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Abstract—We consider a remote source coding problem subject
to a distortion fidelity. Contrary to the use of the classical sepa-
rable distortion criterion, herein we consider the more general,
f -separable distortion measure and study its implications on the
characterization of the minimum achievable rates (also called f -
separable indirect rate distortion function (iRDF)) under both
excess and average distortion constraints. First, we provide a
single-letter characterization of the optimal rates subject to an
excess distortion using properties of the f -separable distortion.
Our main result is a single-letter characterization of the f -
separable iRDF subject to an average distortion constraint. As
a consequence of the previous results, we also show a series of
equalities that hold using either indirect or classical RDF under
f -separable excess or average distortions. We corroborate our
results with two application examples in which new closed-form
solutions are derived, and based on these, we also recover known
special cases.

I. INTRODUCTION

The mathematical analysis of the lossy source coding under
a distortion fidelity, called rate distortion theory [1], was
developed under the assertion that an encoder observes an
information source x with distribution p(x) defined on the
alphabet space X , and the aim is for the decoder to recon-
struct in a minimal end-to-end rate-constrained manner, its
representation x̂ defined on an alphabet X̂ within a distortion
measure d : X × X̂ 7→ [0,∞). When the information source
generates a sequence of n realizations, the source sequence
induces the distribution p(xn) on the Cartesian product al-
phabet space Xn, with its reconstruction alphabet being X̂n.
For the latter case, Shannon in [1] extended the single-letter
expression of the distortion measure to the n-letter expression
dn : Xn × X̂n 7→ [0,∞) by taking the arithmetic mean of
single-letter distortions, i.e.,

dn(xn, x̂n) =
1

n

n∑
i=0

d(xi, x̂i), (1)

which is often encountered as separable, additive or per-letter
distortion measure.

A natural extension of the lossy source coding problem,
called indirect or remote lossy source coding, was proposed
almost fifteen year later in [2]. Therein the authors considered
the case where the encoder observes a noisy version of the
source x, say z, and the goal is to reconstruct x̂ with minimal
rates subject to an average distortion d : X × X̂ 7→ [0,∞). A
major result in [2] is that for stationary memoryless sources,

the fundamental limit in the asymptotic regime corresponds
to the classical lossy source coding problem with an amended
average distortion constraint. Subsequently, this problem and
some of its variants, e.g., non-asymptotic analysis, excess
distortion measures, multi-terminal systems, were revisited by
many researchers, see e.g., [3]–[12] and references therein.

All the aforementioned efforts in [3]–[12], consider sep-
arable distortion penalties. On one hand, the separability
assumption is natural and quite appealing when it comes to
the derivation of tractable characterizations of the fundamental
trade-offs between the coding (or compressed) rate and its
corresponding distortion. On the other hand, the separability
assumption is very restrictive because it only models distortion
penalties that are linear functions between the single-letter
distortion and the reconstruction signal. However, in real-
world applications, distortion measures may be highly non-
linear. To address this issue and inspired by [13], here we
consider a much broader class of distortion measures, namely,
f -separable distortion measures (for details on this class of
fidelity constraints see Appendix A).

In this work, we derive the following new results: (i)
a single-letter characterization of the minimal rates subject
to an excess distortion using properties of the f -separable
distortion (see Lemma 1); (ii) a single-letter characterization
of the f -separable iRDF (obtained for finite alphabets) subject
to an average distortion constraint that is obtained under
relatively mild regularity conditions and by making use of a
strong converse theorem [8] (see Theorem 1); (iii) new series
of equalities under f -separable excess or average distortion
constraints using indirect or classical RDFs (see Corollary
1 and Theorem 1); (iv) two application examples in which
new analytical solutions are derived for various types of
f -separable average distortions; we also explain how these
analytical expressions recover known results as special cases
(see Examples 1, 2). It is worth mentioning that from (ii),
we also derive the implicit solution of the optimal minimizer
that achieves the characterization of the f -separable iRDF (see
Corollary 2). This result can be readily used to derive new
Blahut-Arimoto type of algorithms [14], [15] for a much richer
class of distortion penalties.

II. PROBLEM FORMULATION

We consider a memoryless source described by the tuple
(x, z) with probability distribution p(x, z) in the product



alphabet space X ×Z . The remote information of the source
is in x whereas z is the noisy observation at the encoder side.
The goal is to study the remote source coding problem [2],
[5], [6] under an f -separable distortion measure.

Formally, the system model (without the distortion penal-
ties) is illustrated in Fig. 1 and can be interpreted as follows.
An information source is a sequence of n-length independent
and identically distributed (i.i.d) RVs (xn, zn). The encoder
(E) and the decoder (D), are modeled by the mappings

fE : Zn → W, gD : W → X̂n (2)

where the index set W ∈ {1, 2, . . . ,M}.

Encoder Decoderp z xn n( | )
nznx n̂x

( )Ef nz W

Fig. 1: System model.

We consider a per-letter distortion measure responsible to
penalize the remote information source in Fig. 1 given by
d : X × X̂ 7→ [0,∞) and their corresponding n-letter
expressions given by dn : Xn × X̂n 7→ [0,∞). This setting
has recently gained attention in the context of goal-oriented
communication [16], [17], where x can represent the semantic
or intrinsic information of the source, which is not directly
observable, whereas z is the noisy observation of the source
at the encoder side.
Next, we define the precise terminology of the noisy lossy
source codes for the single-letter and the multi-letter case
(without restricting to i.i.d processes at this stage).

Definition 1. (Noisy lossy source codes) Consider constants
ϵ ∈ [0, 1), D ≥ 0, and an integer M .

(1) We say that a noisy lossy source-code (fE , gD) is an
(M,D)-noisy lossy source code on (X ,Z, X̂ , d) such
that x−z−x̂, if E[d(x, x̂)] ≤ D, where x̂ = gD(fE(z)).

(2) We say that a noisy lossy source-code (fE , gD) is
an (M,D, ϵ)-noisy lossy source code on (X ,Z, X̂ , d)
such that x − z − x̂, if P[d(x, x̂) > D] ≤ ϵ where
x̂ = gD(fE(z)).

(3) If (fE , gD) is an (M,D)-noisy lossy source code on
(Xn,Zn, X̂n, dn) such that xn − zn − x̂n, we say that
(fE , gD) is an (n,M,D)-noisy lossy source code.

(4) If (fE , gD) is an (M,D, ϵ)-noisy lossy source code on
(Xn,Zn, X̂n, dn) such that xn − zn − x̂n, we say that
(fE , gD) is an (n,M,D, ϵ)-noisy lossy source code.

We remark the following special case of Definition 1.

Remark 1. (On Definition 1) In our analysis, we will also
consider as a special case the classical (noiseless) lossy source
codes subject to similar single-letter and multi-letter distortion
measures as in the case of noisy lossy source coding. This
means that we will use special cases of Definition 1. For
example, for a noiseless lossy source code, Definition 1, (1),
will be modified as follows

• we say that a lossy source-code (fE , gD) is an (M,D)-
lossy source code on (X , X̂ , d) if E[d(x, x̂)] ≤ D, where
x̂ = gD(fE(x)) (because x = z).

Definition 1, (2)-(4), are modified accordingly.

Using [13, Definition 1], we consider an f-separable distor-
tion measure associated with the remote information source of
the setup in Fig. 1 defined as follows

dnf (x
n, x̂n) ≜ f−1

(
1

n

n∑
t=1

f(d(xi, x̂i))

)
(3)

where f(·) is a continuous, increasing function on [0,∞).
In the sequel, we give the definitions of indirect and direct

(or classical) RDFs under f -separable distortion measures. To
do it, we need the following definition of achievability.

Definition 2. (Achievability) Suppose that a sequence of
distortion measures {dn : n = 1, 2, . . .} on (Xn, X̂n) is
given, such that xn − zn − x̂n. Then, we define the following
statements.
(1) The rate distortion tuple (R,D) is indirectly achiev-

able if there exists a sequence (n,Mn, D
n)-noisy lossy

source codes such that lim supn→∞
1
n logMn ≤ R,

lim supn→∞ Dn ≤ D.
(2) The rate distortion tuple (R,D) is indirectly and excess

distortion achievable if for any γ > 0 there exists a se-
quence (n,Mn, D+γ, ϵn)-noisy lossy source codes such
that lim supn→∞

1
n logMn ≤ R, lim supn→∞ ϵn = 0,

where ϵn denotes the decoding error probability, i.e.,
ϵn = P

[
xn ̸= gD(fE(zn))

]
.

If we assume sequences of noiseless lossy source codes,
we say that a rate distortion tuple (R,D) is directly (and
excess distortion) achievable in analogous way to Definition
2, with Xn = Zn. This means that the sequence of distortion
measures {dn : n = 1, 2, . . .} can be defined either on
(Zn, X̂n) or on (Xn, X̂n).

Definition 3. (iRDF) Given a single-letter distortion measure
d : X × X̂ → [0,∞) and a continuous, increasing function
f on [0,∞), let {dnf : n = 1, 2, . . .} be a sequence of f -
separable distortion measures. Then,

If,d(D) = inf{R : (R,D) is indirectly achievable} (4)

and

Îf,d(D) = inf
{
R : (R,D) is indirectly and

excess distortion achievable
}
.

If f is the identity function, then we have a sequence of sep-
arable distortion measures; in this case we omit the subscript
f and write Id(D) and Îd(D).

Definition 4. (Direct RDF) Given a single-letter distortion
measure d : Z × X̂ → [0,∞) and a continuous, increasing
function f on [0,∞), let {dnf : n = 1, 2, . . .} be a sequence
of f -separable distortion measures. Then,

Rf,d(D) = inf{R : (R,D) is directly achievable} (5)



and

R̂f,d(D) = inf
{
R : (R,D) is directly and

excess distortion achievable
}
.

If f is the identity function, we omit the subscript f and write
Rd(D) and R̂d(D).

We give the following remark for the previous two Defini-
tions.

Remark 2. (On Definitions 3, 4) In this work our goal is
to characterize the f -separable iRDFs Id,f (D) and Îd,f (D)
for a given distortion measure d(·, ·) and a function f(·). In
addition to the f -separable iRDFs, we consider the following
three special cases: (1) separable RDF Rd(D) and R̂d(D),
(2) separable iRDFs Id(D) and Îd(D), and (3) f -separable
RDFs Rd,f (D) and R̂d,f (D). To state our results, we compare
these different classes of RDFs to each other. While the iRDFs
is defined over some space (X ,Z, X̂ , d), it is possible to gen-
erate modified direct RDFs from iRDFs in which case these are
definite over the space (Z, X̂ , d̃), where d̃ : Z × X̂ → [0,∞)
is an amended distortion measure. In general, the underlying
space for the direct RDFs should be clear from context. For
example, Rd(D) refers to an RDF on (X , X̂ , d), while Rd̃(D)

refers to an RDF on (Z, X̂ , d̃).

III. PRIOR WORK

Next, we discuss more extensively some prior results that
will be used in our main results.

A. RDF under Average and Excess Constraints

For i.i.d sources with finite alphabets (X , X̂ ) and bounded
distortion measure d, the RDF is given by

Rd(D) = inf
q(x̂|x) : E[d(x,x̂)]≤D

I(x; x̂).

See e.g., [18, Theorem 10.2.1] and [19, Theorem 5.2.1].
Moreover, we know that for stationary ergodic sources with a
bounded distortion measure,

Rd(D) = R̂d(D). (6)

That is, the RDF is the same under average and excess
distortion constraints [19, Theorem 5.9.1]. We also know that
for stationary ergodic sources R̂d(D) satisfies the so-called
strong converse [8], [20], see Appendix D. Finally, the second
order asymptotic expansion of R̂d(D) is given as well, see
e.g., [21], [22], but this type of analysis is beyond the scope
of the present paper.

B. iRDF

For i.i.d sources with finite alphabets (X ,Z, X̂ ) and
bounded distortion measure d, the iRDF is given by

Id(D) = inf
q(x̂|z) :

E[d(x,x̂)]≤D

I(z; x̂)

(a)
= inf

q(x̂|z) :
E[d̃(z,x̂)]≤D

I(z; x̂) ≡ Rd̃(D) (7)

where (a) follows from [2] (see also Remark 2) and Rd̃(D) is
the direct RDF for (X ,Z) with the amended distortion given
by d̃(z, x̂) =

∑
X p(x|z)d(x, x̂). In other words, the indirect

rate distortion problem reduces to a direct rate distortion
problem with a modified per-letter distortion measure [2], [5],
[6], [8]. Moreover, for i.i.d sources, the iRDF is the same
under average and excess distortion constraints

Id(D) = Îd(D) (8)

and the strong converse also holds [8]. Finally, for this prob-
lem, the second-order asymptotic analysis has been addressed
in [8] where it was shown that the equivalence between direct
and indirect problems no longer holds in the second-order
(dispersion) sense.

C. f-Separable RDF

Similar equivalence results hold for f -separable RDFs.
Specifically, for i.i.d sources

Rf,d(D) = Rd̄(f(D)) = inf
q(x̂|x)

E[d̄(x,x̂)]≤f(D)

I(x; x̂) (9)

where Rd̄(·) is the separable RDF for (X , X̂ ) with the
amended distortion given by d̄(x, x̂) = f(d(x, x̂)), see [13].
More generally, it is shown in [13] that for the f -separable
rate distortion problem

R̂f,d(D) = R̂d̄(f(D)). (10)

That is, under excess distortion criterion, the f -separable RDF
reduces to the classical separable case without any assumption
on the underlying source. In fact for stationary ergodic sources,
this result extends to both average and excess distortion criteria
under some regularity assumptions (see [13, Theorem 1]),
namely,

Rf,d(D) = R̂f,d(D). (11)

We remark that the generalizations of the classical rate-
distortion problem to indirect and f -separable rate distortion
problems have intriguing parallels. Both generalizations could
be expressed in terms of a classical amended rate distortion
problem. The same insight holds when we apply both general-
izations simultaneously. As we will see next, the resulting rate-
distortion function could be expressed in terms of the classical
amended rate distortion problem.

IV. SINGLE-LETTER CHARACTERIZATION OF THE
OPERATIONAL RATES FOR i.i.d SOURCES

In this section, we characterize the f -separable iRDFs for
the setup in Fig. 1 for i.i.d sources. Specifically, our main
result states that for i.i.d sources over finite alphabets (under
mild regularity assumptions) we have that

If,d(D) = Rd̃(f(D)) (12)

where Rd̃(D) is the RDF for (X ,Z, d̃) with the amended
distortion given by d̃(z, x̂) =

∑
X p(x|z)f(d(x, x̂)).



First, we give a lemma in which we characterize the f -
separable iRDF under the excess distortion criterion.

Lemma 1. (f -separable iRDF under excess distortion) Given
a single-letter distortion measure d : X × X̂ → [0,∞) and a
continuous, increasing function f on [0,∞),

Îf,d(D) = Îd̄(f(D)) (13)

where Îd̄(f(D)) is computed subject to the single-letter sep-
arable distortion measure d̄(x, x̂) = f(d(x, x̂)).

Proof: The proof is a generalization of the proof in [13,
Lemma 1] and is given in Appendix B.

Next, we make assumptions that will be used to derive the
single-letter information theoretic characterization to our prob-
lem. These assumptions are a counterpart of the assumptions
utilized in [13, Theorem 1]; however, due to the difficulty
of the indirect rate distortion problem, these assumptions are
more restrictive, e.g., we only consider finite alphabets.

Assumptions. Suppose that the following statements are true.
(A1) The joint process {(xn, zn) : n = 1, 2, . . .} is i.i.d

sequence of random variables, namely, p(xn, zn) =
p(x)p(z|x) × . . . × p(x)p(z|x) = p(x|z)p(z) × . . . ×
p(x|z)p(z), for any n;

(A2) The single-letter distortion d(·, ·) and is such that

max
(x,x̂)∈X×X̂

d(x, x̂) < ∞; (14)

(A3) The alphabets (X ,Z, X̂ ) are finite.

In particular, assumption (A2) rules out pathological rate-
distortion function for which finite distortion is only possible
at full rate.

Corollary 1. (Consequence of Lemma 1) Under Assumptions
(A1)-(A3), a consequence of Lemma 1 is the following series
of equalities

Îf,d(D) = Îd̄(f(D)) = R̂f,d̂(D) = R̂d̃(f(D)) (15)

where

d̄(x, x̂) = f(d(x, x̂)) (16)

d̂(z, x̂) = f−1

(∑
x

p(x|z)f(d(x, x̂))

)
(17)

d̃(z, x̂) =
∑
x

p(x|z)f(d(x, x̂)). (18)

Proof: The first equality, Îf,d(D) = Îd̄(f(D)), is
shown in Lemma 1. We have that Îd̄(f(D)) = R̂d̃(f(D))

from (6), (7) and (8). Finally, R̂f,d̂(D) = R̂d̃(f(D)) follows
from (10). This completes the proof.

Next, we show the same result for the average rate-distortion
functions.

Theorem 1. (f -separable iRDF under average distortion)
Under Assumptions (A1)-(A3), the f -separable iRDF under
an average distortion constraint satisfies the following equality

If,d(D) = Id̄(f(D)) (19)

where d̄(x, x̂) is given in (16). In particular, this implies that
under Assumptions (A1)-(A3),

If,d(D) = Îf,d(D) = Rf,d̂(D) = Rd̃(f(D)) (20)

and

If,d(D) = inf
q(x̂|z)

E[d̃(z,x̂)]≤f(D)

I(z; x̂) (21)

where d̂(z, x̂) and d̄(z, x̂) are given by (17) and (18), respec-
tively.

Proof: Equations (20) and (21) follow from (19) and the
results in Section III. Namely, we have that Id̄(f(D)) =
Rd̃(f(D)) from (7); Rf,d̂(D) = Rd̃(f(D)) from (10)
and (11), and Id̄(f(D)) = Îd̄(f(D)) = Îf,d(D) from (8) and
Lemma 1. Likewise, (21) is a consequence of (19) and (7).
It remains to show (19). First note that f -separable iRDF can
be upper bounded as follows:

If,d(D)
(a)

≤ Îf,d(D)
(b)
= Îd̄(f(D))

(c)
= Id̄(f(D)) (22)

where (a) is a consequence of Assumption (A2) and Lemma
2 in Appendix C; (b) follows from Lemma 1; (c) follows from
the equivalence between excess and average iRDF, see (8).
The other direction,

If,d(D) ≥ Id̄(f(D)) (23)

is a consequence of the strong converse by [8] and is shown
in Lemma 3. This completes the proof.

One pleasing consequence of Theorem 1 is the following
corollary.

Corollary 2. (Implicit solution of Id̄(f(D))) The characteri-
zation in (21) via (19) admits the following implicit solution
to its minimizer

p∗(x̂|z) = esd̃(z,x̂)p∗(x̂)∑
x̂ e

sd̃(z,x̂)p∗(x̂)
, (24)

where s < 0 is the Lagrange multiplier associated with the
amended distortion penalty E[d̃(z, x̂)] ≤ f(D) and p∗(x̂) =∑

z q
∗(x̂|z)p(z) is the X̂ -marginal of the output i.i.d process

x̂n. Moreover, the optimal parametric solution of (21) via (20)
when If,d(D) > 0 is given by

If,d(D∗) = sf(D∗)−
∑
z

p(z) log

(∑
x̂

esd̃(z,x̂)p∗(x̂)

)
.

(25)

Proof: See Appendix E.
By taking p(z|x) to be a noiseless channel, Corollary 2

gives us an implicit solution for Rf,d(D) which was suggested
in [13].



V. EXAMPLES

In what follows, we give two examples to demonstrate the
impact of f -separable distortion measures to a popular class
of finite alphabet sources.

Example 1. (Binary memoryless sources) Let the joint process
(xn, zn) form an i.i.d sequence of RVs such that X = Z =
X̂ = {0, 1} furnished with the classical single-letter Hamming
distortion, i.e.,

d(x, x̂) =

{
0, if x = x̂

1 if x ̸= x̂.
(26)

Moreover, let xi ∼ Bernoulli( 12 ) and a binary memoryless
channel that induces a transition probability of the form

p(z|x) =
[
1− β β
β 1− β

]
, β ∈

[
0,

1

2

)
. (27)

Using the above input data, we obtain the following result.

Theorem 2. (Closed-form solution) For the previous inputs
and for any continuous, increasing function f(·), we obtain

If,d(D) = Id̄(f(D)) =[
1− hb

(
f(D)− (1− β)f(0)− βf(1)

(1− β)f(1) + βf(0)− (1− β)f(0)− βf(1)

)]+
(28)

where [·]+ = max{0, ·}, f(D) ∈[
(1− β)f(0) + βf(1), f(0)+f(1)

2

]
and hb(·) denotes the

binary entropy function.

Proof: See Appendix F.
In Fig. 2 we illustrate some plots of (28) for various

functions f(·) and different distortion levels D. It should be
noted that due to the nature of the indirect rate distortion
problem compared to the classical rate distortion problem,
there are different minimum distortion thresholds for which
the curves are well-defined. In particular, when the function
f is exponential, with β = 0.01 and ρ = 9.2, Fig. 2
demonstrates that the f -separable iRDF curve is non-convex,
monotonic and well-defined for D ∈ (Dexp

min, D
exp
max] =(

1
ρ log(1− β + β exp(ρ)), 1

ρ log
(

1+exp(ρ)
2

)]
. Similarly, if the

function f is third order polynomial with β = 0.15
and α = 0.4 or quadratic with β = 0.001, then,
from Fig. 2 we observe that If,d(D) is again non-convex,
monotonic and well-defined for D ∈

(
Dpol

min, D
pol
max

]
=(

3
√

(1− a)3β − a3(1− b) + a, 3

√
(1−a)3−a3

2 + a

]
and for

D ∈ (Dqua
min, D

qua
max] =

(√
β,
√

1
2

]
, respectively. Clearly, if in

Fig. 2 we consider the function f to be the identity map, then,
as Fig. 2 demonstrates, we obtain If,d(D) = Id̄(f(D)) =
Rd̃(D) and the closed-form solution of (28) recovers the
solution of [3, Exercise 3.8] i.e.,

If,d(D) =

[
1− hb

(
D − β

1− 2β

)]+
if D ∈ [β, 1

2 ]. (29)

This example aims at further emphasizing on the impact of the
f -separable (non-linear) distortion constraint on the indirect
rate distortion curve as opposed to the classical separable
(linear) distortions for which the indirect rate-distortion curve
is always convex.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0
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1

Fig. 2: Computation of If,d(D) for various functions f(·) and
single-letter Hamming distance.

Special case: If in Example 1 we assume that in (27) we
have β = 0, then our problem recovers the solution of [13,
eq. (44)] for x ∼ Bernoulli( 12 ).

Example 2. Let the joint process (xn, zn) form an i.i.d
sequence of RVs such that X = X̂ = {0, 1}, Z = {0, e, 1}
furnished with the Hamming distortion in (26). Moreover, let
xi ∼ Bernoulli( 12 ) and a binary memoryless erasure channel
that induces a transition probability of the form

p(z|x) =

1− δ 0
δ δ
0 1− δ

, δ ∈ [0, 1]. (30)

Using the above input data, we obtain the following result.

Theorem 3. (Closed-form solution) For the previous input
data, and for any continuous, increasing function f(·) we
obtain

If,d(D) = Id̄(f(D)) =[
(1− δ)

(
log(2)− hb

(
f(D)− δ

2f(1)− f(0)(1− δ
2 )

(1− δ)(f(1)− f(0))

))]+
(31)

where f(D) ∈
[
(1− δ

2 )f(0) +
δ
2f(1),

f(1)+f(0)
2

]
.

Proof: See Appendix G.
Special case: If the chosen f -separable distortion mea-

sure is additive (function f corresponds to the identity map),
then the closed-form solution of (31) recovers the solution of
[8, Eq. (76)], which in turn admits the closed-form solution

If,d(D) =

[
(1− δ)

(
log(2)− hb

(
D − δ

2

1− δ

))]+
(32)

where D ∈
[
δ
2 ,

1
2

]
.
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APPENDIX A
ON f -SEPARABLE DISTORTIONS

We first recall the definition of f -separable distortion mea-
sure as this was introduced in [13].

Definition 5. (f-separable distortion) [13, Definition 1] Let
f(ξi) be a continuous, increasing function on [0,∞) for any
i. An n-letter distortion measure d(xn, x̂n) is f -separable with
respect to a single-letter distortion d(xi, x̂i) if it can be written
as

dn(xn, x̂n) = f−1

(
1

n

n∑
i=1

f(d(xi, x̂i))

)
. (33)

Clearly, if in (33) we have f(ξi) = ξi for any i, then we
recover the classical separable distortion formulation. It should
be noted that Definition 5 is inspired by the definition and
properties of the so-called quasi-arithmetic mean (for details
see Appendix H).

In what follows, we give a numerical example where we
demonstrate various plots of the f -separable distortion mea-
sures computed based on the Hamming single-letter distortion
versus (vs) the number of reconstruction errors. This example
is similar but more detailed compared to the one given in [13,
Fig. 1].

0 10 20 30 40 50 60 70 80
0

0.2

0.4

0.6

0.8

1

Fig. 3: f-separable distortion computed based on the Hamming
single-letter distortion vs. the reconstruction errors.

Example 3. Suppose that in (33), d(xi, x̂i) is the classical
Hamming single-letter distortion ∀i, i.e., zi = d(xi, x̂i) ∀i.
The goal is to compute the reconstruction errors of an infor-
mation source of 80 bits vs. the distortion penalty computed
by f -separable distortion measure having as a benchmark the
Hamming single-letter distortion that is f(ξi) = ξi, ∀i. In Fig.
3 we illustrate plots for the following functions, f(ξ) = ξ,
f(ξ) =

√
ξ, f(ξ) = ξ2, f(ξ) = (ξ − α)3, f(ξ) = ξ4, and

f(ξ) = eρξ where α, ρ are some constants, which for this
example are taken to be α = 0.4, ρ = 9. We note that these
plots can be computed by finding the quasi-arithmetic mean of
f(ξ) = ξ, the quasi-arithmetic mean for functions of the form
f(ξ) = ξp and the one for functions of the form f(ξ) = eξ.

A. Sub-additive distortion measures

A distinct property of the separable distortion measures
discussed previously, is the sub-additivity of the distortion

measures1. Sub-additivity property in distortion measures is
crucial as it allows for the convexity of the rate-distortion
function (RDF) characterization [23, Theorem 9.8.1]. Using
a trivial extension of the definition of sub-additive function,
see e.g., [24, Chapter 16], a distortion measure is called sub-
additive if [19, Ch. 5.9]

dn(xn, x̂n) ≤ 1

n

n∑
i=1

d(xi, x̂i). (34)

A rather simple implication of Jensen’s inequality, see e.g.,
[18, Theorem 2.6.2] reveals that the f -separable distortion
measure (33) is sub-additive if f(·) is concave. In particular,

dn(xn, x̂n) = f−1

(
1

n

n∑
i=1

f(d(xi, x̂i))

)
(⋆)

≤ 1

n

n∑
i=1

d(xi, x̂i)

(35)

where (⋆) follows from Jensen’s inequality.

APPENDIX B
PROOF OF LEMMA 1

Let {dnf (·, ·) : n = 1, 2, . . .} be sequences of f -separable
distortions subject to the single-letter distortion d(·, ·) and let
{d̄n(·, ·) : n = 1, 2, . . .} be a sequence of modified separable
distortion measures such that d̄(·, ·) = f(d(·, ·)). Due to the
fact that f(·) is continuous, increasing functions at D, we
obtain that for any γ > 0 there exists a δ > 0 such that

f(D + γ)− f(D) = δ. (36)

The reverse follows due to the continuity of f(·), i.e., for any
δ > 0 there exists a γ such that (36) is true.

Any source code (fE
n , gDn ) is an (n,Mn, D+γ, ϵn)-lossless

code under the f -separable distortion dnf (·, ·) if and only if
(fE

n , gDn ) is additionally an (n,Mn, f(D)+δ, ϵn)-lossless code
under the modified separable distortions d̄n(·, ·). In particular,

ϵn ≥ P
[
dnf (x

n, gDn (fE
n (zn))) ≥ D + γ

]
(a)
= P

[
f−1

(
1

n

n∑
i=1

f(d(xi, x̂i))

)
≥ D + γ

]
(b)
= P

[
1

n

n∑
i=1

f(d(xi, x̂i)) ≥ f(D + γ)

]
(c)
= P

[
d̄n(xn, gDn (fE

n (zn))) ≥ f(D) + δ
]
, (37)

where (a) follows by definition; (b) follows from the prop-
erties of function f(·) that hold for the inverse function
f−1(·) which always exists; (c) follows from (36) and x̂ =
gDn (fE

n (zn)) under the definition

d̄n(xn, x̂n) =
1

n

n∑
i=1

f(d(xi, x̂i)). (38)

Based on the above, it follows that (R,D) is excess distortion
achievable with respect to the sequences of f -separable dis-
tortion measures {dnf : n = 1, 2, . . .} if and only if (R, f(D))

1Additive distortion measures are both sub-additive and super-additive.



is excess distortion achievable with respect to the sequences
{d̄n : n = 1, 2, . . .}. Using this observation and Definition 3
the result follows.
This completes the proof.

APPENDIX C
ON THE CONNECTION OF EXCESS DISTORTION AND

AVERAGE DISTORTION

In this section, we restate with a slight modification the
result that exists in [13, Theorem A1]. In particular, this allows
us to show that under the given condition

If,d(D) ≤ Îf,d(D).

Lemma 2. Suppose that the remote source (xn, zn) and the
sequence of distortion measures {dn}∞n=1 are such that

lim sup
n→∞

sup
(xn,x̂n)

dn(xn, x̂n) ≤ ∆ < ∞. (39)

Then, if the rate-distortion pair (R,D) is excess distortion
achievable, it is achievable under the average distortion.

Proof. Choose γ > 0. Suppose that there exists a code
(fE

n , gDn ) with M codewords that achieves

lim
n−→∞

P
[
dn(xn, gDn (fE

n (zn))) > D + γ
]
= 0. (40)

Let us define

vn = dn(xn, gDn (fE
n (zn))).

Then, the following holds

E{vn} ≤ E[vn1{vn ≤ D + γ}] +E[vn1{D + γ < vn}]
≤n (D + γ) + (∆ + γ)P[D + γ < vn]

≤n (D + γ) + γ = D + 2γ,

where the first inequality follow from (39) and the second
inequality follows from (40). This completes the proof.

APPENDIX D
STRONG CONVERSE FROM DISPERSION ANALYSIS

In this section we derive the strong converse for the remote
rate-distortion function as a corollary of [8, Theorem 5]. We
assume that the joint process (xn, zn) satisfies the assumptions
in Section IV.

Corollary 3 (Strong Converse). Consider an arbitrary se-
quence of (n,Mn, D, ϵn)-lossy source codes for (xn, zn). If

lim
n→∞

1

n
logMn < Id(D)

then

lim
n→∞

ϵn = 1.

Proof. Suppose that limn→∞
1
n logMn < Id(D) and

limn→∞ ϵn < 1. In particular, this implies that for n suffi-
ciently large, ϵn < ϵ̄ < 1 for some ϵ̄.

Let M⋆(n,D, ϵ) be the smallest number of representation
points compatible with excess distortion constraints given by
(D, ϵ). Then, for n sufficiently large

1

n
logM⋆(n,D, ϵ) ≤ 1

n
logMn.

This implies that

lim
n→∞

1

n
logM⋆(n,D, ϵ) ≤ lim

n→∞

1

n
logMn < Id(D).

However, this contradicts [8, Theorem 5] which says that

lim
n→∞

1

n
M⋆(n,D, ϵ) = Id(D).

This completes the proof.

If we would like to drop or modify some of the assumptions,
we may also attempt to prove the strong converse direction
from [8, Corollary 1].

Under the stated assumption, the converse part of our main
result should follow along the lines of [13].

Lemma 3. Let (x, z) be a source that satisfies Assumptions
(A1)-(A3) and let D be such that D ∈ (Dmin, Dmax]. Then,

If,d(D) ≥ Id̄(f(D)).

Proof. The proof follows along the lines of [13, Lemma
A1]. If Id̄(f(D)) = 0, there is nothing to prove. Suppose
that Id̄(f(D)) > 0. Assume there exists a sequence of
(n,Mn, Dn)-noisy lossy codes (under f -separable distortion)
with

lim sup
n→∞

1

n
logMn < Id̄(f(D)) and lim sup

n→∞
Dn ≤ D.

Since Id̄(f(D)) is continuous and decreasing (for D ∈
(Dmin, Dmax]), there exists some γ > 0 such that

lim sup
n→∞

1

n
logMn < Id̄(f(D + γ)) < Id̄(f(D)).

For every n, (n,Mn, Dn)-noisy lossy code (fE , gD) is also
an (n,Mn, D + γ, ϵn)-noisy lossy source code for some
ϵn ∈ [0, 1] and f -separable distortion dn(xn, x̂n). It is also an
(n,Mn, f(D + γ), ϵn)-noisy lossy source code with respect
to a separable distortion f(d(x, x̂)). We can therefore apply
Corollary 3 to obtain

lim
n→∞

ϵn = 1.

Thus,

Dn ≥ E
[
dn
(
xn, gD(fE(zn))

)]
≥ ϵn(D + γ)

> D +
γ

2

where the last line holds for sufficiently large n. The result
follows since we obtain a contradiction.
This completes the proof.



APPENDIX E
PROOF OF COROLLARY 2

Using KKT conditions [3], [25], we can write the con-
strained optimization problem in (21) via (19) as an uncon-
strained problem as follows

L(s, λ(z), µ(z, x̂)) =
∑
z,x̂

log

(
p(x̂|z)
p(x̂)

)
p(x̂|z)p(z)

− s
(
E
[
d̃(z, x̂)

]
− f(D)

)
−
∑
z,x̂

µ(z, x̂)p(x̂|z)

+
∑
z

λ(z)

(∑
x̂

p(x̂|z)− 1

) (41)

where s ≤ 0 is the Lagrangian multiplier associated with the
amended distortion constraint E

[
d̃(z, x̂)

]
≤ f(D), λ(z) ≥ 0

is associated with the equality constraint
∑

x̂ p(x̂|z) = 1,
and µ(z, x̂) ≥ 0 is responsible for the inequality constraint
p(x̂|z) ≥ 0.
Due to the convexity of L(·) with respect to p(·, |x), a nec-
essary and sufficient condition for p∗(·, |x) to be the optimal
minimizer is when ∂L(s,λ(z),µ(z,x̂))

∂p(x̂|z)) = 0 when p∗(·|z) > 0

and ∂L(s,λ(z),µ(z,x̂))
∂p(x̂|z)) ≤ 0 when p∗(·|z) = 0, ∀x̂ ∈ X̂ . Since

there is nothing to prove for the latter case, we focus on
the former case, for which the derivative after some algebraic
manipulations on (41) gives∑

z

p(z)

[
log

(
p∗(x̂|z)
p∗(x̂)

)
− sd̃(z, x̂) + λ∗(z)

]
= 0. (42)

To obtain (42), we consider µ(z, x̂) = µ∗(z, x̂) = 0 ∀(z, x̂) ∈
Z × X̂ . Moreover, in (42) we have that λ(z) = λ∗(z) > 0,
∀z ∈ Z because we require

∑
ẑ,x̂ p

∗(x̂|z) = 1. Applying this
result in (42) and solving with respect to p∗(·|z) we obtain

p∗(x̂|z) = esd̃(z,x̂)−λ(z)p∗(x̂). (43)

Leveraging the fact that
∑

x̂ p
∗(x̂|z) = 1, we average both

sides of (43) with respect to x̂ ∈ X̂ and solve to obtain
λ∗(z) > 0, which is given by

λ∗(z) = log

(∑
x̂

esd̃(z,x̂)p∗(x̂)

)
. (44)

By substituting (44) in (43), we obtain the implicit expression
of (24) for s < 0. Moreover, substituting (24) in (41) we obtain
(25) provided that If,d(D) > 0.
This completes the proof.

APPENDIX F
PROOF OF EXAMPLE 1

First note that for a given p(x) and p(z|x), we can compute
p(x, z) = p(z|x)p(x) and p(z) =

∑
x∈{0,1} p(x, z). These two

probability masses can lead to computing

p(x|z) = p(x, z)∑
x∈{0,1} p(x, z)

=

[
1− β β
β 1− β

]
. (45)

Moreover, the modified distortion d̃(z, x̂) =∑
x∈{0,1} p(x|z)f(d(x, x̂)) yields

d̃(z, x̂) =

[
(1− β)f(0) + βf(1) (1− β)f(1) + βf(0)
(1− β)f(1) + βf(0) (1− β)f(0) + βf(1)

]
.

(46)

Now observe that the following series of equalities hold,

If,d(D) = Id̄(f(D)) = inf
q(x̂|z): E[d̃(z,x̂)]≤f(D)

I(z; x̂)

= inf
q(x̂|z):

E[d̃(z,x̂)]−(1−β)f(0)−βf(1)

(1−β)f(1)+βf(0)−(1−β)f(0)−βf(1)

≤ f(D)−(1−β)f(0)−βf(1)
(1−β)f(1)+βf(0)−(1−β)f(0)−βf(1)

I(z; x̂)

= inf
q(x̂|z):

E
[

d̃(z,x̂)−(1−β)f(0)−βf(1)
(1−β)f(1)+βf(0)−(1−β)f(0)−βf(1)

]
≤ f(D)−(1−β)f(0)−βf(1)

(1−β)f(1)+βf(0)−(1−β)f(0)−βf(1)

I(z; x̂)

= inf
q(x̂|z):

E[d̃′(z,x̂)]≤ f(D)−(1−β)f(0)−βf(1)
(1−β)f(1)+βf(0)−(1−β)f(0)−βf(1)

I(z; x̂) (47)

= Rd̃′

(
f(D)− (1− β)f(0)− βf(1)

(1− β)f(1) + βf(0)− (1− β)f(0)− βf(1)

)
(48)

where in (47), d̃′(z, x̂) denotes the expression in the argument
of E[·] and (48) is precisely the classical or “direct” f -
separable RDF. The latter is the closed-form solution given
in (28).
This completes the proof.

APPENDIX G
PROOF OF EXAMPLE 2

For a given p(x) and p(z|x), we can compute p(x, z) =
p(z|x)p(x) and hence p(z) =

∑
x∈{0,1} p(x, z). Subsequently,

we can compute

p(x|z) =
[
1 1

2 0
0 1

2 1

]
. (49)

Moreover, the modified distortion for this example d̃(z, x̂) =∑
x∈{0,1} p(x|z)f(d(x, x̂)) yields

d̃(z, x̂) =

 f(0) f(1)
1
2 (f(0) + f(1)) 1

2 (f(0) + f(1))
f(1) f(0)

. (50)

To reach our result, we use Lemma 2, (24) for p∗(x̂) =∑
z∈{0,e,1} p

∗(x̂|z)p(z). When applied to our example and
after some algebra, (24) yields

p∗(x̂|z)

=

 f(1)(1− δ
2 )+

δ
2 f(0)−f(D)

(1−δ)(f(1)−f(0))
1
2

f(D)−(1− δ
2 )f(0)−

δ
2 f(1)

(1−δ)(f(1)−f(0))
f(D)−(1− δ

2 )f(0)−
δ
2 f(1)

(1−δ)(f(1)−f(0))
1
2

f(1)(1− δ
2 )+

δ
2 f(0)−f(D)

(1−δ)(f(1)−f(0))

,
p∗(x̂) =

[
1
2
1
2

]
.

Using these closed-form expressions in the definition of mu-
tual information [18], i.e., I(z; x̂) = H(x̂) −H(x̂|z), where



H(·) is the discrete entropy, we obtain (31).
This completes the proof.

APPENDIX H
QUASI-ARITHMETIC MEAN

To get a better understanding of Definition 5, we recall the
general definition of the so-called quasi-arithmetic mean or
Kolmogorov-Nagumo mean or generalized f-mean.

Definition 6. (Quasi-arithmetic mean) [26, p. 144] Consider
a continuous strictly monotone function f , an interval on the
real line I and the set of real numbers R. If f : I 7→ R, then,
the quasi-arithmetic mean for ξ = (ξ1, . . . , ξn) ∈ I is defined
by the function

Mn(ξ) ≜ f−1

(
1

n

n∑
i=1

f(ξi)

)
. (51)

Note that all known types of mean, e.g., arithmetic, geo-
metric, harmonic and root-mean-square, are of the form (51).

A sequence of functions {Mn : Rn 7→ R} defines a regular
type of mean if the following properties hold:
(i) Mn(ξ) is continuous and monotonically increasing in

each variable;
(ii) Mn(ξ) is a symmetric function;
(ii) The mean of identical numbers is equal to their common

value, namely, for ξ̄ = ( ξ, . . . , ξ︸ ︷︷ ︸
n elements

), then Mn(ξ̄) = ξ for

any n;
(iv) A subset of values can be replaced by their mean without

altering the total mean, that is,

Mn(ξ1, . . . , ξn, ξ̂1, . . . , ξ̂m)

= Mn+m(Mn(ξ), . . . ,Mn(ξ), ξ̂1, . . . , ξ̂m), (52)

for any m,n.
Next, we state the following theorem.

Theorem 4. [26, p.144, Theorem] If conditions (i)-(iv) hold,
then the mean Mn(ξ) has the form of (51) with f being a
continuous and increasing function and f−1 its inverse.


