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A B S T R A C T   

We report the observation of Brillouin backscattering in a 50-cm long spiral high-index doped silica chip 
waveguide and measured a Brillouin frequency shift of 16 GHz which is in very good agreement with theoretical 
predictions and numerical simulations based on the elastodynamics equation. © 2023.   

Introduction 

Over the past decade, there has been renewed interest in the design 
and fabrication of integrated photonic chip waveguides to master and 
exploit stimulated Brillouin scattering (SBS) [1]. This inelastic scat
tering, whereby light interacts coherently with hypersonic acoustic 
waves, is a powerful and flexible nonlinear optical effect for processing 
light and microwave, as well as an invaluable tool for the development 
of optical sensors, frequency combs, and lasers [2–4]. While SBS has 
been exploited earlier on within optical fibers, it is only recently that it 
has been demonstrated in CMOS-compatible integrated waveguides 
based on chalcogenide (ChG), silicon (Si), or silicon nitride (SiN) in its 
stoichiometric composition (Si3N4) [5–7]. Here, we demonstrate on- 
chip Brillouin backscattering in a 50-cm long spiral high-index (n =
1.7) doped silica glass integrated waveguide [8,9]. 

Experiment and results 

The cross-section of the doped silica glass waveguide is shown in 
Fig. 1(a). It includes a highly-doped silica glass (HDSG) core embedded 
in SiO2 on a SOI wafer [9]. The core has a cross-section of 1.50 μm by 
1.52 µm. The chip was pigtailed at both ends using carefully aligned and 
UV-glued polarization-maintaining optical fibers and the total insertion 

loss of the 50-cm long spiral waveguide has been measured to be 8.9 dB 
at λ = 1550 nm by using a high-resolution optical time domain reflec
tometer (OBR 4600 Luna Tech.). The OBR trace is shown in Fig. 1(b) for 
a spatial sampling resolution of 20 µm, and the linear loss has been 
estimated to be as low as 0.1 dB/cm. The Brillouin spectrum was then 
measured using a heterodyne technique [10], depicted in Fig. 1(c), in 
which the backscattered Brillouin signal from the photonic chip coher
ently interferes with a local oscillator and is further detected using an 
electrical spectrum analyzer (ESA). The resulting Brillouin spectrum is 
shown in Fig. 1(d) for an input continuous-wave power of 18 dBm at 
1550 nm. The Brillouin frequency shift (BFS) and its full-width at half- 
maximum (FWHM) linewidth were found to befB = 16 GHz and ΔνB 
~350 MHz, respectively. 

From the Brillouin shift, we can deduce the speed of the longitudinal 
acoustic wave as VL = fBλ/

(
2neff

)
= 7700 m.s− 1, whereneff = 1.61 is the 

effective index of the fundamental optical mode, which is shown 
numerically in Fig. 1(e) (Top inset). This is in good agreement with 
theoretical prediction and numerical simulation shown in Fig. 1(d), 
where we plotted the computed Brillouin gain spectrum from the elas
todynamics equation (for details about the numerical model, See 
Ref. [8]). The insets in Fig. 1(e) show the computed optical (top) and 
acoustic (bottom) transverse intensity profiles, respectively. For the 
optoacoustic simulation, we used the acoustic wave equation driven by 
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the electrostrictive stress that reads as [11] 

ρ ∂2ui

∂t2 + ηijuj − cijkl
∂2ul

∂xk ∂2xj
= − χklij∈0

∂
∂xj

E(P)
k E(S)*

l (1)  

where ρ is the material density, ui are the displacement field components 
in 3D (i ∈ {x, y, z}), cijkl are the elastic tensor components. ηij are the 
viscosity constants, χkilj is the electrostrictive tensor, and ∊0 is the vac
uum permittivity, respectively. E(P) and E(S) are the optical pump and 
Brillouin Stokes fields. For the simulation shown in Fig. 1(e), we used the 
parameters listed in Table 1, taken from Ref. [12]. We found a peak gain 
of gb = 0.09 m− 1W− 1 from simulations, which is in quite good agreement 
with an estimation from the experimental spectrum (Fig. 1(d)), by 
comparing with the peak of silica fiber at 10.8 GHz with that of the chip 
at 16 GHz and their respective lengths (gb = 0.087 m− 1W− 1). 

Conclusion 

In summary, we have investigated, both experimentally and theo
retically, Brillouin backscattering in a highly-doped silica glass photonic 
chip with refractive index n = 1.7 and relatively low loss at 1550 nm. We 
characterized a 50-cm long spiral waveguide, and found that the Bril
louin spectrum features a broad (350 MHz) acoustic resonance near 16 
GHz. We also compared the measured Brillouin frequency with theory 
and found very good agreement. Brillouin’s gain was also estimated to 
be around 0.09 m− 1W− 1. These integrated waveguides could potentially 
find Brillouin-based applications, if we manage to increase the gain 
while reducing the linewidth. Finally, we note that SBS was also recently 
reported in low-index (n = 1.51) doped silica waveguide [13]. 
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Table 1  

Physical parameters Refractive index, 
n 

Density,ρ 
(kg/m3) 

Young Modulus, E 
(GPa) 

Elastic Coefficients 
(GPa) 

Elasto-optic Coefficients 
(Unitless) 

Viscosity constants (Pa. 
s) 

Highly-doped silica 
glass 

1.7 (1550 nm) 2500  125.6 C11 = 125.6 
C12 = 25.76 
C44 = 49.92 

P11 = 0.12 
P12 = 0.27 
P44 = − 0.073 

η11 = 2.50.10− 2 

η12 = 5.12.10− 3 

η44 = 9.93.10− 3  
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