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S U M M A R Y 

The forced oscillation method is widely used to investigate intrinsic seismic wave dispersion 

and attenuation in rock samples by measuring their dynamic stress–strain response. Ho wever , 
using strain gauges to locally measure the strains on samples surfaces can result in errors in 

determining the attenuation and moduli of rocks with mesoscopic scale heterogeneities. In this 
study, we developed a 3-D numerical model based on Biot’s poroelastic theory to investigate 
the effect of strain gauge location, number and size on attenuation and dispersion in response to 

wave-induced fluid flow. Our results show that increasing the strain gauge length, number, and 

size can reduce the error between local and bulk responses. In a homogeneous and isotropic rock 

with a quasi-fractal fluid heterogeneity at 12 per cent gas saturation, the relative error between 

local and bulk responses stays below 6 per cent when the strain gauge length surpasses 8.6 

times the correlation length. As the gas saturation becomes larger, the ratio minimally changes 
non-monotonicall y, initiall y increasing and then decreasing. We also used the Monte Carlo 

method to demonstrate that local laboratory measurements can approximate the reservoir-scale 
response with a minimum relative error of 1.5 per cent as the sample number increases. Our 
findings provide guidance for (i) interpreting local low-frequency measurements in terms of 
bulk properties of rock and (ii) upscaling lab measurements to reserv oir -scale properties. 

Key words: Numerical modelling; Seismic attenuation; Mechanics, theory and modelling; 
Fluid heterogeneity; Dispersion. 
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 I N T RO D U C T I O N  

he elastic response of porous rocks can be investigated using vari-
us experimental methodologies (Born 1941 ; Winkler & Nur 1979 ;
arris et al . 2005 ; McCann & Sothcott 2009 ; Gordon & Davis 2012 ;
ang et al . 2012 ; Zhao et al . 2013 ; Yin et al . 2017 , 2019 ; Sun et al .

018 , 2020 ; Zhao et al . 2019 ; Borgomano et al . 2020 ). One classi-
al method is the forced oscillation technique, which measures the
uasi-static axial and radial strains in response to an axially oscil-
ating stress to determine the Young’s modulus and Poisson’s ratio
f rocks in the seismic frequency range ( < 100 Hz; Spencer 1981 ;
atzle et al . 2006 ; Mikhaltsevitch et al . 2011 ; Tisato & Madonna
012 ; Pimienta et al . 2015 ; Spencer & Shine 2016 ; Sun et al .
018 , 2020 , 2022 ; Zhao et al . 2019 , 2021 ; Borgomano et al . 2020 ;
i et al . 2020 ). 
C © The Author(s) 2023. Published by Oxford University Press on behalf of The Roy
Two kinds of sensors in the forced-oscillation method are used
o measure strain (Subramaniyan et al . 2014 ): the linear variable
ifferentiator transformer (LVDT) and the strain gauge. The LVDT
easures the bulk axial strain, the average axial strain along the en-

ire sample. Ho wever , it cannot measure the radial strain necessary
or calculating the Poisson’s ratio. In contrast, the strain gauge (4–
 mm) can measure both axial and radial strains, making it possible
o obtain the Poisson’s ratio as demonstrated b y v arious researchers
Batzle et al . 2006 ; Mikhaltsevitch et al . 2014 ; Pimienta et al . 2015 ,
017 ; Sun et al . 2018 ; Chapman et al . 2019 ; Borgomano et al . 2020 ).
he smaller size of the strain gauge reduces the impact of the ‘bend-

ng effect’ (Kumar 2003 ) on radial strain measurements. Ho wever ,
he strain gauge may introduce errors in determining attenuation
nd moduli of samples with heterogeneities larger than the strain
age, such as mesoscopic (a scale that is significantly larger than the
al Astronomical Society. 951 
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pore scale but much smaller than the wavelength) multiphase fluid 
distributions or fractures (Pimienta et al . 2016 ; Chapman & Quintal 
2018 ; Sun et al . 2020 ; Gallagher et al . 2022 ; Guo et al . 2022a , b ). 

In this work, we focus on the case of homogeneous and isotropic 
rock with two-phase immiscible fluids. The fluid distribution in the 
biphasic saturated rock can be heterogeneous at the mesoscopic 
scale. It has been validated not only in the previous experiments 
by Cadoret et al . ( 1998 ) and Toms-Stewart et al. ( 2009 ) using 
computer-assisted tomographic (CT) scanners but also in recent 
CT experiments conducted by Chapman et al . ( 2021 ) and Sun 
et al . ( 2022 ). The heterogeneous fluid distribution can lead to dis- 
persion and attenuation in response to mesoscopic wave-induced 
fluid flow (WIFF; e.g. M üller et al . 2010 ). Batzle et al . ( 2006 ) mea-
sured and estimated velocities in sandstone as a function of water 
saturation by injection. They found that the frequency-dependent 
velocities support the WIFF theory. Spencer & Shine ( 2016 ) mea- 
sured the effects of partial gas or oil saturation on velocities and 
attenuation. The y observ ed dispersion and attenuation in partially 
saturated sandstones attributed to the mesoscopic WIFF. Recently, 
Chapman et al . ( 2021 ) conducted experiments on a Berea sand- 
stone sample partially saturated with carbon dioxide following a 
reduction in pore pressure and attributed the observed attenua- 
tion and dispersion to a heterogeneous water distribution. Simi- 
larly, Sun et al . ( 2022 ) investigated a partially saturated limestone 
through the imbibition and drainage of water. The pronounced 
dispersion and attenuation were also concluded to be the conse- 
quence of the heterogeneous fluid distribution at the mesoscopic 
scale. 

These measurements provide solid experimental evidence for the 
existence of mesoscopic WIFF. Ho wever , most experimental results 
are obtained from local measurements, that is strain gauges. To in- 
vestigate the effect of the local strain measurement, Chapman & 

Quintal ( 2018 ) present a 1-D-layer model to investigate the differ- 
ence between the local and bulk strain measurements for partially 
saturated samples. They numerically solved Biot ( 1941 )’s quasi- 
static poroelastic equations and average the stress and strains either 
over the entire model domain or over discrete slices to determine 
either the bulk or local response, respecti vel y. They found that the 
variation of the strain gauge locations could result in a significant 
difference in the determined dispersion and attenuation related to 
the mesoscopic WIFF. Chapman et al . ( 2021 ) later also showed 
that their experimental observations were in better agreement with 
numerical simulations where the stress and strain were locally aver- 
aged. Ho wever , these in vestigations assumed cylindrical symmetry 
for the fluid distribution, ignoring saturation variation in the radial 
direction. In addition, they did not conduct a broad quantitative 
analysis and assessment of the errors associated with local strain 
measurements. 

To overcome the limitations and further investigate the effect 
of local measurements, we build a 3-D numerical model based on 
Biot’s poroelastic theory to simulate the forced-oscillation mea- 
surement process. It takes the 3-D distribution into account and can 
estimate the Young’s modulus and Poisson’s ratio directly, just as in 
the e xperiment. Then, we inv estigate the effect of the strain gauge lo- 
cation, number, and size on the local response for a cylinder sample. 
The errors in the local and bulk responses of samples saturated with 
quasi-fractal fluid distributions are quantified. Fur ther more, using 
the Monte Carlo method, we discuss the error between the laboratory 
scale (local strain measurements) and the reserv oir -scale response. 
Our study aims to provide guidance on the issue of local mea- 
surements for rock physicists investigating frequency-dependent 
effects in biphasic saturated rock using the forced oscillation 

method. 
2  METHODOLOGY 

2.1 Numerical model 

We developed a numerical model to simulate the mechanical appa- 
ratus (Fig. 1 a) used in previous studies (Borgomano et al . 2020 ) to 
measure the elastic properties of porous rocks. The model comprises 
a shaker , tw o aluminium end-platens (UOP and DOP in Fig. 1 b) and 
a porous rock specimen (TestS in Fig. 1 c). Our model can also be 
adapted for other low-frequency measurement setups with similar 
mechanical configurations (e.g. Tisato & Madonna 2012 ; Mikhalt- 
sevitch et al . 2015 ; Sun et al . 2018 , 2022 ; Chapman et al . 2021 ). 

2.2 Governing equations 

Biot’s equations (Biot 1941 , 1956a , b , 1962 ) are used to investigate 
the poroelastic response of the numerical model. The method was 
widely used to study dispersion and attenuation (e.g. Rubino et al . 
2009 , 2016 ; Quintal et al . 2011 ; Sun et al . 2022 ). We opt for the
displacement-pressure form of Biot’s equations (Atalla et al . 1998 ) 
in the frequency domain to serve as our governing equations. They 
are given by: 

− ω 

2 ρb − ρ2 
f 

ρc ( ω 

) 
u 

s − ∇ · σ = 

ρf 

ρc ( ω 

) 
∇ P f , (1) 

∇ ·
[
− 1 

ρc ( ω 

) 
∇ P f − ω 

2 ρf u 

s 

]
− ω 

2 P f 

M 

= αω 

2 ∇ · u 

s , (2) 

w here ∇ = 

∂ 

∂x 
ˆ i + 

∂ 

∂y 
ˆ j + 

∂ 

∂z 
ˆ k , w here ˆ i , ˆ j and ˆ k are the imagi- 

nary units at x -, y - and z -directions. ω is the angular frequency, 
α = 1 − K d 

K g 
is the Biot–Willis coefficient, K d is the drained bulk 

modulus of the matrix, K g is the bulk modulus of the grain. The den- 
sity of the bulk material is ρb = ( 1 − φ) ρs + φρf , where ρf and ρs 

correspond to the densities of the fluid and solid grain, respecti vel y. 
The complex density ρc ( ω) = 

τρf 
φ

+ 

η

ˆ i ωκ
, where φ is the porosity, 

τ is the tortuosity of the pore, η is the fluid viscosity and κ is 
the permeability. The stress tensor σ is written in terms of tensor 
components using index notation as: 

σi j = 2 με i j + δi j ( λm 

∇ · u 

s − αP f ) , (3) 

where i, j = 1 , 2 , 3 corresponds to Euclidean space dimensions. 
The stress tensor is determined by the solid displacement vector 
u 

s = ( u 

s 
i ) , strain tensor ε i j = 

1 
2 ( u 

s 
i, j + u 

s 
j,i ) and fluid pressure P f , 

u 

s 
i, j is the deri v ati ve of u 

s 
i at j direction. λm 

= K d − 2 
3 μ is the first 

parameter of Lam é constants, and μ is the shear modulus. δi j is the 
Kronecker Delta. The so-called pore-space modulus (Biot & Willis 
1957 ; Gurevich et al . 2009 ) is defined by: 

M = 

(
φ

K f 
+ 

α − φ

K g 

)−1 

, (4) 

where the bulk modulus K f and density ρf of the biphasic fluids are 
gi ven b y: 

K f = 

(
S Air 

K Air 
+ 

1 − S Air 

K w 

)−1 

, (5) 

ρf = ρAir S Air + ρw (1 − S Air ) , (6) 

where K Air and K w are the bulk modulus of air and water, respec- 
ti vel y, S Air is the air saturation. ρAir and ρw are the densities of water 
and air, respecti vel y. The viscosity η of the biphasic fluids is defined 
according to Teja & Rice ( 1981 ): 

η = ηAir 

(
ηw 

ηAir 

)1 −S Air 

, (7) 

where ηAir and ηw are the viscosities of air and water, respectively. 
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Figure 1. (a) Low-frequency measurement cell. The piezoelectric actuator generates the axial oscillation, and the strain gauges record the corresponding axial 
and radial strains; (b) the 3-D numerical model of (a). The UOP and DOP are the up and down end-platens, respecti vel y. TestS is the cylinder specimen. σ33 is 
the axial oscillation stress loading at the top surface of up end-platens (UOP). [u1, u2, u3] = 0 is the fixed boundary condition for bottom end-platends (DOP). 
The 0.25 L, 0.5 L and 0.75 L are the vertical positions at 25, 50 and 75 per cent of the sample length. G1 are strain gauges placed at 0, π2 , π and 3 π

2 , while G2 

are strain gauges placed at π4 , 
3 π
4 , 

5 π
4 and 7 π

4 . (c) 2-D view of the cylindrical test sample. 
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.3 Numerical model configuration and solution 

e used COMSOL Multiphysics to solve the governing equations
eqs 1 and 2 ) with the finite element method and simulate an axial
scillatory test, allowing us to compute the Young’s modulus and
oisson’s ratio as a function of frequency. 

To impose the necessar y boundar y conditions, we applied the
ollowing configuration: On the top surface of the UoP (Fig. 1 b), we
pplied an axially oscillating stress with an amplitude of 0.1 MPa;
t the bottom surface of the DoP (Fig. 1 b), the displacement vector
c  
u 

s is zero. To simulate undrained boundary conditions, we assign
he fluid pressure gradient ∇ P f = 0 on all the surfaces of the test
ample (TestS in Fig. b); For the Aluminium end-platens (UOP and
OP in Fig. 1 b) in the numerical model, the fluid pressure P f is zero

Quintal et al ., 2011 ), causing eq. ( 1 ) to degenerate into the elastic
quation. Under these boundary conditions, eq. ( 1 ) maintains stress
ontinuity at the interface between the test sample and Aluminium
nd-platens. 

The strains determined from the numerical solutions are used to
alculate the frequency-dependent Young’s modulus E( ω) and the

art/ggad289_f1.eps
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Table 1 Properties for the aluminium and test sample. 

Properties 
Aluminium 

(stress standard) Test sample 

Porosity, φ (per cent) 0 10.8 
Permeability, κ (m 

2 ) 0 2.27 × 10 −16 

Drained bulk modulus, K d (GPa) 70.6 24 
Undrained bulk modulus, K u (GPa) 70.6 32.5 
Bulk modulus of grain, K g (GPa) 70.6 77 
Shear modulus, G (GPa) 27.1 15.2 
Drained Young’s modulus, E (GPa) 72 37.5 
Drained Poisson’s ratio, ν 0.33 0.24 
Biot–Willis coefficient, α 0 0.69 
Skempton’s coefficient, B 0 0.38 
Density, ρ (kg m 

−3 ) 2700 2369.2 
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corresponding attenuation Q 

−1 
E ( ω) , the Poisson’s ratio ν( ω) and the 

corresponding phase difference Q 

−1 
ν by: 

E 

( ω 

) = 

E al 

〈 ε 33 〉 Alum 

〈 ε 33 〉 Sam 

(8) 

Q 

−1 
E ( ω 

) = 

Imag ( E 

( ω 

) ) 

Real ( E 

( ω 

) ) 
(9) 

ν ( ω 

) = 

〈 ε 11 〉 Sam 

〈 ε 33 〉 Sam 

(10) 

Q 

−1 
ν ( ω 

) = 

Imag ( ν ( ω 

) ) 

Real ( ν ( ω 

) ) 
, (11) 

where E al = 72 GPa is the Young’s modulus of the aluminium end- 
platen, 〈 〉 is the average operator. 〈 ε 33 〉 sam 

and 〈 ε 33 〉 Alum 

are the axial 
strains of the test sample and the aluminium end-platen, respec- 
ti vel y. 〈 ε 11 〉 Sam 

is the radial strain of the test sample. The strains 
are av eraged ov er the entire model domain to determine the bulk 
response. The strains are av eraged ov er small sections of the sam- 
ple’s domain to determine the local response measured by strain 
gauges in a laboratory experiment (Fig. 1 b). We used a tetrahedral 
mesh refined according to the fluid distribution, with a higher mesh 
resolution at water–air interfaces. Mesh resolution is also enhanced 
ov er re gions corresponding to the strain gauges. 

2.4 Validating the numerical solution 

To validate our numerical procedure, we compare our numerical 
solution to the analytical solution of Dutta & Od é ( 1979 ). The 
validation is performed on a homogenous and isotropic cylinder 
with a 20 mm radius and 80 mm length. The properties of the 
rock matrix are shown in Table 1 . We assumed that the cylinder 
sample contains two spheres with a radius of 11 mm (Fig. 2 a). The 
spheres are saturated with air (b lue domains, F ig. 2 a), w hereas the 
remaining regions are saturated with water. The fluid properties are 
shown in Table 2 . The air saturation can be estimated using the 
ratio of the sphere’s volume to the cylinder’s volume, that is, S Air = 

2 × 4 
3 π ( 0 . 011 ) 3 

π×0 . 02 2 ×0 . 08 
= 0 . 11 . According to the assumption in Dutta & 

Od é ( 1979 )’s model, the representative elementary volume (REV) 
of the cylinder is shown in Fig. 2 (b), and the patchy size can be 

approximated by 
3 

√ 

4 
3 π ( 0 . 011 ) 3 

S Air 
= 37 mm . 

Next, we calculated the Young’s modulus E and the Poisson’s 
ratio v in the case of a sample as described in Fig. 2 (a) at the 
frequencies of 0.01–1000 Hz. The P -wave modulus is deduced by 

E( 1 −v ) 
( 1 + v )( 1 −2 v ) (Mavko et al . 2009 ). Then, we compared the numerical 
results with the analytical solution obtained from Dutta & Od é’s 
( 1979 ) model. Fig. 3 (a) displays the dispersion of the P -wave mod- 
ulus, and Fig. 3 (b) shows the associated attenuation. The squares 
are the numerical results, and the solid lines are the analytical solu- 
tions. We can observe an excellent matching between the analytical 
and numerical solutions, and the peak in P -wave attenuation agrees 
with the theoretical prediction (Dutta & Od é 1979 ). 

To validate the accuracy of our numerical model’s ability to re- 
produce physical measurements, we used data published by Sun 
et al . ( 2022 ) for comparison. The bulk modulus and attenuation of 
the limestone, which were measured using four strain gauges, are 
represented by squares in Figs 3 (c) and (d), respecti vel y. The prop- 
erties of the limestone (test sample) are shown in Table 1 . We used 
these properties to generate predictions with our numerical model, 
the results of which are represented as red lines in Figs 3 (c) and (d). 
The predicted bulk modulus and corresponding attenuation are in 
alignment with the measurements, further validating the reliability 
of our numerical model. Notably, these predictions heavil y rel y on 
the fluid distribution depicted in the CT images provided by Sun 
et al . ( 2022 ). Ideally, CT images are the optimal tool for e v aluating 
the impact of fluid hetero geneity. Howe v er, their e xtensiv e usage is 
impractical due to high costs, necessitating an alternate approach. 
According to prior research (e.g. M üller et al . 2008 ; Toms et al . 
2009 ), the spatial correlation of fluid distribution can be charac- 
terized by either the von K árm án function or the Debye function. 
In the drainage CT case presented by Sun et al . ( 2022 ), the spatial 
correlation estimated using Toms et al .’s ( 2009 ) method can be fit- 
ted with the von K árm án function, yielding a correlation length of 
1.4 mm and a Hurst number of 0.8. Consequently, we adopt the von 
K árm án function to delve into the effects of fluid heterogeneity in 
subsequent sections. 

2.5 The quasi-fractal fluid distribution 

We assume that the biphasic fluid distribution is a self-affine mono- 
fractal and can be characterized using the von K árm án function. 
According to previous research (e.g. Klime š 2002 ; Helle et al . 2003 ; 
Santos et al . 2005 ; M üller et al . 2008 ; Rubino et al . 2009 ), the
steps for generating the 3-D heterogeneous fluid distribution can be 
summarized as follows: 

(i) A spatial field, W ( x , y , z ) , is populated with random numbers 
derived from a uniform distribution, also known as white noise. 
Here, x , y and z are coordinates in the Cartesian coordinate system. 

(ii) This spatial field W is then subjected to a Fourier transforma- 
tion, mapping it to the spatial wavenumber domain, represented as 
ˆ W ( k x , k y , k z ) . In this context, k x , k y and k z denote the wavenumbers 

in the x -, y- and z -directions, respecti vel y. 
(iii) Subsequentl y, we appl y the von Kar man spectr um filter, S = 

S 0 ( 1 + k 2 l 2 c ) 
−( H+ 3 / 2 ) 

, to ˆ W . Here, S 0 is a normalization constant, 

k = 

√ 

k 2 x + k 2 y + k 2 z is the amplitude of the wavenumber, l c is the 

correlation length (a measure of the length scale of heterogeneity as 
per M üller et al . 2008 ), and H is the Hurst exponent (0 < H < 1).
The fractal dimension of the stochastic field for the 3-D case can be 
gi ven b y D = 4 − H (Rubino et al . 2009 ). As a result, we obtain 

ˆ U 

(
k x , k y , k z 

) = 

ˆ W S. (12) 

(iv) Finally, the filtered result ˆ U is then transformed back to the 
spatial domain U ( x , y , z ) , forced to have zero means, and normal- 
ized to a range appropriate to produce a saturation with fluctuations 
around a given global air saturation S ∗. To construct the patches, 
we set the air saturation to one for regions where S < S ∗, and zero 
for regions where S > S ∗ (Santos et al . 2005 ). Following this, we 
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Figure 2. (a) The homogenous and isotropic rock containing two air spheres. The cylinder is 40 mm in diameter and 80 mm in length. The sphere is 22 mm in 
diameter; (b) the REV size of 37 mm. 

Table 2 Properties for the fluid. 

Properties Water Air 

Bulk modulus, K f (GPa) 2.25 1 × 10 −4 

Density, ρ (kg m 

−3 ) 1000 1 
Viscosity, η (Pa s) 10 −3 2 × 10 −5 
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hape the cube to form the cylinder sample, which facilitates simula-
ion consistency with the experiment and helps avoid the ‘oversized
roblem’ (Ravalec et al . 2000 ) at the start and end of the domain. 

 RESULTS AND ANALYSIS 

n the numerical test, the diameter and length of the test sample are
 and 8 cm, respecti vel y. The other properties, such as permeability
nd porosity, are given in Table 1 . We set H = 0.8, l c = 10 mm, S ∗

 0.11 and D = 3.2 to generate the fluid distribution following the
ethod described in Section 2.5 . The resulting fluid distribution is

hown in Fig. 4 (a). The global water saturation is S w = 1 −S ∗ = 0.89.
he black regions and white regions of Fig. 4 (a) represent zones

ully saturated by water and air, respectively. The adaptive mesh
orresponds to the fluid distribution (Fig. 4 a) shown in Fig. 4 (b),
here the mesh is refined at the water–air interfaces. Next, we

llustrate how accurately we can approximate the bulk response
sing a strain gauge, using the fluid distribution given in Fig. 4 (a). 

.1 Strain and fluid pr essur e 

aking the fluid distribution (Fig. 4 a) as an input, we solved the
umerical model and obtained the fluid pressure and the axial and
adial strains. We normalized the fluid pressure by P f 

σ33 
, where the

P f is the fluid pressure, σ33 is the axial stress. The diameter of the
p-end-platen (UoP in Fig. 1 b) is 56 mm, and there is an oscillating
xial stress of 0.1 MPa amplitude on its top surface. Then the axial
tress σ33 amplitude on the sample is gi ven b y 0 . 028 2 

0 . 02 2 
× 0 . 1[ MPa ] =

.196 MPa. Fig. 5 shows the normalized fluid pressure. For a fre-
uency of 1 Hz (Fig. 5 a), the fluid pressure is zero, distributing over
he entire sample homo geneousl y. For a frequency of 1000 Hz, as
hown in Fig. 5 (d), the fluid pressure is hetero geneousl y distributed:
he normalized fluid pressure is zero in the air-saturated zones and
.127 in almost all the water-saturated zones. For the water-saturated
egions, we can readily calculate Skempton’s coefficient accord-
ng to the definition of normalized fluid pressure (Skempton 1954 ;

ang 2000 ) as B = 

3 P f 
σ33 

= 3 × 0.127 = 0.38. This value aligns with

he poroelastic properties of the rock, B = 

1 − K d 
K u 

α
= 0.38 (Table 1 ),

uggesting that water-saturated zones are in an undrained state at
 frequency of 1000 Hz. The heterogeneity of the fluid pressure
istribution, as shown in Figs 5 (b) and (c), is frequency-dependent,
nd this heterogeneity increases with frequency. 

The axial strain ε 33 (Fig. 6 ) as well as radial strain ε 11 (Fig. 7 ) vary
patially, exhibiting the heterogeneity associated with the fluid dis-
ribution (Fig. 5 ). At the frequency of 1 Hz, the axial strain (Fig. 6 a)
nd radial strain (Fig. 7 a) distribute homo geneousl y over the sam-
le at 52 × 10 −7 and 12.5 × 10 −7 , respecti vel y, and agree with the
rained sample’s properties (Table 1 ). At 1000 Hz, the axial and
adial strains (Figs 6 d and 7d) distribute over the sample heteroge-
eously. In the water-saturated zones, the axial and radial strains are
50 × 10 −7 and ∼14.7 × 10 −7 , respecti vel y, and agree with the

ndrained sample’s properties (Table 1 ). As for the fluid pressure,
he heterogeneity in the sample’s strain distribution increases with
requency. 

The heterogeneity in strains and fluid pressure will lead to in-
ccuracies due to the strain gauges’ limited coverage of the sam-
le’s surface. For comparison, we can obtain the bulk response (red
ines, Fig. 8 ) by averaging the strain over the entire sample. With
he increase in frequency from 0.01 to 1000 Hz, Young’s modulus
ncreases from 37.5 to 39 GPa, and the Poisson’s ratio increases
rom 0.24 to 0.286 (red curves in Fig. 8 ). The Young’s attenuation
eak is 0.014 at the critical frequency of 10 Hz. The Poisson’s ra-
io phase difference shows an attenuation peak of 0.06 at the same
ritical frequency of 10 Hz. 

.2 The effect of the strain g aug e locations 

i-axial strain gauges with a typical length of 5 mm measure both
he vertical and horizontal strain. They were simulated using 5 mm
ines on the lateral surface of the cylindrical sample, as depicted
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Figure 3. P -wave modulus (a) and P -wave attenuation (b) at the frequencies of 0.01–1000 Hz. They are obtained from the numerical model (squares) and Dutta 
& Od é’s ( 1979 ) model (red line). Bulk modulus (c) and bulk attenuation (d) are adapted from fig. 18 in the research of Sun et al . ( 2022 ). The black squares 
represent measurements taken when the Indiana sample is partially saturated with a water saturation level of 88 per cent. The red lines illustrate predictions 
made using the fluid distribution, ascertained from CT scans displayed in fig. 12 of Sun et al .’s ( 2022 ). 
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in Fig. 1 (c): strain values w ere a v eraged ov er these 5 mm lines to 
simulate the recording of bi-axial strain gauges. Using eqs ( 8 )–( 11 ), 
we calculated the values of Young’s modulus, Young’s attenuation, 
Poisson’s ratio, and Poisson’s phase difference recorded by the strain 
gauges. To study the effect of strain gauge location, we specifically 
examined the strain gauges belonging to G1 in Fig. 1 (c). 

At the location of 0.25 L in Fig. 1 (c) (G1 strain gages are the red 
crosses), we determined the Young’s modulus and Poisson’s ratio by 
averaging the four axial and radial strain gauges values. The result- 
ing Young’s modulus (indicated by asterisks in Fig. 8 a) were almost 
identical to the bulk response values (shown as a red line in Fig. 8 a). 
The attenuation values (depicted as asterisks in Fig. 8 b) also exhib- 
ited a peak of 0.014 at 10 Hz, which agreed with the bulk response 
v alues (represented b y a red line in Fig. 8 b). Ho wever , the P oisson’s 
ratio values (illustrated as asterisks in Fig. 8 c) displayed two dis- 
persion transitions. Correspondingly, the Poisson’s phase difference 
(asterisks, Fig. 8 d) displays two peaks with the magnitudes of 0.07 
and 0.025 at 7 and 200 Hz, de viating significantl y from the peak of 
0.062 at 10 Hz for the bulk response (red line, Fig. 8 d). At 0.5 L, the 
Young’s modulus (circles, Fig. 8 a) is more dispersive in comparison 
to the bulk response (red line, Fig. 8 a). The corresponding Young’s 
attenuation (circles, Fig. 8 b) is overestimated compared to the bulk 
attenuation (red line, Fig. 8 b). The Poisson’s ratio and the Poisson’s 
phase difference are also overestimated with respect to the bulk 
response. At 0.75 L, the Young’s modulus (solid squares, Fig. 8 a) 
is less dispersive than the bulk response, and the corresponding 
attenuation (solid squares, Fig. 8 b) is underestimated with respect 
to the bulk response. Ho wever , the P oisson’s ratio (solid squares, 
Fig. 8 c) is more dispersive than the bulk response, and the Poisson’s 
phase difference (solid squares, Fig. 8 d) shows a higher peak at the 
critical frequency of 10 Hz. The local responses at 0.25, 0.5 and 
0.75 L differ significantly from each other and the bulk response, 
showing that the local response significantly depends on the vertical 
location of the sample. The conclusion is consistent with the result 
gi ven b y Chapman & Quintal ( 2018 ) using a 1-D model. 

In summary, the Young’s modulus, Young’s attenuation, Pois- 
son’s ratio and Poisson’s phase difference depending on the loca- 
tions of the strain gauges, making it challenging to obtain the bulk 
response from the local measurements. The question is: Can we 
quantify the error made when strain gauges are used to infer the 
bulk response? And: How does strain gauge number and length 
affect this error? 

3.3 The effect of the strain g aug e number 

How many strain gauges are required to obtain an accurate bulk 
response? We randomly selected 1, 4, 8, 12, 16 and 20 bi-axial strain 
gauges in groups G1 or G2 from Fig. 1 (c) and calculated averaged 
values for the Young’s modulus, Young’s attenuation, Poisson’s ratio 
and Poisson’s phase difference. The results are shown in Fig. 9 . 

When only one strain gauge is used, the dispersion for Young’s 
modulus and corresponding Young’s attenuation is overestimated 
compared to the bulk response. As the number of strain gauges 
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Figure 4. (a) Fluid distribution generated by the von K árm án spectrum density function. The Hurst exponent H is 0.8, the correlation length l c is 10 mm, 
the water saturation is 0.89, and the fractal dimension D is 3.2. Black zones represent water, while white zones represent air. (b) The adaptive mesh, with the 
water–air interfaces refined according to the fluid distribution in (a). 
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ncreased from 1 to 4, the local responses of both the Young’s
odulus and the Poisson’s ratio and their attenuations approached

he bulk response (Fig. 9 a), especially for frequencies below 100 Hz.
s the number of strain gauges increased from 4 to 21, the local

esponses of both the Young’s modulus and the Poisson’s ratio are
lose to the bulk response even for frequencies higher than 100 Hz.
s expected, increasing the number of strain gauges reduces the
ifference between local and bulk responses. 

To quantify the effect of the strain gauge number, we defined the
bsolute error between the local measurement and the bulk response
ver all frequencies as: 

 β = 

√ √ √ √ 

1 

N F 

N F ∑ 

m = 1 
[ βB ( f m 

) − βL ( f m 

) ] 2 , (13) 

here N F is the total number of frequencies investigated. βL ( f m 

)
nd βB ( f m 

) correspond to the local and bulk response at a particular
requency of f m 

( m = 1 , . . . , N F ), respecti vel y. 
Since the dispersion for the modulus can be as low as a few GPa,

hile the actual value of the modulus is usually in the tens of GPa
ange, the absolute error is often relati vel y small, and it may not
rovide a comprehensive understanding of the influence of local
easurements. To address this, we introduce the relative error over

ll frequencies, emphasizing the proportion of absolute error in the
ispersion or attenuation. Specifically, we define the relative error
s: 

β = 

ε β√ 

1 
N F 

∑ N F 
m = 1 [ βB ( f m 

) − LLM ] 2 
× 100 per cent , (14) 
here the LLM is the low-frequency limit for the bulk response
B ( f m 

) . For example, when βB ( f m 

) is the Young’s modulus at f m 

,
he LLM is the drained Young’s modulus. When βB ( f m 

) is the
oung’s attenuation, and the LLM is zero attenuation. For the N s 

train gauges, we define the local response by 

L ( f m 

) = 

1 

N s 

N s ∑ 

n = 1 
βn ( f m 

) , (15) 

here N s is the total number of the strain gauges, n = 1 , . . . , N s .
or each strain gauge n , βn ( f m 

) is the elastic response at a specific
requency f m 

( m = 1 , . . . , N F ) , then βL ( f m 

) is the local response
veraged by N s strain gauges. 

We randomly selected a varying number of strain gauges from
he 24 available in Fig. 1 (c) and calculated the relative error over
ll frequencies. This process was repeated three times; the results
re displayed in Fig. 10 . Overall, we observed that the relative
rror of Young’s modulus decreased rapidly from 60 per cent to
pproximately 10 per cent as the number of strain gauges increased
rom 1 to 6. Ho wever , the error remained at 10 per cent as the
umber of strain gauges increased from 6 to 24. Therefore, we
etermined that the critical number of strain gauges required for the
ccurate measurements of the Young’s modulus in the case of Fig. 1
s approximately 6. 

Similarly, the critical number of strain gauges for the Poisson’s
atio is around 6, above which the relative error decreased from 80 to
0 per cent. Thus, we recommend randomly pasting approximately
t least 6 strain gauges and averaging their readings during actual
xperiments to obtain local responses with minimal error compared
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Figure 5. The spatial distribution of the fluid pressure P f normalized with with respect to the axial stress σ33 , at different frequencies: (a) 0.1 Hz; (b) 10 Hz; 
(c) 100 Hz and (d) 1000 Hz. 
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to the bulk response. Ho wever , it is important to note that this 
recommendation is specific to the quasi-fractal fluid distribution 
with a correlation length of 1 cm and strain length of 5 mm used 
in our study. Variations in the strain gauge length and correlation 
length could impact the optimal strain gauge number. 

3.4 The effect of the strain g aug e sizes 

Apart from the number of strain gauges, the size of the strain gauge 
is another important factor that can affect strain measurement ac- 
curacy. While it is relati vel y straightforw ard to replace a vertically 
oriented short strain gauge (typically 5 mm in length) with a longer 
one (e.g. 26 mm in length), the use of a long strain gauge hori- 
zontally to measure radial strain is not recommended due to the 
‘bending effect’ (Kumar 2003 ). As such, we focused our analysis 
on the effect of varying only the length of the axial strain gauge. 

To explore the influence of strain gauge length on our measure- 
ments, we focused on the gauge located at the centre of the sample 
(0.5 L in Fig. 1 c). The sample surface was equipped with eight 
bi-axial strain gauges, a number that is near the critical value previ- 
ously established in Section 3.3 . By averaging the strains recorded 
by these gauges, we derived the Y oung’s modulus, Y oung’s atten- 
uation, Poisson’s ratio and Poisson’s phase difference. The results 
are shown in Fig. 11 : the difference between the local and bulk re- 
sponses for the Young’s modulus and attenuation gradually reduced 
as the axial strain gauge length increased from 5 to 80 mm. 

To quantitati vel y demonstrate the ef fect of the strain gauge length, 
we calculated the evolution of relative errors versus the axial strain 
length according to eq. (14 ), where βL ( f m 

) is the local response with 
different lengths of strain gauges. The result is shown in Fig. 12 . 
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Figure 6. Spatial distribution of the axial strain at different frequencies: (a) 0.1 Hz; (b) 10 Hz; (c) 100 Hz and (d) 1000 Hz. 
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e found that increasing the axial gauge length from 5 to 26 mm
ed to a rapid reduction in the relative error of the Young’s modulus
Fig. 12 a), from 24 to 7 per cent. Ho wever , further increasing the
xial gauge length to 80 mm did not significantly reduce the relative
rror of the Young’s modulus. The axial gauge length did not sig-
ificantl y af fect the relati ve error in the Poisson’s ratio. It indicates
hat the length of the axial strain gauge has a minimal influence on
he local response of the Poisson’s ratio as the radial strain gauges
ength is kept constant at 5 mm in these simulations. To summa-
ize, our results indicate that extending the length of strain gauges
rom 5 mm to 26 mm can decrease the relative error from ∼20 per
ent (with approximately 6–10 strain gauges of 5 mm length) to
7 per cent. 
t  
 D I S C U S S I O N  

he error between local and bulk responses is influenced by fluid
eterogeneity. To obtain the bulk response of a natural reservoir
n the lab, the cored rock sample must be at least the size of the
eservoir’s representative elementary volume (REV), as defined by
ill ( 1963 ). In our research context, we disregard rock matrix het-

rogeneities such as fractures. The REV represents the minimum
olume for which (i) fluid heterogeneity is representative of the
ntire reservoir and (ii) estimated seismic dispersion and attenua-
ion are independent of boundary conditions. Ho wever , local strain
auge measurements may still introduce errors even if the sample’s
olume exceeds the REV size. This section discusses the error be-
ween laboratory-scale and reserv oir -scale responses under three
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Figure 7. Spatial distribution of the radial strain at different frequencies: (a) 0.1 Hz; (b) 10 Hz; (c) 100 Hz and (d) 1000 Hz. 

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/235/1/951/7224597 by IN

IST-C
N

R
S IN

EE IN
SB user on 24 August 2023
scenarios: (a) one strain gauge; (b) four strain gauges and (c) four 
longer strain gauges. 

4.1 The effect of the sample number 

Previous researchers (e.g. Helle et al . 2003 ; Masson & Pride 2007 ) 
suggest that the spatial fluid distribution in a reservoir can be 
characterized by the stochastic functions (parameter) with a given 
spectral density distribution, such as the von Karman correlation 
function used in our study . Accordingly , the Monte Carlo method 
can predict the equi v alent elastic moduli of the partially saturated 
reservoir (Rubino et al . 2009 ). In this study, we used a two-step ap- 
proach to demonstrate the application of the Monte Carlo method in 
investigating the relative error between local measurements and bulk 
responses at the reservoir scale. 

First, we build a cuboid of 0.4 m in length and width and 0.32 m in 
height. In the cuboid, the von Karman correlation function generates 
the fluid distribution with D = 3.2, H = 0.8, and air saturation of 
0.12. For the correlation length of 10 and 30 mm, the generated fluid 
distributions are illustrated in Fig. 13 . The black regions represent 
the water-saturated zones, and the white regions for the air-saturated 
zones. The fluid distribution becomes more heterogeneous with 
the increase in the correlation length from 10 mm (Fig. 13 a) to 
30 mm (Fig. 13 c). The cuboid (Figs 13 a or c) can provide 400 
cylindrical samples with a diameter of 0.04 m and a length of 0.08 m. 
We randomly selected 70 samples with air saturation of around 
12 per cent, as shown in Figs 13 (b) and (d), which have similar 
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Figure 8. The calculated (a) Young’s modulus, (b) Young’s attenuation, (c) Poisson’s ratio and (d) Poisson’s phase difference at 25, 50 and 75 per cent of the 
sample length. The red line is the bulk response over the entire sample. 

Figure 9. The local responses versus the number of strain gauges. The red line is the bulk response of the sample, and the dashed lines with different markers 
correspond to the local response obtained by strain gauges. (a) the Young’s modulus; (b) the Young’s attenuation; (c) the Poisson’s ratio and (d) the Poisson’s 
phase difference. 
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ir patches but different spatial distributions for 10 and 30 mm
orrelation lengths, respecti vel y. 

Secondly, according to Monte Carlo theory, the mean of the
lastic responses βn ( f m 

) ( n = 1 , . . . , N R ) represents the statistical
haracteristics of the elastic response of the rock sample: 

L ( f m 

, N R ) = 

1 

N R 

N R ∑ 

n = 1 
βn ( f m 

) , (16) 
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Figure 10. Evolution of relative error with respect to the number of strain gauges for both local and bulk responses. (a) Relative error for Young’s modulus; 
(b) Relative error for Poisson’s ratio. The three colours (#1–#3) represent three random selections of strain gauges. S.G. stands for strain gauge. 

Figure 11. The calculated Young’s modulus (a), Young’s attenuation (b), Poisson’s ratio (c) and Poisson’s phase difference (d) versus the length of the strain 
gauges. The red line is the bulk response. 
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where N R is the total number of samples. f m 

( m = 1 , . . . , N F ) 
where N F is the total number of frequencies investigated. Taking 
βL ( f m 

, N R ) into eqs ( 13 ) and ( 14 ) as the local response, we can 
get the relative error variations with the N R . When the βn ( f m 

) is 
the Young’s modulus, the relative errors δE ( N R ) for a correlation 
length of 3 mm, 5 mm, 1 cm and 3 cm are shown in Fig. 14 . 

When the correlation length is 3 mm, the relative error δE de- 
creases with the increase of N R for all three measurement scenarios: 
one short, four short and four long strain gauges. As the strain gauge 
number increases from one to four, the critical N R decreases from 28 
(b lue line, F ig. 14 a) to 13 (b lack line, F ig. 14 a), and the relative error
δE decreases from a maximum of 30 per cent (blue line, Fig. 14 a) to 
15 per cent (black line, Fig. 14 a). In addition, the relative error δE 
above the critical N R remains at about 1.5 per cent with the increase 
in the strain gauge number. On the other hand, with the increase in 
the strain gauge length from 5 mm (black line, Fig. 14 a) to 26 mm 

(red line, Fig. 14 a), the critical N R decreases from 13 to 10, while 
the maximum relative error δE decreases from 15 per cent (black 
line, Fig. 14 a) to 6 per cent (red line, Fig. 14 a). Therefore, we can 
conclude that the increase in the strain gauge number and length 
can reduce the critical N R and the overall relative error. For N R = 19 
(green dashed line, Fig. 14 a), the relative errors are 3.5, 1.5 and 1.5 
per cent for the one short, four short and four long strain gauges, 
respecti vel y. The corresponding Young’s moduli (Fig. 15 a) from the 
three cases approximate the bulk response of the cuboid, with slight 
de viations mainl y appearing at frequencies above 30 Hz since fluid 
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Figure 12. The relative error of the local response compared to the bulk response for gauge size in the 5–80 mm range. (a) The Young’s modulus and (b) the 
Poisson’s ratio. 

Figure 13. The reservoir cuboid has a length and width of 0.4 m and a height of 0.32 m, and its fluid distribution is characterized by the von Karman function 
with the Hurst exponent H of 0.8, the water saturation of 0.89 and the fractal dimension D of 3.2. (a) the correlation l c is 10 mm; (b) N R samples with a 
diameter of 0.04 m and length of 0.08 m are selected from (a) when the water saturation is 0.89; (c) the correlation length l c is 30 mm and (d) N R samples with 
a diameter of 0.04 m and length of 0.08 m are selected from (c) when the water saturation is 0.89. The black zones represent regions of full water saturation, 
and the white regions indicate full gas saturation. 
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Figure 14. The relative error of Young’s modulus versus the total number of the samples N R , when the correlation length is (a) 3 mm, (b) 5 mm, (c) 1 cm and 
(d) 3 cm. 
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hetero geneity ef fects are more significant at high frequencies, as 
discussed in Section 3.1 . 

When the correlation length increases to 5 mm (Fig. 14 b), the 
critical N R remains almost consistent with that of 3 mm for the three 
cases. Ho wever , the relative error above the critical N R increases 
from 1.5 to 6 per cent for the one-short strain gauge and from 1.5 
to 4 per cent for both the four-short and four-long strain gauges. It 
indicates that the increase in the correlation length leads to higher 
relative error levels. For N R = 19, the relative errors are 7.0, 5.0 
and 4.2 per cent for the one-shor t, four-shor t and four-long strain 
gauges, respecti vel y. The corresponding Young’s moduli from the 
three measurement cases are shown in Fig. 15 (b). It was observed 
that the local responses differ from the bulk response of the cuboid 
for frequencies above 25 Hz, which can be attributed to the longer 
time required for fluid pressure equilibrium compared to 30 Hz at 
the correlation length of 3 mm. It is because a higher correlation 
length implies greater heterogeneity in fluid pressure, which leads 
to longer relaxation times (lower frequencies) for fluid pressure. 
For the correlation length of 1 cm, the critical N R for the one- 
short strain gauge, four-short and four-long strain gauges are 33, 
15 and 10, respecti vel y. In addition, the maximum relative error 
increased from 20 per cent (b lue line, F ig. 14 b) to 30 per cent (blue 
line, Fig. 14 c) for the one-short strain gauge, and from 10 per cent 
(b lack line, F ig. 14 b) to 30 per cent (b lack line, F ig. 14 c) for the
four-short strain gauges. Ho wever , there is no more variation in the 
maximum error for the four-long strain gauges. These results show 

that the increase in the correlation length leads to a higher critical 
N R . In addition, the N R for the long strain gauges is less affected 
compared to that of the short strain gauges. Taking N R = 19 (green 
line in Fig. 14 c), the corresponding Young’s moduli for the three 
cases are shown in Fig. 15 (c). Again, as we expect, the frequency at 
which the local and bulk responses start to deviate decreases from 

25 to 1 Hz due to the more heterogeneous fluid distribution. 
For the correlation length of 3 cm, the critical N R for the one- 

short strain gauge, four-short and four-long strain gauges are 39, 
35 and 15, respecti vel y. They are larger than the N R (33, 15 and 
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Figure 15. The Young’s modulus from the one-short (b lue), four -short (b lack) and four -long (red) strain gauges w hen N R is 19. The grey line is the bulk 
response from the reservoir cuboid. The correlation lengths for the fluid distribution are (a) 1 mm, (b) 5 mm, (c) 1 cm and (d) 3 cm. 
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0) at the correlation length of 1 cm. In addition, the maximum
elative error increases from 30 per cent (blue line, Fig. 14 c) to
0 per cent (blue line, Fig. 14 d) for the one-short strain gauge,
rom 15 per cent (black line, Fig. 14 c) to 42 per cent (black line,
ig. 14 d) for the four-short strain gauges and from 5 per cent (red

ine, Fig. 14 c) to 21 per cent (red line in Fig. 14 d) for the four-long
train gauges. These variations show that the long strain gauges
ill also fail to get an approximate bulk response as the correlation

ength increases. Taking N R = 19 (green line in Fig. 11 c), the
orresponding local responses of Young’s modulus are shown in
ig. 15 (d). As expected, the frequency at which the local and bulk
esponses deviate decreases from 1 to 0.6 Hz. 

Overall, increasing the total number of samples ( N R ) tends to
ecrease the relative error between local measurements and the bulk
esponse of the reservoir. Ho wever , the size and number of strain
auges also play a role in determining the critical N R . Specifically, as
he size and number of strain gauges increase, the critical N R tends
o decrease. It means that for a given level of fluid heterogeneity,
ore strain gauges or larger strain gauges are needed to achieve a
ertain level of accuracy. 

.2 The effect of the heterogeneity 

ccording to the above analysis, the error between the local mea-
urement and the bulk response of the cuboid depends on the fluid
etero geneity. Howe ver, increasing the size of the strain gauge can
educe this effect. Thus, it is impor tant to deter mine the optimal
train gauge size that can be used to accurately characterize the
lastic response of natural rock with an acceptable relative error. 

We defined a ratio l S.G. 

l c 
to address the issue, where l S.G. is the

ength of the strain gauge and l c is correlation length, respecti vel y.
our bi-axial strain gauges at mid-height of the sample are used to do
he investigation. It is a standard procedure in the forced-oscillation
xperiment. Fig. 16 shows the relative error of the Young’s modulus
ersus the ratio l S.G. 

l . 

c 

art/ggad289_f15.eps
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Figure 16. The relative error of Young’s modulus versus the ratio of strain gauge length to the correlation length. (a) N R = 1, Sg = 12 per cent; (b) N R = 4, 
Sg = 12 per cent; (c) N R = 26, Sg = 12 per cent; (d) N R = 40, Sg = 12 per cent; (e) N R = 40, Sg = 50 per cent; (f) N R = 40, Sg = 90 per cent. N R is the total 
number of the samples, and Sg is the air saturation. 
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For the air saturation of 12 per cent and N R = 1 (Fig. 16 a), the 
relative error drops from 40 to 6 per cent as the ratio l S.G. 

l c 
increases 

from 0.16 to 8.6, and remains at 6 per cent as the ratio l S.G. 

l c 
increases 

from 8.6 to 26. It means that the strain gauge size should be at least 
8.6 times the correlation length to obtain the lowest relative error for 
one sample. As N R increases from 1 to 4 (Fig. 16 b), the maximum 
relative error decreases from 40 to 16 per cent, and the minimum 

relative error decreases from 6 to 2.5 per cent. Ho wever , the critical 
l S.G. 

l c 
is still 8.6. As the N R increases from 4 to 26 (Fig. 16 c), the 

maximum relative error decreases from 16 to 4.8 per cent, and the 
minimum relative error decrease from 2.5 to 1.5 per cent. In addi- 
tion, the critical ratio of l S.G. 

l c 
decreases from 8.6 to 2.6. Therefore, 
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he increase in the N R can reduce both the relative error and the
ritical ratio l S.G. 

l c 
. As the N R increases from 26 to 40 (Fig. 16 d),

here is no more change for both the relative error and critical ratio
l S.G. 

l c 
. It means there is a critical N R , above which the relative error

nd critical ratio are independent of the N R . 
As the air saturation increases from 12 to 50 per cent (Fig. 16 e)

nd the N R is 40, the maximum relative error increases from 4.8
o 7.8 per cent, and the minimum relative error increases from 1.5
o 2.5 per cent. In addition, the critical l S.G. 

l c 
increases from 2.6 to

.6. As the air saturation further increases from 50 to 90 per cent
Fig. 16 f), the maximum relative error increases from 7.8 to 17.5 per
ent, and the minimum relative error increases from 2.5 to 4.8 per
ent. Ho wever , the critical ratio decreases slightly, from 8.6 to 5.0.
e can thus conclude that fluid saturation can affect the magnitude

f the relative error and the critical ratio l S.G. 

l c 
. It is worth noting that

lthough the relative error increases as the air saturation increases,
he absolute error could decrease because the elastic response at a
igh air saturation is less dispersive than that at a low air saturation.

In summary, our study suggests that using strain gauges with
 size 8.6 times larger than the correlation length can reduce the
elative error to as low as 6 per cent for one sample with four
train gauges. Fur ther more, increasing the total number of tested
amples can further lower the critical ratio and relative error. Fluid
aturation also affects the critical ratio, although not to the same
xtent as the total number of samples. These findings can help
uide laboratory measurements for investigating reservoir seismic
ispersion and attenuation. Ho wever , our study focused only on fluid
eterogeneities and did not consider rock matrix heterogeneities
uch as fractures (Guo et al . 2018 , Gallagher et al . 2022 ) and dual-
orosity medium (Ba et al ., 2015 ), which could complicate the issue.
herefore, future research should aim to address these challenges. 

 CONCLUSIONS 

n this study, we conducted numerical simulations to investigate
he impact of fluid-spatial heterogeneity on the local measurement
f attenuation and elastic dispersion of partially saturated rocks.
ur results revealed a significant difference between the local mea-

urement and bulk response for biphasic saturated samples, which
epends on the location of the strain gauge due to its limited ability
o probe a small portion of the sample’s surface. Both horizontal
nd vertical strain gauge locations considerably influence the local
esponse of various elastic parameters, such as the Young’s modu-
us, the Young’s attenuation, the Poisson’s ratio, and the Poisson’s
hase dif ference. Howe ver, increasing the number and size of strain
auges can approximate the bulk response and reduce the error be-
ween the local and global responses. We identified critical values
or the strain gauge number and size, bey ond w hich the error re-
ains stable, such as a critical strain gauge number of 6–8 and a

ritical strain size of around 26 mm for quasi-fractal fluid distribu-
ion with a correlation length of 1 cm. Simultaneously increasing
he number and size of strain gauges reduce the differences between
ocal and bulk responses compared to using either method alone. 

To further examine the error between the laboratory’s local re-
ponse and the reservoir’s bulk response, we utilized the Monte
arlo procedure. Our findings indicate that increasing the number
f test samples reduces the relative error between the laboratory’s
ocal measurements and the bulk response of the reservoir. The crit-
cal number of test samples depends on the size and number of the
train gauge, and increasing the size and number of strain gauges
an reduce the critical number of test samples. Fluid heterogeneity
lso affects the critical number of the test sample, with an increase
n fluid heterogeneity leading to a higher critical number of test
amples for the same strain gauge number and size. To quantita-
i vel y assess the effect of the heterogeneous fluid distribution, we
onducted an analysis of the relative error versus the ratio of the
train gauge length to the correlation length. Our analysis indicates
hat the relative error can be as low as 6 per cent for the local mea-
urement of four strain gauges when the ratio of the strain gauge
ength to the correlation length is 8.6. Fur ther more, the relative
rror can decrease further to 1.5 per cent with an increase in the
otal number of test samples. The critical ratio is influenced by fluid
aturation but not as much as the total number of tested samples. 

By implementing these findings, we can better understand the
mpact of fluid-spatial heterogeneity on the local measurement of
ttenuation and elastic dispersion of partially saturated rocks, which
as implications for oil and gas exploration industries. Additionally,
ur findings provide valuable guidance for rock physicists investi-
ating frequency-dependent effects in biphasic saturated rock using
he forced oscillation apparatus, enabling them to reduce local mea-
urement errors. 
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Klime š , L. 2002. Correlation functions of random media. Pure appl. Geo- 
phys., 159, 1811–1831. 

Kumar , G. 2003. Fluid effects on attenuation and dispersion of elastic waves, 
Master thesis, Colorado School of Mines, Golden, CO, USA. 

Li , H. , Lin, J., Gao, J., He, Y., Han, D. & Zhao, L. 2020. Precision anal- 
ysis of forced-oscillation device: numerical modelling and experimental 
investigations. J. Geophys. Eng., 17 (6), 980–992. 

Masson , Y. J. & Pride, S. R. 2007. Poroelastic finite difference modeling of 
seismic attenuation and dispersion due to mesoscopic-scale heterogeneity. 
J. geophys. Res., 112 (B3), doi:10.1029/2006JB004592. 
Mavk o , G. , Muk erji, T. & Dvorkin, J. 2009. The Rock Physics Handbook: 
Tools for Seismic Analysis of Porous Media, Cambridge Univ. Press. 

McCann , C. & Sothcott, J. 2009. Sonic to ultrasonic Q of sandstones and 
limestones: laboratory measurements at in situ pressures. Geophysics, 
74 (2), W A93–W A101. 

Mikhaltse vitch , V. , Lebede v, M. & Gure vich, B. 2011. A low-frequency 
apparatus for characterizing the mechanical properties of rocks, in Pre- 
sented at the 73rd EAGE Conference and Exhibition incorporating SPE 

EUROPEC 2011, May 2011, cp-238-00537, European Association of 
Geoscientists & Engineers. 

Mikhaltse vitch , V. , Lebede v, M. & Gure vich, B. 2014. A laboratory study 
of elastic and anelastic properties of Savonnieres Limestone (Vol. 2014, 
pp. 1–5), in Presented at the 76th EAGE Conference and Exhibition 
2014, Amsterdam, Netherlands, European Association of Geoscientists 
& Engineers. 

Mikhaltse vitch , V. , Lebede v, M. & Gure vich, B. 2015. A laboratory study of 
attenuation and dispersion effects in glycerol-saturated Berea sandstone 
at seismic frequencies, in SEG Technical Pr ogr am Expanded Abstr acts 
2015, pp. 3085–3089, Society of Exploration Geophysicists. 
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M üller , T. M. , Gurevich, B. & Lebedev, M. 2010. Seismic wave attenua- 
tion and dispersion resulting from wave-induced flow in porous rocks: a 
re vie w. Geophysics, 75 (5), 75A147–75A164. 
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