is proven by using the commutativity of (expr, +)
and the fact that 0cst is a neutral element of (expr, +).

Symbolic transformation of expressions in modular arithmetic 47

Case PlusLinearForms. This case is proven by using the associativity and
commutativity of (expr, +).

Case PlusConvexJoin. Let 𝑛𝑖,1 ≝ nbNodes(𝑒♯𝑖,1), 𝑛𝑖,2 ≝ nbNodes(𝑒♯𝑖,2) and 𝑛𝑗 ≝
nbNodes(𝑒𝑗).

Then, nbNodes(𝑒♯1 ⊞ 𝑒♯2) ≝ 2 + 𝑛𝑖,1 + 𝑛𝑖,2 + 𝑛𝑗 and the inductive property is
verified for all abstract expressions with at most 1 + 𝑛𝑖,1 + 𝑛𝑖,2 + 𝑛𝑗 nodes.

Let 𝜌 ∈ 𝑅0, 𝑒𝑖,1 ≝ toExpr(𝑒♯𝑖,1), 𝑒𝑖,2 ≝ toExpr(𝑒♯𝑖,2) and 𝑒𝑗 ≝ toExpr(𝑒♯𝑗), then

⟦ toExpr(𝑒♯1 ⊞ 𝑒♯2) ⟧𝜌
= ⟦ (𝑒𝑖,1 ⋓ 𝑒𝑖,2) + 𝑒𝑗 ⟧𝜌 (by commutativity of (expr, +))

=
⟨
{ 𝑥 + 𝑦

|||||||
𝑥 ∈ ℤ, 𝑧 ∈ ⟦ 𝑒𝑖,1 ⟧𝑉𝜌, 𝑡 ∈ ⟦ 𝑒𝑖,2 ⟧𝑉𝜌,
𝑦 ∈ ⟦ 𝑒𝑗 ⟧𝑉𝜌, 𝑧 ≤ 𝑥 ≤ 𝑡 ∨ 𝑡 ≤ 𝑥 ≤ 𝑧 } , ⟦ toExpr(𝑒♯𝑖) ⟧

Ω𝜌 ∪ ⟦ 𝑒𝑗 ⟧Ω𝜌
⟩

=
⟨ ⎧

⎨
⎩

𝑥′
|||||||||||

𝑥′ ∈ ℤ, 𝑧 ∈ ⟦ 𝑒𝑖,1 ⟧𝑉𝜌, 𝑡 ∈ ⟦ 𝑒𝑖,2 ⟧𝑉𝜌,
𝑦 ∈ ⟦ 𝑒𝑗 ⟧𝑉𝜌, 𝑧 + 𝑦 ≤ 𝑥′ ≤ 𝑡 + 𝑦 ∨
𝑡 + 𝑦 ≤ 𝑥′ ≤ 𝑧 + 𝑦

⎫

⎬
⎭

, ⟦ toExpr(𝑒♯𝑖) ⟧
Ω𝜌 ∪ ⟦ 𝑒𝑗 ⟧Ω𝜌

⟩

=
⟨ ⎧

⎨
⎩

𝑥′ ∈ ℤ
|||||||||||

𝑧′ ∈ ⟦ 𝑒𝑖,1 + 𝑒𝑗 ⟧𝑉𝜌,
𝑡′ ∈ ⟦ 𝑒𝑖,2 + 𝑒𝑗 ⟧𝑉𝜌,
𝑧′ ≤ 𝑥′ ≤ 𝑡′ ∨ 𝑡′ ≤ 𝑥′ ≤ 𝑧′

⎫

⎬
⎭

, ⟦ 𝑒𝑖,1 ⟧Ω𝜌 ∪ ⟦ 𝑒𝑖,2 ⟧Ω𝜌 ∪ ⟦ 𝑒𝑗 ⟧Ω𝜌
⟩

= ⟦ (𝑒𝑖,1 + 𝑒𝑗) ⋓ (𝑒𝑖,2 + 𝑒𝑗) ⟧𝜌
⊑ ⟦ toExpr(reduce0(𝑒𝑖,1 + 𝑒𝑗)𝑅♯ ⋓□ reduce0(𝑒𝑖,2 + 𝑒𝑗)𝑅♯) ⟧𝜌

(by induction hypothesis)
⊑ ⟦ toExpr(reduce0(reduce0(𝑒𝑖,1 + 𝑒𝑗)𝑅♯ ⋓□ reduce0(𝑒𝑖,2 + 𝑒𝑗)𝑅♯)𝑅♯) ⟧𝜌

(by using Lemma. 5)

Case MultConvexJoin The proof is the same as in case PlusConvexJoin with
the + occurences transformed into ×, and with the ⊞ occurences transformed
into ⊠.

Cases MultConst and DivConst. Those cases are proven by using the com-
mutativity and the associativity of (expr, ×) combined with the fact that ∀𝑎 ∈
ℤ, 𝑏 ∈ ℤ∗, truncate((𝑎 ×𝑏) ∕ 𝑏) = 𝑎. The error handling is not a problem because
evaluation of linear forms does not raise error alarms.

Cases ConvexJoinIdem1, ConvexJoinIdem2 and ConvexJoinIdem3. Those
cases are directly proved by using Lemma. 5.

Case Interp1. Let 𝜌 ∈ 𝑅0 and 𝑒𝑧 ≝ toExpr(𝑒♯𝑧), then
⟦ toExpr((𝑒♯1 ⊠ 𝑒♯2) ⧄ ℒ□(𝐵 − 𝐴)) ⟧𝜌

48 J. Boillot, J. Feret.

= ⟦ toExpr((ℒ□(𝑋 − 𝐴) ⊠ 𝑒♯𝑧) ⧄ ℒ□(𝐵 − 𝐴)) ⟧𝜌 (by commutativity of (expr, ×))

=
⟨
{ truncate(((𝑥 − 𝑎) × 𝑧) ∕ (𝑏 − 𝑎))

|||||||
𝑥 ∈ 𝜌(𝑋), 𝑎 ∈ 𝜌(𝐴)
𝑏 ∈ 𝜌(𝐵), 𝑧 ∈ ⟦ 𝑒𝑧 ⟧𝑉𝜌

} , ⟦ 𝑒𝑧 ⟧Ω𝜌
⟩

(because 𝑏 − 𝑎 ≠ 0 as 𝜄(𝐵 − 𝐴)𝑅♯ ⊆ [1, +∞[)
⊑ ⟨ { truncate(𝜆 ×ℝ 𝑧) ∣ 𝜆 ∈ [0, 1]ℝ, 𝑧 ∈ ⟦ 𝑒𝑧 ⟧𝑉𝜌 }, ⟦ 𝑒𝑧 ⟧Ω𝜌 ⟩

(because 𝑥 ∈ [𝑎, 𝑏] as 𝜄(𝑋 − 𝐴)𝑅♯ ⊆ [0, +∞[and 𝜄(𝐵 − 𝑋)𝑅♯ ⊆ [0, +∞[)

⊑ ⟦ toExpr(ℒ□(0) ⋓□ 𝑒♯𝑧) ⟧𝜌 (by definition of truncate and ⋓□)

⊑ ⟦ toExpr(reduce0(ℒ□(0) ⋓□ 𝑒♯𝑧)𝑅♯) ⟧𝜌 (by using Lemma. 5)

Case Interp2. Let 𝜌 ∈ 𝑅0 and 𝑒𝑧 ≝ toExpr(𝑒♯𝑧), then
⟦ toExpr((𝑒♯1 ⊠ 𝑒♯2) ⧄ ℒ□(𝑑)) ⟧𝜌

= ⟦ toExpr((ℒ□(𝑋 − 𝐴) ⊠ 𝑒♯𝑧) ⧄ ℒ□(𝑑)) ⟧𝜌 (by commutativity of (expr, ×))
= ⟨ { truncate(((𝑥 − 𝑎) × 𝑧) ∕ 𝑑) ∣ 𝑥 ∈ 𝜌(𝑋), 𝑎 ∈ 𝜌(𝐴), 𝑧 ∈ ⟦ 𝑒𝑧 ⟧𝑉𝜌 }, ⟦ 𝑒𝑧 ⟧Ω𝜌 ⟩

(because 𝑑 ≠ 0)
⊑ ⟨ { truncate(𝜆 ×ℝ (𝑧 × 𝑘)) ∣ 𝜆 ∈ [0, 1]ℝ, 𝑧 ∈ ⟦ 𝑒𝑧 ⟧𝑉𝜌 }, ⟦ 𝑒𝑧 ⟧Ω𝜌 ⟩

(because 𝑥 − 𝑎 ∈ [0, 𝑘𝑑] as 𝜄(𝑋 − 𝐴)𝑅♯ ⊆ [0, 𝑘𝑑])

⊑ ⟨ { truncate(𝜆 ×ℝ 𝑧′) ∣ 𝜆 ∈ [0, 1]ℝ, 𝑧′ ∈ ⟦ toExpr(𝑒♯𝑧 ⊠ ℒ□(𝑘)) ⟧𝑉𝜌 },

⟦ toExpr(𝑒♯𝑧 ⊠ ℒ□(𝑘)) ⟧Ω𝜌 ⟩

⊑ ⟨ { truncate(𝜆 ×ℝ 𝑧′) ∣ 𝜆 ∈ [0, 1]ℝ, 𝑧′ ∈ ⟦ toExpr(reduce0(𝑒
♯
𝑧 ⊠ ℒ□(𝑘))𝑅♯) ⟧𝑉𝜌 },

⟦ toExpr(reduce0(𝑒
♯
𝑧 ⊠ ℒ□(𝑘))𝑅♯) ⟧Ω𝜌 ⟩

(by using the induction hypothesis)

⊑ ⟦ toExpr(ℒ□(0) ⋓□ reduce0(𝑒
♯
𝑧 ⊠ ℒ□(𝑘))𝑅♯) ⟧𝜌

(by definition of truncate and ⋓□)

⊑ ⟦ toExpr(reduce0(ℒ□(0) ⋓□ reduce0(𝑒
♯
𝑧 ⊠ ℒ□(𝑘))𝑅♯)𝑅♯) ⟧𝜌

(by using Lemma. 5)

Case NoReduce. The reflexivity of ≡ is enough to conclude.
⊓⊔

	Symbolic transformation of expressions in modular arithmetic
	Introduction
	Preliminary Results on Modular Integer Arithmetic
	Syntax and Semantics of the Language
	Syntax of the Language
	Concrete Semantics of the Language

	Soundness requirements of expression rewriting
	Abstract Representation of Expressions
	Abstract Syntax of Expression

	Generic Abstraction
	Primitives over abstract expressions
	Translation from Classical to Abstract Expressions
	Integration with a Numerical Abstract Domain

	Instantiation of the generic framework
	Intervalization
	Simplification of abstract expressions
	Linear Interpolation

	Implementation presentation
	Conclusion
	Appendix
	Definitions only required in the Appendix
	Rewriting lemma
	Modular arithmetic
	Proof of Theorem. 1
	Proof of Theorem. 3
	Proof of Theorem. 4
	Proof of Corollary. 1
	Proof of Theorem. 5

