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ARTICLE OPEN

Anharmonic electron-phonon coupling in ultrasoft and locally
disordered perovskites
Marios Zacharias 1✉, George Volonakis 2, Feliciano Giustino 3,4 and Jacky Even 1✉

Anharmonicity and local disorder (polymorphism) are ubiquitous in perovskite physics, inducing various phenomena observed
in scattering and spectroscopy experiments. Several of these phenomena still lack interpretation from first principles since,
hitherto, no approach is available to account for anharmonicity and disorder in electron–phonon couplings. Here, relying on the
special displacement method, we develop a unified treatment of both and demonstrate that electron–phonon coupling is
strongly influenced when we employ polymorphous perovskite networks. We uncover that polymorphism in halide perovskites
leads to vibrational dynamics far from the ideal noninteracting phonon picture and drives the gradual change in their band gap
around phase transition temperatures. We also clarify that combined band gap corrections arising from disorder, spin-orbit
coupling, exchange–correlation functionals of high accuracy, and electron–phonon coupling are all essential. Our findings agree
with experiments, suggesting that polymorphism is the key to address pending questions on perovskites’ technological
applications.

npj Computational Materials           (2023) 9:153 ; https://doi.org/10.1038/s41524-023-01089-2

INTRODUCTION
Oxide perovskites are fascinating materials with extensive
applications owing to their intrinsic ferroelectric, antiferroelectric,
and piezoelectric properties1. Halide perovskites are of high
interest due to their impressive efficiencies in solar cells2,3, and
attractive applications in optoelectronics, electrocatalysis, and
thermoelectrics4–6. Our understanding of perovskites’ key proper-
ties is connected to deviations of the vibrational dynamics and
electron–phonon coupling from the standard picture observed in
conventional semiconductors7,8. For example, halide perovskites
exhibit (i) ultralow thermal conductivities attributed to their low-
energy vibrational densities and peculiar anharmonic character-
istics9,10 and (ii) limited carrier mobilities which have been
discussed in terms of electron–phonon Fröhlich coupling11,
dipolar scattering arising from anharmonic halide motion12, and
polaronic transport13.
A signature of strong anharmonicity in tetragonal or cubic

perovskites (stoichiometry ABX3) is the multi-well potential energy
surface (PES), U, described by nuclei displacements, Δτ, away from
their static-equilibrium positions (Fig. 1a). Static-equilibrium
geometries occur when the net force on each atom vanishes,
giving rise to local extrema in the PES. The high-symmetry
idealized geometry, also referred to as monomorphous struc-
ture14, corresponds to a local maximum; it features perfectly
aligned octahedra and can be described by a reference unit cell
composed of a few atoms. Local minima are explored when the
nuclei move away from their high-symmetry positions, forming a
locally disordered (or polymorphous) network characterized by
tilted BX3 octahedra and a distorted configuration of the A cations
(Fig. 1a). Description of this form of static or quasi-static (vide infra)
disorder requires supercells that can accommodate symmetry-
breaking domains between the repeated unit cells.
Typical density functional theory (DFT) calculations of tetra-

gonal or cubic perovskites rely on the assumption of a high-

symmetry network, disregarding the locally disordered ground
state configurations. This assumption misses important correc-
tions to the electronic structure14,15 and requires enforcing the
crystal’s symmetries on anharmonic phonon dynamics16, thus,
represented by idealized well-defined dispersions. Such behavior
is disconnected from measurements of overdamped optical
vibrations, structural disorder, and complex pretransitional
dynamics close to structural phase transitions17–26. Furthermore,
direct evidence of local disorder in cubic perovskites is observed
in measurements of pair distribution functions (PDFs), Bragg
diffraction, and extended diffuse scattering23,27–31.
In this work we demonstrate the important role of anharmo-

nicity and local disorder in the electronic structure, phonon
dynamics, and electron–phonon coupling of oxide and halide
perovskites (SrTiO3, CsPbBr3, CsPbI3, and CsSnI3). Hybrid halide
perovskites undergo additional relaxations related to molecular
reorientations, but as a proof of concept we here focus on
inorganic compounds. We show from first-principles that (i) local
disorder and anharmonicity are at the origin of overdamped and
strongly coupled phonons; (ii) local disorder and anharmonicity
are essential to describe electron–phonon coupling; (iii) low-
energy anharmonic optical vibrations dominate thermal band gap
renormalization; (iv) local disorder is the key to explain the smooth
evolution of the band gap with temperature around phase
transitions; (v) a full description of band gaps and effective masses
requires combining disorder with fully relativistic effects. To
address points (i)–(iv), we employ a recently developed approach,
namely anharmonicity via the special displacement method (A-
SDM)32, that allows the unified treatment of anharmonic
electron–phonon coupling. Our study calls for revisiting open
questions related to electron–phonon and anharmonic properties
of halide and oxide perovskites.
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RESULTS
Lattice dynamics
We start the description of lattice dynamics with the harmonic
approximation and take the expansion of a multi-well PES up to
second order in atomic displacements to write:

Ufτg ¼ U0 þ 1
2

X

i;i0
Ci;i0 Δτi Δτi0 : (1)

U0 is the potential energy with the atoms clamped either at their
high-symmetry or locally disordered configuration. This statisti-
cally disordered initial configuration can be obtained using a
similar procedure (see “Methods”) to the one described in ref. 14.
Atomic displacements away from a PES extremum are represented
by Δτi where i is a composite index for the atom, coordinate, and
cell. The interatomic force constants (IFCs), defined as
Ci;i0 ¼ ∂2U=∂τi∂τi0 , are used to compute the phonons of the

high-symmetry or locally disordered structures at 0 K, depending
on the stationary point at which the second derivatives are
evaluated for.
To incorporate anharmonicity in the lattice dynamics we

employ the A-SDM that combines the self-consistent phonon
theory developed by Hooton33 and the special displacement
method (SDM) developed by Zacharias and Giustino (ZG)34,35. In
the A-SDM, we fixed the nuclei in a supercell at positions
determined by ZG displacements and evaluate the IFCs at
temperature T as32:

Ci;i0 ðTÞ ’ ∂2UfτZGg
∂τ i∂τi0

: (2)

This procedure is performed iteratively until self-consistency in the
phonon spectra is achieved. The merit of the A-SDM is that the ZG
nuclei coordinates, {τZG}, allow to explore automatically an
effective temperature-dependent harmonic potential that best

Fig. 1 Locally disordered (polymorphous) structures of cubic perovskites. a Schematic illustration of the potential energy U of cubic
perovskites as a function of nuclei displacements Δτ. The local maxima or saddle points for Δτ= 0 corresponds to the high-symmetry
structure with the atoms fixed at their Wyckoff positions. The local minima correspond to locally disordered structures. b Potential-well depth
(ΔU) calculated for locally disordered cubic SrTiO3, CsSnI3, CsPbBr3, and CsPbI3 using 2 × 2 × 2 supercells as a function of the average B-X-B
bond angle. c–f Locally disordered structures of SrTiO3 (c), CsSnI3 (d), CsPbBr3 (e), and CsPbI3 (f). More computational details are available in
Methods. g, h Pair distribution function (PDF) of disordered cubic SrTiO3 (g) and CsPbI3 (h). Vertical dashed lines represent pair distribution
functions of the high-symmetry structures.
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captures the solution of the nuclear Schrödinger equation. The
anharmonic phonons can then be used to describe the crystal’s
vibrational properties. The various schemes used to compute
phonon dispersions in this work are described in Supplementary
Table 2.

Electron–phonon renormalized observables
Here, we take the A-SDM one step beyond and employ the self-
consistent {τZG} for the nonperturbative evaluation of
electron–phonon coupling in anharmonic systems. Following
ref. 35, the renormalization of any temperature-dependent
property related to the electronic structure can be expressed as:

ΔOðTÞ ¼ 1
2

X

ν

∂2Ofτg

∂x2ν
σ2ν þOðx4νÞ; (3)

where xν represents the normal coordinate of the phonon, σν is
the associated mean-square displacement of the atoms, and ν is a
composite index for the band and wavevector. The notation Oðx4νÞ
represents terms of fourth order and higher in xν. The ZG
displacements derived from the A-SDM define the optimum
collection of coordinates within a supercell that allows to compute
accurately Eq. (3), describing, at the same time, anharmonicity in
the PES. In this work, we focus on electron–phonon renormalized
band gaps of tetragonal or cubic perovskites, often described36 by
a harmonic theory introduced by Allen and Heine37. In this case,
the derivatives ∂2Ofτg=∂x2ν involve linear and second order
variations of the PES leading to the Fan–Migdal and Debye–Waller
self-energy corrections38. Computing the renormalization starting
from the locally disordered structure yields different results since
(i) electron–phonon self-energy corrections are evaluated for local
minima in the PES instead of maxima (c.f. Fig. 1a), (ii) electron
wavefunctions are modified, and (iii) phonon frequencies are
renormalized.

Potential-well depth and relation to local disorder
The depth of the potential-well is, in principle, equivalent to the
potential energy lowering obtained for the ground state structure
and provides an indicator of the degree of anharmonicity and
static disorder. In Table 1 we report the energy lowering (ΔU) and
average B-X-B bond angle (θBXB) calculated for locally disordered
cubic SrTiO3, CsSnI3, CsPbBr3, and CsPbI3. Our calculations are in
good agreement with data reported in Refs. 14 and15 (see also
Supplementary Table 1). In Fig. 1b, we plot the relationship
between local disorder, represented by θBXB, and the potential-

well depth. We find that halide perovskites exhibit a considerably
higher degree of anharmonicity than SrTiO3 which reflects the
larger disorder characterizing their ground state networks
(realized schematically in Fig. 1c–f) and PDFs (Fig. 1g, h); this
finding is connected to the much softer elastic shear modulus39,40

as well as the different ionicity and bonding nature of halide
perovskites39,41.

Impact of local disorder on phonons at 0 K
In Fig. 2a, b, we present phonon spectral functions computed for
locally disordered SrTiO3 and CsPbI3; for CsSnI3 and CsPbBr3 see
Supplementary Fig. 1. We also include phonon dispersions (black)
obtained for high-symmetry structures which display large
instabilities represented by negative phonon frequencies. Impor-
tantly, allowing the systems to explore ground state disorder leads
to dynamically stable phonons (color maps). In Fig. 2a, we observe
band replicas of the Γ appearing at the R point and vice versa;
these features arise from finite size effects and vanish with the
supercell size (Supplementary Fig. 2). Local disorder in SrTiO3 also
induces a large softening of the acoustic branch along R-M with
the frequency at R reaching as low as 2 meV.
Remarkably, polymorphism induces extensive broadening and

non-dispersive (flattened) optical bands which are overdamped
across the reciprocal space of CsPbBr3, CsPbI3, and CsSnI3
(Fig. 2b–d and Supplementary Fig. 1). Focusing in the frequency
region below 4 meV (Fig. 2e), only the acoustic phonons around
the Γ-point are clearly identified. This behavior is consistent with
experiments performed on lead perovskites23,42, suggesting that
acoustic phonons emerge from a bath of dispersionless optical
vibrations (Fig. 2f). Here, we propose a picture of strongly coupled
optical vibrations iAverage B-X-B bond angle plotted as a function
of the pnstead of weakly-interacting phonon quasi-particles, since
momentum information on phonons is smeared out. In fact, local
disorder, which is distinct from thermal disorder arising from
vibrational fluctuations43, is expected to reduce further the
phonon correlation lengths and lifetimes of halide perovskites.
Due to its low degree of local disorder, this behavior is not
adopted by SrTiO3 which exhibits well-defined phonons in the
spectral function (Fig. 2a). The extent of vibrational broadening
and coupling is also interconnected with the deviation of the PDFs
from the archetypal high-symmetry picture (Fig. 1g, h) and lattice
softness40. Furthermore, local disorder in halide perovskites causes
the decrease in energy of optical vibrations, leading to a
narrowing of the phonon dispersion and thereby to enhanced
phonon bunching (Fig. 2b).

Table 1. Band gaps of high-symmetry and locally disordered perovskites.

ΔU θBXB EsrDFTg EDFTg EHSEg EPBE0g ΔEg(T) Eexpt:g

meV [f.u.]−1 ∘ eV eV eV eV eV eV

hs-SrTiO3 – 180.0 1.87 1.86 3.09 3.83 −0.17 (300K) –

d-SrTiO3 −8 170.4 2.11 2.12 3.40 4.15 −0.25 (300K) 3.18

hs-CsPbBr3 – 180.0 1.44 0.23 1.02 1.63 0.30 (430K) –

d-CsPbBr3 −80 155.3 1.94 0.80 1.68 2.30 0.09 (430K) 2.39

hs-CsPbI3 – 180.0 1.20 0.06 0.58 1.15 0.24 (650K) –

d-CsPbI3 −111 154.7 1.75 0.62 1.28 1.87 0.06 (650K) 1.78

hs-CsSnI3 – 180.0 0.12 −0.27 0.0 0.0 0.23 (500K) –

d-CsSnI3 −61 157.3 0.62 0.28 0.73 1.30 0.08 (500K) 1.3

Relative total energy with respect to high-symmetry structure (ΔU), average B-X-B bond angle (θBXB), band gap (Eg), and phonon-induced band gap
renormalization (ΔEg(T)) of high-symmetry (hs) and disordered (d) cubic SrTiO3, CsPbBr3, CsPbI3, and CsSnI3. Calculations of Eg were performed in 2 × 2 × 2
supercells using the DFT-PBEsol, HSE, and PBE0 functionals (see “Methods”). ΔEg(T) [Eq. (3)] was evaluated using ZG displacements in 4 × 4 × 4 supercells by
taking as a reference the A-SDM IFCs and nuclei positions obtained for 2 × 2 × 2 supercells. Temperatures are such that the cubic phase of each compound is
thermodynamically stable. srDFT indicates scalar relativistic DFT calculations; all other reported band gaps include the effect of spin-orbit coupling.
Experimental band gaps of cubic SrTiO3, CsPbBr3, CsPbI3, and CsSnI3 are from refs. 48–51, respectively.
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Figure 3a–c show the phonon spectral functions (color maps) of
the three different structural phases of CsPbBr3 calculated using
locally disordered networks. In each plot, we report the harmonic
phonon dispersions of the monomorphous structures (black lines),
the potential well-depth (ΔU), and the total energy difference with
respect to the energy of the orthorhombic phase (ΔUORH). As
expected, the level of phonon instabilities in the monomorphous
networks are related to the depth of ΔU in each phase. As
evidenced by the calculated ΔUORH, the locally disordered
tetragonal and cubic CsPbBr3 lie higher in energy than their
orthorhombic analog [Fig. 3d]. It is also apparent that local
disorder in the orthorhombic structure has a negligible effect on
the system’s total energy, yielding identical stable phonons with
those obtained for the monomorphous phase. On the contrary,
local disorder relatively to the cubic and tetragonal high-
symmetry networks is much more prominent, increasing the
coupling between individual bands and, hence, suggesting a

further decrease in the lattice thermal conductivity of these
phases9.

Temperature-dependent phonon anharmonicity
Figure 4a, b show temperature-dependent phonon dispersions of
the high-symmetry (black) SrTiO3 and CsPbBr3 calculated using
the A-SDM32; for CsPbI3 and CsSnI3 see Supplementary Fig. 3. The
phonon spectral functions (color maps) are obtained by combin-
ing the atomic positions of locally disordered networks with the
IFCs obtained by A-SDM (see also discussion around Supplemen-
tary Table 2). It can be seen for SrTiO3 that the spectral function
follows closely the A-SDM phonon dispersion. This observation
aligns with a picture of non-interacting phonons at low
temperatures and it is also related with the minimal level of local
disorder in SrTiO3 reported in Table 1. On the contrary, symmetry-
breaking in halide perovskites induces the coupling of low-energy
optical vibrations and the reduction of their coherence lengths.

Fig. 2 Vibrational spectra at 0 K of locally disordered oxide and halide perovskites. a, b Phonon spectral functions (color maps) of locally
disordered cubic SrTiO3 (a) and CsPbI3 (b) calculated using 2 × 2 × 2 supercells and the phonon unfolding technique (see Methods). Black
curves represent phonon dispersions obtained for the high-symmetry structures. All calculations include corrections due to long-range
dipole–dipole interactions. c, d Phonon spectral function of disordered cubic CsPbI3 visualized in 3D. The spectral function spans the
momentum plane Γ-X-R-M. e Phonon spectral function of disordered cubic CsPbI3 around zone center. The negative region, representing loss
of energy in neutron scattering experiments, is obtained as a mirror image of the positive region. f Experimental data of methylammonium
(MA) lead iodide (MAPbI3) measured by inelastic neutron scattering (positive or negative energy transfers) at room temperature23.
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Moreover, accounting for temperature-dependent anharmonicity
in our calculations via the A-SDM reproduces the thermal
vibrational softening along R-M (Fig. 4b and Supplementary
Fig. 3), consistent with previous calculations25,44.

Diffuse scattering
In Fig. 4c–h, we present thermal diffuse scattering maps of SrTiO3

and CsPbBr3 at 300 K and 500 K; for CsPbI3 and CsSnI3 check
Supplementary Fig. 4. We find that using the phonons obtained
for the disordered networks (i.e spectral function in Fig. 2a)
reproduces better the experimental maps45 of SrTiO3 in (Qx, Qy, 1/
2) (Fig. 4e) and (Qx, Qy, 3/2) (Fig. 4f) reciprocal planes, where
Q= (Qx, Qy, Qz) is the scattering wavevector. Importantly, in the
calculated maps we can identify the emergence of phonon-
induced scattering peaks at the R-points which correspond to the
ultrasoft phonons discussed for Fig. 2a. These features are present
in X-ray diffuse scattering measurements of ref. 45 and attributed
to dynamic disorder due to antiphase rotations of the octahedra,
mimicked by the static distortions present in our disordered
network. Note that diffuse scattering at R is absent when the high-
symmetry structure with the A-SDM phonons calculated for
2 × 2 × 2 supercells are combined (Supplementary Figs. 5 and 6).

At variance with SrTiO3, the scattering maps computed for the
high-symmetry CsPbBr3 at 500 K yield better agreement with
measurements reported in ref. 25. To illustrate this we perform
calculations of scattering maps in the (Qx, Qy, 1/2) plane for two
separate frequency ranges (Figs. 4g and 3h) using the A-SDM
phonons. Focusing on the scattering induced by ultraslow
dynamics (<2.5 meV), the acoustic soft branch along R-M leads
to the formation of vertical and horizontal diffuse rods across
several Brillouin zones, as observed in measurements for CsPbBr3
(Fig. 4i). We stress that local disorder induces a hardening of the
modes along R-M (Supplementary Fig. 1), and thus it prevents the
formation of diffuse rods (Supplementary Fig. 7). This comes as no
surprise since the disordered network should be regarded as a
quasi-static approximation that cannot describe the ultraslow
dynamical octahedral tilting25,26 and, thus, the relaxation of the
system between various (deep) minima in the PES. Focusing on
the scattering induced by low-energy excitations (2.5–10 meV), we
detect broad diffuse rods along M-X (Fig. 4h) which are in close
agreement with measurements in the range 2.0–10 meV (Fig. 4j).
Now, employing the phonons of the locally disordered network
perfectly reproduces the diffuse scattering maps (Supplementary
Fig. 4), demonstrating that, unlike the ultraslow octahedra

Fig. 3 Vibrational spectra at 0 K of locally disordered halide perovskites for different structural phases. a–c Phonon spectral functions
(color maps) of disordered orthorhombic (a), tetragonal (b), and cubic (c) CsPbBr3 calculated using 2 × 2 × 2 supercells and the phonon
unfolding technique (see “Methods”). ΔU indicates the total energy decrease relative to the corresponding monomorphous structure, and
ΔUORH indicates the total energy increase with respect to the disordered orthorhombic (ORH) phase. All energies are reported in meV per
formula unit (f.u., 5 atoms). The harmonic phonon dispersions obtained for the symmetric structures are represented by black curves.
Corrections due to dipole-dipole interactions are included. d Schematic illustration of the cubic, tetragonal, and orthorhombic PES of CsPbBr3.
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relaxations (<2.5 meV), the low-energy vibrations (2.5–10meV) are
captured correctly.
Interestingly, in Fig. 4g and Supplementary Fig. 4, we can

identify low intensity multiphonon scattering signatures at the
X-points arising from the combined momenta of two phonons
along M-R. These fine structures are present in neutron scattering
maps of CsPbBr3 (Fig. 4i), but not interpreted before. Our findings
here suggest that low-energy multiphonon excitations are another

source of manifestation of anharmonicity in halide perovskites,
emerging from highly anharmonic zone-edged modes.

Effect of disorder on anharmonic electron–phonon coupling
Figure 5a, b compare the electron spectral functions of locally
disordered cubic SrTiO3 and CsPbI3 (color maps) with the band
structures of their high-symmetry counterparts (black); for CsSnI3

Fig. 4 Temperature-dependent anharmonic phonons of cubic perovskites. a, b Temperature-dependent anharmonic phonons (black lines)
of cubic SrTiO3 at 300 K (a) and CsPbBr3 at 500 K (b) calculated within the A-SDM using 2 × 2 × 2 supercells. Color maps represent phonon
spectral functions of the disordered structures. c–f Computed and measured diffuse scattering maps at 300 K of cubic SrTiO3 in the (Qx, Qy, 0)
(c, e) and (Qx, Qy, 1/2) (d, f) reciprocal planes. Calculations are performed using the phonons of the disordered network. X-ray scattering data
are from ref. 45. g–j Computed and measured diffuse scattering maps at 500 K of cubic CsPbBr3 in (Qx,Qy, 1/2) reciprocal plane. Calculations are
performed using the A-SDM phonons and high-symmetry network to probe ultraslow (<2.5 meV) (g) and low-energy (2.5–10 meV) (h) phonon
dynamics. Neutron scattering data are from ref. 25 and refer to the energy windows of <2.0 meV (i) and 2.0–10 meV (j). Diffuse scattering maps
are obtained within the Laval–Born–James81,82 theory (see “Methods”). The scattering wavevector Q is expressed in reciprocal lattice units
(r.l.u.). Various schemes used to compute phonons and diffuse scattering are discussed in Supplementary Table 2.
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and CsPbBr3 check Supplementary Fig. 8. The effect of symmetry-
breaking domains on the electronic structure can be understood
intuitively by inspection of the PDFs (Fig. 1g, h). It turns out that
local disorder induces slight changes in the electronic structure of
SrTiO3 with the main impact being on the band edges at Γ and R
points (Fig. 5a). In particular, symmetry lowering induces a band
gap opening of 0.24 eV which is in agreement with the value
reported in ref. 15.
Local disorder causes distinct changes on the electronic structure

of cubic halide perovskites (Fig. 5b and Supplementary Fig. 8). Those
are large band gap openings, band dispersion renormalization, and
band broadening. The quantitative comparison between the band
gaps calculated for the high-symmetry and disordered halide

perovskites is provided in Table 1. Our calculations reveal a band
gap enhancement due to local disorder of more than 0.50 eV for
cubic CsPbBr3, CsPbI3, and CsSnI3, similarly to previous calculations14.
Owing to a higher degree of local disorder, represented by θBXB in
Table 1, halide perovskites exhibit a larger band gap opening than
SrTiO3. Interestingly, this observation suggests an indirect relation-
ship between anharmonicity and the band gap in perovskite
systems. In fact, the connection between θBXB with the band gap is
related to the changes in the overlap between the metal and
halogen states41. Moreover, our calculations show that local disorder
in the tetragonal and orthorhombic phases of CsPbBr3 yields band
gap enhancements of 0.17 and 0.001 eV. These values are much
lower than the one obtained for the cubic phase (0.57 eV), in line

Fig. 5 Electron–phonon renormalized band gaps of cubic perovskites. a, b Fully-relativistic electron spectral functions (color maps) of
disordered cubic SrTiO3 (a) and CsPbI3 (b) calculated using 2 × 2 × 2 supercells and the band unfolding technique35. Black curves represent the
band structures of the high-symmetry networks. c As in (b) but now focusing around the band edges at R. d As in (c) but now the effect of
electron–phonon coupling at 0 K [i.e. the ZPR] via the A-SDM is included. e HSE and PBE0 band gaps of high-symmetry and disordered cubic
perovskites including the effect of SOC and electron–phonon coupling. Lines represent the average of HSE and PBE0 band gaps and the
shaded areas define the uncertainty. Experimental gaps (black) of SrTiO3, CsPbBr3, CsPbI3, and CsSnI3 are from refs. 48–51. f, g Phonon-induced
band gap renormalization of high-symmetry (red) and disordered (blue) cubic SrTiO3 (f) and CsPbBr3 (g) as a function of temperature
calculated using ZG displacements for 6 × 6 × 6 and 4 × 4 × 4 supercells, respectively. The data below the phase transition temperature (~105
K) of SrTiO3 are obtained using the tetragonal structure and ZG displacements for 6 × 4 × 4 supercells. ZG displacements were generated using
anharmonic A-SDM IFCs and accounting for thermal lattice expansion. For CsPbBr3 the effect of SOC is included and the renormalization is
determined with respect to T= 405 K. Optical spectroscopy data (gray) for SrTiO3 and CsPbBr3 are from refs. 48,49. Except for (e) all calculations
are performed within DFT-PBEsol.
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with the potential well-depth of each phase (Fig. 3d). Our values for
the Pb-based compounds in Table 1 show that spin-orbit coupling
(SOC) induces a giant gap closing of 1.1–1.2 eV, in agreement with
ref. 46. We find that SOC has also a strong influence on the effective
mass enhancement due to local disorder (Supplementary Table 3).
For instance, excluding SOC, local disorder leads to electron and
hole mass enhancements λ (see “Methods”) between 0.4–1.2. When
SOC is taken into account, the disordered networks yield λ of 1.3–2.3
for CsPbBr3 and 3.3–4.7 for CsPbI3. We stress that the calculated
effective masses of disordered CsPbBr3 and CsPbI3, ranging between
0.13–0.20, compare well with 0.114 and 0.126 measured from inter-
Landau level transitions in CsPbI3 and CsPbBr3, respectively47.
The impact of local disorder is clearly manifested in the electronic

structure of CsSnI3 (Supplementary Fig. 8). The fully relativistic band
structure of high-symmetry CsSnI3 exhibits an artifact in the
conduction band minimum, resulting from the exchange of orbital
character between the band edges. This suggests a metallic-like
behavior for CsSnI3 (hence the value -0.27 eV in Table 1) and leads
to unphysical negative electron effective masses at the R-point.
Instead, accounting for local disorder recovers the standard picture
of a parabolic conduction band minimum with positive effective
masses of 0.08 and a direct gap of 0.28 eV at the R-point.
The fully relativistic DFT band gaps of disordered perovskites

still largely underestimate the experimental values48–51, reported
in Table 1, by more than 1 eV, due to the DFT semi-local
description of correlation effects. As shown in Table 1, this
discrepancy is significantly alleviated when self-energy corrections
through the HSE and PBE0 hybrid functionals are accounted for.
In Fig. 5c, d, we compare the electronic structure around the

band extrema of disordered CsPbBr3 without and with the effect
of phonon-induced zero-point renormalization (ZPR)35.
Electron–phonon interactions, incorporated by ZG displacements
in 2 × 2 × 2 supercells, induce a band gap opening, yielding a ZPR
of 29 meV. Increasing the supercell size to 4 × 4 × 4 reverses the
sign of the ZPR and yields a band gap decrease of 35 meV. We also
comment that combining disorder with ZG displacements does
not lead to an artificial Rashba–Dresselhaus splitting of the doubly
degenerate band extrema, reflecting that perovskite crystals
should maintain centrosymmetricity at thermal equilibrium52.
Table 1 also reports the phonon-induced band gap renorma-

lization, ΔEg(T), of cubic SrTiO3, CsPbBr3, CsPbI3, and CsSnI3 at 300,
430, 650, and 500 K, respectively, using 4 × 4 × 4 ZG supercells. It
turns out that electron–phonon interactions at finite temperatures
result in the closure of the band gap in SrTiO3, whereas in halide
perovskites, electron–phonon interactions cause the opening of
the band gap. Accounting for local disorder in all compounds
reduces ΔEg(T) by 80–210 meV. This is related to the different
potential experienced by electrons in the disordered network,
affecting the electron–phonon matrix elements (see also discus-
sion around Eq. (3)). Interestingly, for halide perovskites, we
observe an almost linear correlation [33 meV/(∘)] between the
reduction in ΔEg(T) due to disorder and the decrease in θBXB.
Figure 5e shows that experimental values lie within the range of

our electron–phonon corrected HSE and PBE0 band gaps for all
disordered compounds. In fact, by adding ΔEg(T) to the average
PBE0/HSE gap yields 3.53, 2.08, 1.64, and 1.10 eV for cubic SrTiO3,
CsPbBr3, CsPbI3, and CsSnI3, respectively, in good agreement with
experiments. Our findings here suggest that accurate electronic
structure calculations of cubic perovskites require the combined
corrections due to local disorder, SOC, functionals beyond DFT53,
and electron–phonon coupling.
In Fig. 5f, g, we show the temperature dependence of the band

gap renormalization evaluated for the high-symmetry (red) and
locally disordered (blue) cubic SrTiO3 and CsPbBr3 using the
A-SDM. Our calculations for high-symmetry SrTiO3 underestimate
experimental data (black) from ref. 48. This underestimation is
reduced when the disordered network is employed. In fact,
electron–phonon coupling is strongly modified inducing a

correction to the band gap closing of ~30%. This finding together
with the computed diffuse scattering patterns further support the
presence of local disorder in cubic SrTiO3. As seen in Fig. 5g, using
the disordered CsPbBr3 also provides an accurate description of
the band gap renormalization, explaining the low variation of the
experimental data with temperature50. Our analysis (see “Meth-
ods”) yields that the low-energy anharmonic optical vibrations
dominate electron–phonon coupling in locally disordered halide
perovskites, contributing 88% to the band gap renormalization,
but strongly departing from the simplified picture of a Fröhlich
interaction related to harmonic modes. This is consistent with
photoluminescence spectra measurements of halide perovskite
nanocrystals, which suggest a dominant (negligible) contribution
of low-energy optical vibrations (acoustic phonons) to
exciton–phonon coupling54. The band gap renormalization
calculated using the high-symmetry structure is consistently
300% larger than experiment, fact that further casts doubt on
the use of a fully ordered network in first-principles calculations of
cubic halide perovskites. The remarkable success of the cubic
polymorphs in describing electron–phonon coupling is explained
by inspecting the electron lifetimes in halide perovskites (~4–6
fs)55,56 which are much smaller relatively to the period of atomic
vibrations (>200 fs). Hence, anharmonic structural fluctuations
look essentially static to the electrons which follow the nuclei in
their most probable ground state configuration. We remark that
polaronic effects on the band gap renormalization are not
included in our calculations. Although it is now possible to
combine ab initio polaron distortions57 with the A-SDM, such
calculations are rather challenging and beyond the scope of this
work. We also note that corrections to the band gap renormaliza-
tion coming from hybrid functionals are less than 1 meV (see
“Methods”).
In Fig. 6, we show the band gap variation of CsPbBr3 with

temperature calculated within A-SDM using the cubic and

Fig. 6 Temperature-dependent band gaps of CsPbBr3 across
different phases. Band gap of CsPbBr3 as a function of temperature
calculated for the high-symmetry (red) and locally disordered (blue)
networks in the tetragonal and cubic phases using the A-SDM. ZG
supercells of size 4 × 4 × 4 and 4 × 2 × 4, containing 320 atoms each,
were used for the cubic and tetragonal phases, respectively. ZG
displacements for the disordered networks were generated by
taking as a reference the disordered nuclei positions obtained for
2 × 2 × 2 supercells. DFT-PBEsol data for the high-symmetry and
disordered networks are shifted by 1.50 and 1.42 eV, close to the
PBE0 corrections, to match the experimental band gaps at 370 K.
The dashed gray lines indicate the phase transition temperatures at
361 K and 403 K. Band gap renormalization due to thermal lattice
expansion and SOC are accounted for. Experimental data (gray) are
from ref. 49.
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tetragonal phases. Remarkably, accounting for local disorder in
our anharmonic electron–phonon coupling calculations (blue)
yields good agreement with experiment (gray) and captures the
smooth variation of the measured band gap around the
continuous phase transition temperature at 403 K. Instead, using
the high-symmetry structures of the tetragonal and cubic phases
(red), the band gap exhibits a spurious abrupt drop of ~0.4 eV,
primarily caused by the enforced alignment of the octahedra in
the cubic phase. A similar issue for the temperature-dependent
band gaps computed for the high-symmetry CsPbI3 networks has
been observed previously58. The continuous change of the band
gap from the disordered cubic to the disordered tetragonal phase,
achieved here, is consistent with a second-order displacive phase
transition. We stress that for all computed values we account for
the same PBE0 corrections to the band gap; that is we apply an
identical shift to the temperature-dependent band gaps of both
the tetragonal and cubic phases. In our calculations for the
disordered structures we combined A-SDM temperature-depen-
dent IFCs with the disordered networks to generate ZG
displacements; examples of the resulting phonon spectral
functions are shown in Supplementary Fig. 17. Notably, using
0 K ground state phonons obtained for the disordered structures
(Fig. 3b, c) yields a similar level of agreement (Supplementary Fig.
18). This demonstrates, essentially, that the vibrational dynamics
computed for the locally disordered networks is a reasonable
approximation to describe anharmonic electron–phonon effects
originating from low-energy optical vibrations.

DISCUSSION
Taken all together, our work provides insights on the lattice
dynamics and electron–phonon couplings in oxide and halide
perovskites. Given the agreement with measurements of the
vibrational-induced band gap renormalization of SrTiO3 and
CsPbBr3, we expect our approach to be widely used for addressing
open challenges related to important technological applications of
halide and oxide perovskites, such as solar cells, light emitting
diodes, and thermoelectric devices, as well as elucidating their
unexplored ultrafast spectroscopic properties59. Our results
demonstrate that SrTiO3 is fully compatible with a static
disordered network, while CsPbBr3 is better described within a
quasi-static picture that captures correctly optical vibrations but
not effects arising from ultraslow relaxational rotations of the BX3
octahedra. Our findings also confirm that vibrational dynamics in
halide perovskites deviate from a textbook noninteracting phonon
dispersion; a picture of strongly coupled vibrations should be
considered as a precursor to future calculations of perovskites’
peculiar transport properties10,11. In the context of
electron–phonon coupling, the description of tetragonal or cubic
perovskites with a locally disordered network constitutes the best
possible approximation since (i) electron coupling to anharmonic
optical vibrations is predominant, (ii) dynamical structural fluctua-
tions look essentially static to the short-lived electrons, and (iii)
electrons mostly see the nuclei as fixed in their disordered ground
state. This latter point also allows to explain the continuous
variation of the band gap around phase transitions in halide
perovskites, reflecting the subtle rearrangement of atomic
positions between different phases. Some of the important
physics of halide perovskites uncovered here are intrinsically
related to their extraordinary lattice softness40, and, thus, their
remarkable ability to sustain a high degree of disorder. At a
fundamental level, our study proposes a radically different way of
conceptualize the lattice dynamics in perovskites and sets up a
universal framework for accurate simulations of their carrier
mobilities, conductivities, excitonic spectra, non-equilibrium
dynamics, and polaron physics60–62.

METHODS
Electronic structure calculations
Electronic structure calculations for SrTiO3, CsPbBr3, CsPbI3, and
CsSnI3 were performed within density functional theory using
plane waves basis sets as implemented in Quantum Espresso
(QE)63,64. We employed a kinetic energy cutoff of 120 Ry, the
Perdew–Burke–Ernzerhof exchange–correlation functional revised
for solids (PBEsol)65, and optimized norm-conserving Vanderbilt
pseudopotentials from the PseudoDojo library66,67. To account for
the effect of SOC on the electronic structures we replaced scalar
relativistic with fully relativistic pseudopotentials. The uniform
sampling of the Brillouin zone of the cubic 1 × 1 × 1, 2 × 2 × 2,
4 × 4 × 4, and 6 × 6 × 6 supercells was performed using 6 × 6 × 6,
3 × 3 × 3, 1 × 1 × 1, and 1 × 1 × 1 k-grids, respectively. The only
exception is that for 4 × 4 × 4 supercells of SrTiO3 we employed a
2 × 2 × 2 k-grid. Furthermore, for 6 × 6 × 6 supercells we reduced
the kinetic energy cutoff to 100 Ry. Initial calculations of the
monomorphous structures were performed in the unit cells of the
cubic (5 atoms), tetragonal (10 atoms), and orthorhombic (20
atoms) perovskite compounds with the nuclei clamped at their
Wyckoff positions (space groups: Pm3m for all cubic perovskites,
I4/mcm for tetragonal SrTiO3, P4/mbm for tetragonal CsPbBr3, and
Pbnm for orthorhombic CsPbBr3). The lattice constants of cubic
SrTiO3, CsPbBr3, CsPbI3, and CsSnI3 were fixed to the DFT-PBEsol
optimized values of 3.889, 5.874, 6.251, and 6.141 Å, respectively.
The lattice constants of the tetragonal and orthorhombic CsPbBr3
were also fixed to the DFT-PBEsol optimized values of (a= b=
5.734, c= 5.963 Å) and (a= 7.971, b= 8.397, and c= 11.640 Å).
The lattice constants of the tetragonal SrTiO3 were fixed to the
experimental lattice constants68 of (a= b= 3.896 and c= 3.900 Å)
since were found to yield better phonon frequency renormaliza-
tions due to anharmonic effects at finite temperatures32. The
eigenmodes and eigenfrequencies at each phonon wavevector q
were obtained by evaluating the IFCs and corresponding
dynamical matrices via the frozen-phonon method69,70. Correc-
tions on the phonon dispersions due to long-range dipole–dipole
interactions, which vary depending on the degree of static-
disorder32, were included via the linear response approach
described in ref. 71.
Electron spectral functions of the disordered cubic structures

were calculated using the electron band structure unfolding
technique as implemented in the EPW/ZG code35,57. We ran
calculations with and without SOC (see Supplementary Figs. 8 and
9) and sampled the Brillouin zone with 417 equally-spaced k-
points along the X-R-M-Γ-R path. We remark that when SOC is
excluded, local distortions in a 2 × 2 × 2 supercell of SrTiO3 lead to
an artificial degeneracy splitting of 40 and 60 meV of the triply
degenerate valence band top and conduction band bottom,
respectively. Interestingly, our calculations for a 4 × 4 × 4 supercell
show that the splitting in the valence band top is eliminated, while
in the conduction band bottom is maintained. This result is
consistent with a disordered network that macroscopically might
reflect some of the crystal’s symmetries, although local deforma-
tions are present. Inclusion of fully relativistic effects in our
calculations for SrTiO3 induces a small band gap change and spin-
orbit splitting of the band edges, as shown in Table 1 and
Supplementary Fig. 9. Our fully relativistic calculations for the
band gaps of the high-symmetry and locally disordered tetragonal
CsPbBr3 within DFT-PBEsol yield 0.69 and 0.86 eV, respectively.
Ignoring SOC effects our calculations determine 1.65 and 1.83 eV
for the high-symmetry and locally disordered tetragonal CsPbBr3.
Data calculated for all cubic compounds are provided in Table 1.
To extract effective masses m* at the band edges we performed

parabolic fits to the electron band structure and spectral functions
along the specified directions reported in Supplementary Table 3.
The mass enhancement due to disorder, λ, was obtained from
m�

d ¼ ð1þ λÞm�
hs, where m�

d and m�
hs are the disordered and

M. Zacharias et al.

9

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences npj Computational Materials (2023)   153 



high-symmetry structure’s effective masses. We note that at the
proximity of the band edges, the electron spectral functions give
well-defined bands that do not suffer from band broadening.
All calculations employing the Perdew–Burke–Ernzerhof

(PBE0)72 and Heyd–Scuseria–Ernzerhof (HSE06)73 hybrid func-
tionals were performed using the code VASP74. SOC was taken
into account, and a 300 eV cut-off energy was set for the
projector-augmented wave75. For the high-symmetry and
2 × 2 × 2 supercell disordered structures we employed Γ-centered
k-grids of 4 × 4 × 4 and 2 × 2 × 2, respectively. The HSE06 (PBE0)
band gaps with SOC of the high-symmetry and locally disordered
tetragonal CsPbBr3 are found to be 1.20 eV (1.80 eV) and 1.69 eV
(2.31 eV), respectively. The corresponding values for all cubic
compounds are reported in Table 1.

The locally disordered (polymorphous) network
To explore, initially, the locally disordered network of cubic SrTiO3

we applied three different initial sets of displacements on the
atoms of the high-symmetry structure in a 2 × 2 × 2 supercell.
Those are: (i) ZG displacements along all phonon modes
populated at T= 0 K, (ii) ZG displacements along the soft modes
populated at T= 0 K and, (iii) random displacements smaller than
0.1 Å applied to all atomic coordinates. We note that ZG
displacements along imaginary soft modes were generated by
switching their frequencies to real. Each case was followed by a
DFT-PBEsol relaxation of the nuclei. Although three different
ground state disordered geometries were realized, a consistent
energy lowering of 8 meV [f.u.]−1 relative to the ordered structure
was obtained. Starting from random initial displacements in a
4 × 4 × 4 supercell, the relaxation yields the same energy lowering
of 8 meV [f.u.]−1 in good agreement with the value of 12 meV
[f.u.]−1 reported in ref. 15. In Supplementary Fig. 10, we
demonstrate that the three disordered structures give identical
PDFs. In Supplementary Table 1, we show that accounting for
ground state symmetry-breaking domains in 4 × 4 × 4 supercells
yields similar band gap openings with 2 × 2 × 2 supercells.
Having demonstrated the equivalence of the three disordered

structures, which give the same ground state energy and PDF,
now we comment on the best choice of initial displacements [see
(i)–(iii) above]. The most computationally inefficient choice is the
use of ZG displacements along all phonon modes, bringing the
initial configuration well away from its ground state. Instead, the
relaxation converges much faster when ZG displacements along
the soft modes are used which reproduce the tilting of the
octahedra and thus bring the structure closer to the bottom of the
potential well76. Using random nudges, the efficiency of generat-
ing the ground state network might vary depending on the
system and the amplitude of the initial displacement. Therefore,
for generating all locally disordered structures, we chose to apply
special displacements34,35 along the soft modes (computed for the
high-symmetry structures) which is the most practical and
systematic way to achieve ground state optimization.
The locally disordered (polymorphous) networks of cubic,

tetragonal, and orthorhombic phases were explored (unless
specified otherwise) by employing 2 × 2 × 2 supercells containing
40, 80, and 160 atoms, respectively. To check whether the locally
disordered cubic geometries exhibit any residual symmetries, we
perform a symmetry analysis with pymatgen77 using a tolerance
factor of 0.0001 Å; we confirm that none of the locally disordered
cubic structures maintain residual symmetries.

Special displacement method
ZG displacements were generated via the special displacement
method34,35 (SDM) as implemented in the EPW/ZG code. We used
phonons at q-points commensurate with the supercell size and
applied a smooth phase evolution of the phonon eigenvectors in
reciprocal space.

Anharmonicity in our calculations was included via the A-SDM
using 2 × 2 × 2 supercells as described in ref. 32. Self-consistency in
the phonon spectra of each system was achieved using only 3-4
iterations by means of a linear mixing scheme. To incorporate the
effect of anharmonicity in the phonon-induced band gap
renormalization, we generated ZG displacements in 4 × 4 × 4 (all
cubic perovskites), 6 × 6 × 6 (cubic SrTiO3), 4 × 2 × 4 (tetragonal
CsPbBr3), and 6 × 4 × 4 (tetragonal SrTiO3) supercells employing
the IFCs obtained by A-SDM. In all calculations of temperature-
dependent band gaps reported in Fig. 5f, g, we allowed the lattice
to expand according to the measured expansion coefficient51,78.
Symmetry breaking in ZG configurations led to an artificial
degeneracy splitting of the band edges of cubic and tetragonal
SrTiO3. In this case, the band gap renormalization of SrTiO3 at each
temperature was evaluated by averaging the energy change of all
states participating in the formation of the band edges within an
energy window of 20 meV. To ensure high accuracy and limit the
errors arising from artificial degeneracy splitting, we also took the
average over the band gap renormalization obtained for four
different ZG configurations. In Supplementary Fig. 11, we show
that the band gap renormalization of cubic SrTiO3 remains nearly
the same when SDM is combined with 0 K ground state phonons
obtained for the disordered structure.
To identify the contribution of ultraslow acoustic (E < 2.5 meV) and

low-energy optical vibrations (3.65 < E< 10 meV) to the band gap
renormalization of CsPbBr3, we applied ZG displacements on the
nuclei along only the phonons lying within the associated energy
windows. We note that using phonons with energies E> 2.5 meV
and 2.5 < E < 10 meV we obtain a similar band gap renormalization
(within 25 meV) which demonstrates, essentially, that high-energy
optical vibrations (E > 10 meV) do not play an important role in the
electron–phonon gap renormalization of halide perovskites.
All A-SDM calculations for determining the phonon-induced

band gap renormalization were performed at the DFT-PBEsol level.
Corrections to the band gap renormalization arising from hybrid
functionals were found to be negligible. In particular, our
calculations in 2 × 2 × 2 ZG supercells of disordered CsPbBr3 yield
a ZPR of 29.4, 29.0, and 29.9 meV for DFT-PBEsol, HSE, and PBE0
functionals, respectively.

Phonon unfolding
For systems undergoing static symmetry breaking due to lattice
distortion coming, e.g., from defects, atomic disorder, or a charge
density wave, a supercell is required to compute the phonons. In
this case, the crystal’s symmetry operations (translations and
rotations) are no longer applicable and all atoms in the supercell
need to be displaced for calculating the dynamical matrix and,
hence, the renormalized phonon frequencies ωQμ, where Q and μ
are the phonon wavevector and band indices. To illustrate the
effect of lattice distortion in the phonons, a common practise is to
employ phonon unfolding and evaluate the momentum-resolved
spectral function given by79:

AqðωÞ ¼
X

Qμ

PQμ;q δðω� ωQμÞ: (4)

Here q denotes a wavevector in the Brillouin zone of the unit cell
and PQμ,q represents the spectral weights which are evaluated in
the spectral representation of the single-particle Green’s function
as80:

PQμ;q ¼ 1
Ng

Ω
~Ω

P
αj
jP

κ

~eακ;μðqÞeiðqþgjÞ�~τκ j2; (5)

where j is an index for the reciprocal lattice vectors g of the unit
cell Brillouin zone, α denotes a Cartesian direction, and κ is the
atom index. The symbol ~ indicates quantities calculated using the
disordered structure. Ng acts as a normalization factor represent-
ing the total number of reciprocal lattice vectors entering the
summation. The spectral weight can be understood, essentially, as
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the projection of the phonon eigenvector ~eακ;μðQÞ on the phonon
eigenvectors eακ,ν(q) computed in the unit cell, given that Q
unfolds into q via Q= q+ gj−G, where G is a reciprocal lattice
vector of the distorted structure.
To generate vibrational spectral functions we employed Eq. (5)

and 417, 382, and 399 equally-spaced q-points along the X-R-M-
Γ-R (cubic), X-A-M-Γ-A (tetragonal), and X-R-S-Γ-R (orthorhombic)
paths. Convergence of the spectral weights was ensured by
using a 10 × 10 × 10 g-grid of reciprocal lattice vectors. In
Supplementary Figs. 12 and 13, we demonstrate our implemen-
tation of phonon unfolding by comparing phonon spectral
functions computed for 2 × 2 × 2 and 4 × 4 × 4 supercells of
SrTiO3. Our implementation of phonon unfolding is available in
the EPW/ZG tree. In Supplementary Fig. 14, we also show that
the vibrational spectrum of CsPbBr3 remains almost identical
when two different ground state disordered geometries are
considered.
We note that overdamped unfolded phonon spectra of halide

perovskites has also been revealed by analysis of velocity
autocorrelation functions obtained by molecular dynamics
simulations43.

Diffuse scattering
All-phonon diffuse scattering maps were calculated within the Laval-
Born-James (LBJ) theory using disca.x of the EPW/ZG code81,82.
The merit of the LBJ theory is that inelastic scattering arising from
one-phonon and multiphonon processes is accounted for on the
same basis. The Debye-Waller and phononic factors entering LBJ
theory [Eq. (1) of ref. 81] were evaluated for a 16 × 16 × 16 q-grid. The
phonon eigenmodes and frequencies were obtained by means of
Fourier interpolation of the dynamical matrices computed for
2 × 2 × 2 supercells using either the A-SDM or the disordered
network. A 16 × 16 × 1 uniform Q-grid (scattering wavevectors) per
Brillouin zone was used to calculate the phonon-induced scattering
intensity in the reciprocal lattice planes perpendicular to one
Cartesian axis. The atomic scattering amplitudes were determined as
a sum of Gaussians with the parameters taken from ref. 83. The
diffuse scattering maps of CsPbBr3 for ultraslow acoustic and low-
energy phonon dynamics were determined by excluding the modes
outside the associated energy windows. In addition to the scattering
maps of cubic SrTiO3 presented in Fig. 4, we also calculated diffuse
scattering in the (Qx,Qy, 0) and (Qx,Qy, 1) planes and found
qualitative agreement with measurements of ref. 45 (Supplementary
Figs. 5 and 6). In Supplementary Figs. 15 and 16, we show the
decomposition of the all-phonon scattering in the (Qx,Qy, 0) planes
of cubic SrTiO3 and CsPbBr3 into one-phonon and multiphonon
processes for a large range of scattering wavevectors.

DATA AVAILABILITY

The calculations (input and output files) employed for this study are available via the
NOMAD archive [https://doi.org/10.17172/NOMAD/2023.07.11-1 for anharmonic
electron–phonon coupling calculations and https://doi.org/10.17172/NOMAD/
2023.05.13-1 for anharmonic phonon calculations], or upon request from the
corresponding author.

CODE AVAILABILITY
QUANTUM ESPRESSO is available under GNU General Public Licence from the
QUANTUM ESPRESSO web site (https://www.quantum-espresso.org/). The ZG module
of EPW employed for the treatment of local disorder, anharmonicity, and generation
of anharmonic self-consistent special displacements is also available at GitLab
(https://gitlab.com/epw-code/q-e/tree/ZG).
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