Supplementary Information: Synthesis, Photophysical Characterization and Integration of Two-Photon Fluorophores in Mesoporous Organosilica Nanoparticles for Biological Imaging Use

Nicolas Bondon ${ }^{\text {a,b, },}$, Nicolas Richy ${ }^{\mathrm{b}}$, Lamiaa M. Ali ${ }^{\mathrm{c}, \mathrm{d}}$, Denis Durand ${ }^{\mathrm{c}}$, Magali Gary-Bobo ${ }^{\mathrm{c}}$, Yann Molard ${ }^{\mathrm{b}}$, Grégory Taupier ${ }^{\text {b }}$, Frédéric Paul ${ }^{\text {b }}$, Nadir Bettache ${ }^{\mathrm{c}}$, Jean-Olivier Durand ${ }^{\text {a }}$, Christophe Nguyen ${ }^{\mathrm{c}}$, Clarence Charnay ${ }^{\text {a, }{ }^{*}}$ and Olivier Mongin ${ }^{\text {b, * }}$

1.1 ${ }^{1}$ H NMR of newly synthesized compounds

Figure S1. ${ }^{1} \mathrm{H}$ NMR spectrum of intermediate compound 6 (in CDCl_{3}).

Figure S2. ${ }^{1} \mathrm{H}$ NMR spectrum of intermediate compound 7 (in CDCl_{3}).

Supplementary Information: Synthesis, Photophysical Characterization and Integration of Two-Photon Responsive Fluorophores in Mesoporous Organosilica Nanoparticles for Biological Imaging Use

Figure S3. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{8}(\mathrm{F})$ bearing one phenylene-vinylene linker (in $\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right)$.

Figure S4. ${ }^{1} \mathrm{H}$ NMR spectrum of three-branched fluorophore 9 (F2) bearing two phenylene-vinylene linkers (in THF- d_{8}).

Figure S5. ${ }^{1} \mathrm{H}$ NMR spectrum of the silylated fluorophore $\mathbf{1 0}\left(\mathrm{F}-\mathrm{Si}\right.$, in $\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right)$.
1.2 ${ }^{13} \mathrm{C}$ NMR spectra of newly synthesized compounds

Figure S6. ${ }^{13} \mathrm{C}$ NMR spectrum of intermediate compound 6 (in CDCl_{3}).

Supplementary Information: Synthesis, Photophysical Characterization and Integration of Two-Photon Responsive Fluorophores in Mesoporous Organosilica Nanoparticles for Biological Imaging Use
${ }^{13} \mathrm{C}$ NMR - Compound 7 - CDCl_{3}

Figure S7. ${ }^{13} \mathrm{C}$ NMR spectrum of intermediate compound 7 (in CDCl_{3}).

Figure S8. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{8}(\mathrm{F})$ bearing one phenylene-vinylene linker (in $\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right)$.

Supplementary Information: Synthesis, Photophysical Characterization and Integration of Two-Photon Responsive Fluorophores in Mesoporous Organosilica Nanoparticles for Biological Imaging Use

Figure S9. ${ }^{13}$ C NMR spectrum of three-branched fluorophore 9 (F2) bearing two phenylene-vinylene linkers (in THF- d_{8}).

Figure S10. ${ }^{13} \mathrm{C}$ NMR spectrum of the silylated fluorophore $\mathbf{1 0}\left(\mathrm{F}-\mathrm{Si}\right.$, in $\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right)$.

Supplementary Information: Synthesis, Photophysical Characterization and Integration of Two-Photon Responsive Fluorophores in Mesoporous Organosilica Nanoparticles for Biological Imaging Use
1.3 HRMS spectra of newly synthesized compounds

Figure S11. HRMS spectrum (ES ${ }^{+}$) of intermediate compound 6.

Figure S12. HRMS spectrum (ES^{+}) of intermediate compound 7.

Supplementary Information: Synthesis, Photophysical Characterization and Integration of Two-Photon Responsive Fluorophores in Mesoporous Organosilica Nanoparticles for Biological Imaging Use

Figure S13. HRMS spectrum $\left(\mathrm{ES}^{+}\right)$of $\mathbf{8}(\mathrm{F})$ bearing one phenylene-vinylene linker.

Figure S14. HRMS spectrum (MALDI) of three-branched fluorophore 9 (F2) bearing two phenylenevinylene linkers.

Supplementary Information: Synthesis, Photophysical Characterization and Integration of Two-Photon Responsive Fluorophores in Mesoporous Organosilica Nanoparticles for Biological Imaging Use

Figure S15. HRMS spectrum $\left(\mathrm{ES}^{+}\right)$of the silylated fluorophore $10(\mathrm{~F}-\mathrm{Si})$.
1.4 Two-photon responsive character of newly synthesized fluorophores

Figure S16. Quadratic dependence of the chromophore's emission intensity on the laser excitation power. Fluorophore F (left) and fluorophore F2 (right) were excited in THF at 700 nm .

Figure S17. TCSPC data of F in THF (grey curve: measured decay; black curve: IRF; red curve: fitted decay; blue curve: residuals).

Figure S18. TCSPC data of F2 in THF (grey curve: measured decay; black curve: IRF; red curve: fitted decay; blue curve: residuals).

1.5 Cytotoxicity of fluorophore-based periodic mesoporous organosilica nanoparticles

The cytotoxic effect of the three NPs was studied by incubating MCF-7 cells with increasing concentrations (from 5 to $200 \mu \mathrm{~g} \mathrm{~mL}^{-1}$) of NPs for 72 h . Figure S6 shows a very low decrease in cell viability with 76% of viability for E 4S F-2 NPs at the highest concentration and more than 85% for E 4S F-1a and E 4 S F-1b NP. These data suggest the biocompatibility of these NPs.

Figure S19. Toxicity studies of different F PMO on human breast MCF-7 cancer cells incubated with different concentrations for 72 h . Data are presented as mean \pm standard error of mean (SEM) of two independent experiments.
1.6 Quantification of nanoparticles' internalization in cancer cells from their intrinsic fluorescence

The quantification of fluorophore-PMO NPs inside cancer cells demonstrated that E 4S F-2 is around two-fold more efficiently internalized than E 4S F-1b and four-fold more than E4S F-1a.

Figure S20. Quantification of fluorophore-PMO NPs inside MCF-7 cells. All the surface of the picture was submitted to quantification using ImageJ software. Values are levels of NP luminescence presented in arbitrary units.

