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THE NEWLANDER-NIRENBERG THEOREM FOR PRINCIPAL

BUNDLES

ANDREI TELEMAN

ABSTRACT. Let G be an arbitrary (not necessarily isomorphic to a closed
subgroup of GL(r, C)) complex Lie group, U a complex manifold andp : P — U
a C® principal G-bundle on U. We introduce and study the space Jj of
bundle almost complex structures of Holder class C* on P. To any J € J, ;
we associate an Ad(P)-valued form f; of type (0,2) on U which should be
interpreted as the obstruction to the integrability of J. For k = 1 we have f; €
crl(U, 0[’]2 ® Ad(P)) whereas, for x € [0, 1), fs is a form with distribution
coefficients.

Let J € Jf with x € (0, +0]\N. We prove that J admits locally J-pseudo-
holomorphic sections of class C**1 if and only if f; = 0. If this is the case,
J defines a holomorphic reduction of the underlying C**!-bundle of P in the
sense of the theory of principal bundles on complex manifolds. The proof is
based on classical regularity results for the d-Neumann operator on compact,
strictly pseudo-convex complex manifolds with boundary.

The result will be used in forthcoming articles dedicated to moduli spaces
of holomorphic bundles (on a compact complex manifold X) framed along a
real hypersurface S < X.
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Notations: We will use the notation A%, (/p?) for the vector bundle of forms of
degree d (bidegree (p,q)) on a (complex) manifold U. The space of sections of class
C® in this bundle, i.e. the space of differrential forms of degree d (bidegree (p, q))
on U will be denoted by A%(U) (AP4(U)). The notation I'(W, E) (T'(W, P)) will
stand for the set of C* sections of a differentiable vector (principal) bundle above

an open subset W of its base manifold.
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For a vector space (bundle) E on a manifold (with boundary) U (U) we will use
the notation C*(U, ) (C*(U, E)) for the space of E-valued maps (sections in E) of
class C* above U (U).

1. INTRODUCTION

The classical Newlander-Nirenberg [NN] theorem states that that an almost com-
plex structure J on a differentiable manifold M is integrable (i.e. is induced by a
holomorphic structure on M) if and only if its Nijenhuis tensor IV ; vanishes. Several
renowned proofs [NN], [Ko|, [FK], [We], [HG], [Mal], based on different techniques
are available.

The Newlander-Nirenberg theorem has a well-known version for vector bundles,
which is due to Griffiths [Grl Proposition p. 419] (see also [AHS| Theorem 5.1],
[Kol, Proposition 1.3.7], [DK|, Theorem 2.1.53 and section 2.2.2]) and plays a crucial
role in Gauge Theory (see for instance [DK]). This vector bundle version of the
Newlander-Nirenberg theorem states that a Dolbeault operator (semi-connection)
§: AY(E) —» A%L(E) on a differentiable complex vector bundle E on a complex
manifold U is integrable (i.e. is induced by a holomorphic structure on E) if and
only if the form Fs € A%2(U,End(FE)) associated with 6% : A%(E) — A%2(E)
vanishes (see section 2] in the Appendix).

The starting point of this article is a natural generalization of this result to prin-
cipal G-bundles, where G is an arbitrary (not necessarily isomorphic to a subgroup
of GL(r,C)) complex Lie group.

In the framework of principal bundles the role of Dolbeault operators is played by
bundle almost complex structures, which are introduced and studied in section2l A
bundle almost complex structure (bundle ACS) on a principal G-bundle p : P — U
is an almost complex structure J on P which makes the G-action on P and the map
p pseudo-holomorphic. The space Jp of bundle ACS on P is a affine space with
model space A% (U, Ad(P)) and comes with a natural action of the gauge group
Aut(P) of P.

The principal bundle version of the Newlander-Nirenberg theorem states that
(see section [2] for details):

Proposition 1.1. A bundle ACS J € Jp on P is integrable if and only if the
canonically associated form f; € A%2(U, Ad(P)) vanishes.

The proof is an easy application of a well known remark related to the general
Newlander-Nirenberg theorem: the vanishing of the Nijenhuis tensor N of an ACS
on M is equivalent to the integrability of the distribution Tg’l c T, associated
with J.

Proposition [1lis not sufficient for our purposes. In [T'T], [Te], we will construct
and study moduli spaces of S-framed holomorphic bundles on a compact complex
manifold X, where S < X is a fixed real hypersurface. These moduli spaces are
infinite dimensional. In order to endow such a moduli space with the structure of
a Banach analytic space in the sense of Douady, we have to work with bundle ACS
belonging to a fixed Holder differentiability class C* = Cl*l:#~I*] with k € (0, 0)\N
(see section ) and to study the integrability condition in the appropriate sense
for such a bundle ACS.

Our main result is a Holder version of Proposition [T

Theorem 1.2 (Newlander-Nirenberg theorem for bundle ACS of class C*). Let G
be a complex Lie group and p : P — U a differentiable principal G-bundle on U. Let
J be a bundle ACS of class C* on P with k € (0, +o]\N. The following conditions
are equivalent:

(1) f5=0.
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(2) for any point x € U there exists an open neighborhood W of x and a J-
pseudo-holomorphic section o € CFTH(W, P).

Note that for x € (0,1) the condition f; = 0 is meant in distributional sense, see
Definition B3] in section Bl Note also that the regularity class of J in the general
Newlander-Nirenberg theorem for almost complex structures on manifolds of real
dimension > 4 is C* with £ > 1 [We| Theorem 3.1], so the bundle version of this
theorem requires a weaker regularity assumption.

In the theory of principal bundles on complex manifolds one does not use or
consider (almost) complex structures on the total spaces of the considered bundles.
The fundamental objects in this theory are holomorphic principal bundles in the
following sense:

Definition 1.3. Let P 5 U be a topological principal G-bundle on U. A (bundle)
holomorphic structure on p is a set b of continuous local sections T: W, — P of p
such that:
(1) Upey Wr = U.
(2) Any two elements 7, 7' € b are holomorphically compatible, i.e. the com-
parison map Y. : Wy 0" W — G defined by 7" = 17¢,., is holomorphic.
(3) b is mazimal (with respect to inclusion) satisfying (1), (2).
A holomorphic principal G-bundle on U is a pair (P LU, bh) consisting of a topo-
logical principal G-bundle on U and a (bundle) holomorphic structure on p.

The first consequence of Theorem [[.2]is

Corollary 1.4. Let k € (0,+]\N. A bundle ACS J of class C* with f; = 0 on
P defines a (bundle) holomorphic structure by on its underlying topological bundle.
For an open set W < U, a section o € C*(W, P) belongs to b if and only if it is
J-pseudo-holomorphic. Moreover, b is contained in the set of local trivializations

of class C"T1 of P, so it provides a holomorphic reduction of the underlying C*+!
bundle of P.

Remark 1.5. Using the local trivializations associated with sections 7 € b, one
obtains in particular a complex manifold structure on P which is compatible with
J. Note that for € (0,1) one cannot obtain this structure using directly the general
Newlander-Nirenberg theorem, because, as mentioned above, in this theorem the
required regularity class of J is C* with k > 1.

Corollary 1.6. Let U be a complex manifold, G a complex Lie group, and P a
principal bundle of class C* on U. Let k € (0,40]\N, let J be an bundle ACS of
class C* on P with f; = 0, G x F' — F a holomorphic action of G on a complex
manifold F. The sheaf of holomorphic (with respect to the holomorphic structure
induced by b ) local sections of the associated bundle P x g F' is contained in the
sheaf of its local sections of class C*+1.

Let 6 € AY(G, g) be the canonical left invariant g-valued form on G [KN| p. 41].

For amap U *5 V -Z G of class C! put (o) == ¢*(61°)%!. From an analytical
point of view the meaning of Theorem is the following: for a g-valued form
ae CH(W, Ny ®g) (with € (0, +0]\N and W Eu open), the non-linear first
order differential equation

(o) =a

is locally solvable on W if and only if da + %[a A a] = 0 in distributional sense.

In the case dim(U) = 2 the proof of Theorem is based on the following
effective version of the Newlander-Nirenberg theorem for the trivial G-bundle on a
strictly pseudo-convex manifold:
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Theorem 1.7. Let X be a Hermitian manifold of dimension n = 2, and let U ¢ X
be a relatively compact strictly pseudoconvex open subset with smooth boundary
oU = U\U. Suppose HI(U,Oy) = 0 for q € {1,2} and let k € (0,+00)\N. There
exists an open neighborhood Ny of 0 in the closed subset

_ _ 1 _
W= {AEC”(U, 0[’11®g)|6)\+§[)\/\)\]=0}CC”(U, o ®a).

and, for any A\ € Ny, a solution u = MN(\) € C**L(U, g) of the equation

[(exp(u)) = A
which satisfies estimates of the form
lulvlcr+r < Cv[Ales (1)
for relatively compact subdomains V € U.

The proof is based on classical regularity results for the d-Neumann operator
[FK], [LM], [BGS] and elliptic interior estimates [DN].

In the case dim(U) = 1 we have the following effective version of the Newlander-
Nirenberg theorem for the trivial G-bundle on a relatively compact open subset
U < C with smooth boundary:

Theorem 1.8. Let U < C be a bounded domain with smooth boundary and let
k € (0,4+0)\N. There exists an open neighborhood Ny of 0 in C*(U, /\051 ®g) and,
for any X\ € Ny, a solution u = Ny () € C*+HL(U, g) of the equation

Texp(u)) = A
such that the obtained map Ny : Ny — C**L(U,g) is holomorphic and satisfies
Ny (0) = 0.

The proof uses the ellipticity of the operator ¢ on the closed manifold P! and a
well known extension lemma for Holder spaces.

2. BUNDLE ALMOST COMPLEX STRUCTURES ON PRINCIPAL BUNDLES

2.1. The Newlander-Nirenberg theorem for bundles in the smooth case.
Let G be a complex Lie group and g its Lie algebra. Let Jg € I'(G, Endr (7)) be
the almost complex structure on G defining its complex structure and Jy € Endg(g)
the endomorphism defining the complex structure of g. We obtain as usually direct
sum decompositions

Tg _ TC{JO @Tg,l7 gc _ g1,0 ®go,1

of the complexified tangent bundle, respectively Lie algebra of G.
Let 6 € A'(G, g) be the canonical left invariant form of G [KN| p. 41], and 9
the composition

T @ C OQridc gc _ g1,0_
Since 6 is holomorphic, § ®g idc preserves the type, so 810 is a g'9-valued form

of type (1,0); it can obviously be identified with  via the standard isomorphisms
(TGa JG) - Tcl;’oa (ga Jg) - gLO'

Let p: P — U be a differentiable principal G-bundle on U. Denote by V < Tp
the vertical distribution of P, and recall that this vector bundle comes with a
canonical trivialization ¥ : V. — P x g given by (y,a) — af, which extends to a
trivialization ¥© : V€ — P x g© of the complexified vertical bundle. The complex
structure Jy of g induces via ¥ a complex structure on the bundle V', so a direct sum
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decomposrtron Ve = V1.0 @ VOl which corresponds via 9¥C to the decomposition
g€ = g"%® g%!. The subbundle pgl(TO ') of TS fits in the short exact sequence

0-VE=vgVol o p (T 25 p*(T)) — 0. (2)

Definition 2.1. A bundle almost complex structure (ACS) on P is an almost
complex structure J on P which makes the G-action P x G — P and the map
p: P — U pseudo-holomorphic.

Let J be a bundle ACS on P. The subbundle ngb c T§ of type (0,1) tangent

vectors with respect to J is a G-invariant subbundle of pgl(TS*l) which contains
V01! and is a complement of V10 in pi ! (T"). Therefore one can write

Tg:J = ker(ay)
for a well defined section oy € T'(P, py " (Tg’l)* ®g'?) with the following properties:
(Pa) «ay is invariant with respect to the G action g — 'R ®Ad, on pgl(Tg’l)*(@g.
(Pb) a; agrees with the g'°-valued form
Vcii P x (g 1,0®go,1) . g1,0
on V€. In other words oy vanishes on V%! and induces the canonical isomor-
phism V1 02 g0 for any y € P.
The subbundle p (Tg 1) c TS splits as a direct sum
;I(Tg,l) _ T103:‘1] @ ‘/1,07
and the projection on the first summand is
By (Tyh) = Tpy, Bi(v) =v—ay@)iF forye P, vep (T)Y),. (3)
Remark 2.2. Let p: P — U be a principal G-bundle on U.

(1) The assignment J — «; gives a bijection between the set Jp of bundle
ACS on P and the set Ap of sections a € F(P,p;l(Tg’l)* ® g™ satisfying
properties (Pa), (Pb).

(2) If P = U x @G is the trivial bundle over U, the short exact sequence (2]) comes
with an obvious splitting, and Ap can be identified with A%*(U, g!:°). The
product bundle ACS Jy on U x G corresponds to oz, = 0.

(3) Let J € Jp. A local section 7 € I'(W, P) of P defines a trivialization
Py S W x C, so, by (2), a; gives a form a7 € A%1(W, g1?). Explicitly,
in terms of 7, we have for any v € Tyy:

) (v) = (ay o ) (V). (4)

(4) Let J € Jp. A local section 7 € I'(W, P) of P is J-pseudo-holomorphic if
and only if o; = 0.

The map 7 — o satisfies the following transformation formula:
Remark 2.3. Let f € C*(W,G). Then
=Adj-:(af) + f*(O10)01, (5)

Proof. Put 7’ :== 7f. For y € P denote by IY¥ : G — P the map g — yg. For any
v E Tgw we have

T4(0) =R @y (7 (0) + 5O (F(0) = Rpayu(ma () + ET DL (Fe0))
:Rf(z)*(T*(v)) (O(fx(v ))) V()
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Using properties (Pa), (Pb) we obtain for any v € Tg:;

07 (v) = Adp(a)-1 (a7 (v) + 0" (fa(v)) = Adpay1(aF(v)) + F*(610)(v),
which proves the claim. [ |

Remark 2.4. Let J € Jp and 7 € I'(W, P). The map ¢ — 7o~ ! induces a bijection
between the set of solutions of the equation

a7 = o* ()" (©)
for 0 € C* (W, G) and the set of J-pseudo-holomorphic sections of P on W.
Proof. Indeed, by Remark2.2] (4) we know that 7, :== 70! is J pseudo-holomorphic

ifand only if a7 = 0. Writing 7 = 7,0, formula (&) shows that the equation a7 = 0
is equivalent to (). [

Let J € Jp, put « :== oy and consider the anti-symmetric C* (P, C)-bilinear map
I(P,Ty})? 5 (A, B) - a([A, B]).

Since the subbundle Tgf] is G-invariant, it follows that [a”,-] leaves the space
(P, TIOD}J) invariant for any a € g©, in particular a([A4, B]) = 0if A or B is vertical.
It follows that the formula

P(P.TE ) 2 (A, B) = —a([A", B}'])
defines a g'%-valued tensorial (0,2)-form of type Ad on P (see [KN| section IL.5]),
i.e. an element of the space A%g (P, g'?). Identifying g''* with g in the canonical
way, we may regard f; as a g-valued tensorial form of type (0,2) on P, i.e. as an

element of AY3(P,g) = A%2(U, Ad(P)). We will denote by the same symbol the
corresponding element of A%2(U, Ad(P)).

With these notations we can prove the Newlander-Nirenberg theorem for prin-
cipal bundles in the smooth case:

Proof. (of Proposition[IT]) The distribution pgl(Tf(’l) c T is obviously integrable
(because it is the pull-back of Tg’l, and U is a complex manifold) and contains
ngb. For vector fields A, B e T'(P, Tgf]) the Poisson bracket [A, B] will still belong
to F(P,p;l(Tg’l)), but not necessarily to IT'(P, ngi); it belongs to this subspace if
and only if «([4, B]) = 0. Therefore the obstruction to the integrability of .J is the
tensorial form f; as claimed.

|

Let 7 € T'(W, P) be a smooth local section. Although the pull back 7* on forms
is not necessarily type preserving, we have

T(f7) € AM2(W, g""). (7)
Indeed, for a tangent vector v € Tzl ’3, we have

7e(0) € Dir () (T72) = Tp ) ® V(o)
Since f; (A4, B) = 0if A or Bis of type (1,0) or vertical, it follows that 7* (f;) (v, w) =

0 if v or w is of type (1,0). Taking into account this remark, we define, for a local
section 7 € T'(W, P):

f = 1*(fs) € A%} (W, g"%) ~ A%*(W, g). (8)
Proposition 2.5. Let 7 € T'(W, P) be a local section of P. Then

. 1
fj = daj + Slaj A ajl. (9)
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Proof. Note first that 7 defines a smooth map
7T (W) -G
uniquely determined by the condition 7(p(y))y” (y) = y. Using this map we obtain
a monomorphism
ot (Ty') = i (Ty)
of vector bundles on p~1(W) given by
7y(0) = Ryr y)u(1(v) Yy € p~ (W) Yo e T . (10)
By definition, 7 verifies the G-invariance property:
Ry 0T =7VgeG. (11)

Note that 7 is just the ”horizontal lift” operator with respect to the unique flat
connection on Py which makes 7 parallel.

For a vector field £ € A% (W) let 7(¢) be the section of py'(Ty') < T,
corresponding to £ via 7. Formula (II]) shows that 7(§) is a G-invariant vector field
on Py,. The obtained map

ay (7)) : Py =p t(W) - g'°

will be Ad-equivariant, so can be regarded a a section in the associated vector
bundle PW X Ad gl,O = PW X Ad g(c.

Let & n e T'(W, T‘g}l). Using the notations introduced in section of the
Appendix, formula (@) shows that the projections of 7(&), 7(n) on Tgf] are given
by

F(EM = 7() —as(7(§)", T()™! = 7(n) — as(F())",
so, taking into account that 7 commutes with [-, -], and Remarks 3] 14t
(7O 7™ = [7(©), ()] + [F(n), s (7(€))"] = [F(€), s (F(m))"]
+ [ (7(6)”s s (7(n)"]
= [7(€), 7 ()] + (F() (s (7(€)))” — (7€) (s (7(n)))"

Since 7(n)(as (7(€)), 7(€) (s (F(n)) and [ay (7(£)), s (7(n))] are ghO-valued maps,
property (Pb) gives

as ((F)(as (7)) = 7m) (s (7€), au((FE)(as(Fm))") = 7(&) (s (F(n)),
ay ([ (7€), ar(F)]") = [ (7(E)), ar(F()],

so, taking into account the definition of f; and that 7 commutes with [-, -],

£2(7(), 7(n) = — as(7([&,n])) — T()(s (7(€) + T(€) (s (7(n))
+ [ (7(6)), ar (7(m))]-

Composing from the right with 7 and taking into account that 7(§), 7(n) are tangent
to im(7) and that their restriction to im(7) coincide with 7, (), respectively 74 (£),
we obtain

F3(6m) = 1 () 7)) = 5[, ]) — n(05(6)) + &5 () + a3 (€), 3 ()]
= (da3)(En) + gl A aT)(E) = (PaT)(Em) + o] A aT)En).

For the last equality, we took into account that &, n are vector fields of type (0, 1).
|
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2.2. The associated Dolbeault operator. Let p : G — GL(F) be a represen-
tation of p on a finite dimensional complex vector space F' and Ef = P x, F
be the associated vector bundle. Let J € Jp be a bundle ACS on P and s €
AU, EP). Regard s as an element of C’(Pw, F), and note that the differential
0s(s) € Af)]’l(P, F) is a tensorial F-valued (0,1)-form of type p on P, so it can be
regarded as an element ap,s e A%Y(U,E?). The obtained first order differential
operator o : A°(U, EP) — A%L(U, E*) is a Dolbeault operator on E*. We will use
the simpler notation 0y = ap, when p is obvious from the context.

Via the identification I'(W, EP) ~ C®(U, F) induced by a local section 7 €
[(W, P), 04 is given by the formula

7 7s = 0ds +r(a])s, (13)
where t : g — gl(F) is the Lie algebra morphism associated with p. The End(E*)-
valued (0,2)-form Fp, associated with (09)? : A°U, Er) — A%%(U, EP) (which is
the obstruction to the integrability of ) is given by

Fao =(f). (14)
Its pull back via 7 is

F, = or(ah) +t(ah) A t(a]) e A% (U, End(E?)),

where A on the right is induced by the wedge product of forms and composition of
endomorphisms.
Formula (I4) shows that obtained map

D,:Jp — Dge
maps J2* into DIf.
Remark 2.6. The map D, associated with the canonical representation

Pean : GL(r,C) — GL(C")

is a bijection and restricts to a bijection J5* — Dt , where Ep == P xgrrc) C".
Note that the canonical form 6 on GL(r,C) van be written as g~'dg, so, identi-

fying gl(r,C)1? with gl(r,C) in the standard way, the transformation formula (G
becomes

o7 = Adpa(af) + fYf,
which is the well-known formula transformation formula for the gl(r, C)-valued (0,1)
form associated with a Dolbeault operator in a trivialization.

2.3. The affine space Jp and its gauge symmetry. Taking into account the
properties (Pa), (Pb) it follows that the space Ap has a natural structure of an
affine space with model space AY3(P, g"%) ~ A% (U, Ad(P)) of tensorial type (0,1)-
forms of type Ad with values in g ~ g on P. The space Jp of bundle ACS on P
will also be regarded as an A3 (P, g")-affine space via the bijection .J — a; given
by Remark

Let ¢ : G — Aut(G) be the group morphism which assigns to g € G the inner
automorphism ¢4. The group C°(P, G) of t-equivariant maps P — G can be iden-
tified with the space of sections I'(U, ¢(P)), where «(P) := P x, G can be identified
with the bundle of fiberwise automorphisms of P. Therefore the space C°(P,G)
can also be identified with the gauge group Aut(P). The gauge transformation &
associated with o € C*(P, G) is given explicitly by

a(y) =yo(y) Yy € P. (15)

When no confusion can occur, we will write o instead of & to save on notations.
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Definition 2.7. Let J € Jp. We define
[ :CP(P,G)  — Ayy(P.g"?), [i(0)=0*(0"")}"
_ - - 1
EJ : A(I)\,(li(P’gLO) - A?QCQI(PagLO)a EJ(b) :an + §[b A b]a

where 0y stands for 049 (see section[23) and Ag’g(P, gtY) stands for the space of
g*-valued tensorial forms of type Ad on P of bidegree (0, q).

Example 2.1. In the special case of the trivial bundle U x G endowed with the
product bundle ACS Jy we obtain (via the standard identification g ~ g'°) the
maps

[:C*(U,G) — C(U, N ®49), (o)=0*(10)%1
_ _ - 1
E:CP(U,N) ®g) — CO(U, N ®a), E(b)=0b + Sl Aol

Note that formula (@) in Remark 24 can be written o7 = [(c), whereas formula
(@) in Proposition 5] can be written {7 = £(a7).

Lemma 2.8. Let 0 € C°(Pw,G) and 7 € (W, P). Put o, = oot e C®(W,G).
We have
™*((;(0)) = oF (0 + (Ad, -1 —id)(aj).

Proof. Let v € T&;, y = 7(x) € Pand w = 1 (v) € (ps) " (TY"), < Tf,, a =

ay(w) € gh0. Since wg’l = w—ay(w)¥ =w—af, we have:

7 (((0)) () = 00 (o (w 1)) = 010 (0s (w — a}))). (16)
In general, for any c € g we have
d
9(0* (cy#)) = 9(E|0Ade*tC (U(y))) = 9(_ra(y)*(c) + la(y)*(c)) = (17)
=C— l;(ly)* o To(y) (C) =C— Ada-(y)—l (C)
This implies
(0 @idc)(ow(c) = (id — Ad,gy) 1)(e) Yee gF,
in particular

019 (o (cj&)) = (id — Ady()-1)(c) Vee g"?,

so ([0 gives 0%°(o4(af)) = (id — Ady(,-1)(a) and ([@B) becomes
T (5(0))(v) = 07(0 (7 (v)) — (id — Ady(y)-1) (s (7 (v))
= 9170(0’7*(’0)) + (Ada(y)*1 - 1d)(a7}(v))

This proves the claim.

Proposition 2.9. Let J € Jp and be AV (P,g°). We have
free =fs + Es(D).

Proof. Put J' :== J +b. Let 7 € T'(W, P) be a local section of P, and note that the
argument which justified formula (7)) gives b™ = 7*(b) € A% (W, g'?). Taking into
account formula (I3), its follows that the form

(0s0)7 = 7% (0,b) € A¥*(W, g")
which corresponds to db in the local trivialization associated with 7 is

(070)T = b + [ A DT].
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By Proposition 2.5, we have

_ 1 _ - 1
7, = da’ + 5[0{,/ A o] = (0a 4+ 0b") + 5[(0471 +0") A (af +07)]

_ 1 = 1
= 5+ 807+ [a5 AV + 5[0 AT = 5+ (@) + 5[0 A B,

which obviously coincides with 7*(f; + % s(b)). [ |

We let the group C°(P,G) act on Jp from the right by
J-o=06;"0J00,

In other words J - o is defined such that the gauge transformation ¢ associated with
o becomes a pseudo-holomorphic map (P, J - ¢) — (P,J). Taking into account
that o, leaves the subbundle pgl(T)Ogl) c TF invariant, it is easy to see that the
corresponding Aut(P)-action on Ap is:

Q-0 =QO0C0y.
Proposition 2.10. Let o0 € CX(P,G). For any J € Jp we have:

(1) J-o=J+1;(0).
(2) f1.0 = Ado-1(Fs).

Proof. Put J' = J 0.
(1) Let 7 € T'(W, P) be a local section. As in Lemma[Z8 put o, := cor € C*(W, G).
We have

Q) =QpoTy =aj064 0T = a5,

on Tyy'. By (IH) we know that & o7 = 70, 50, by the transformation formula (),
it follows:

a%°T = Ad, 1 (a]) + o (0M0)01.
On the other hand, by Lemma 28]
T (5(0)) = o7 (079)" + (Ad, 1 —id)(a]),
which proves the claim.
(2) For complex vector fields &, n on P we have:
B () = —au (€5, 15]) = —as (Gu((657,15]) = = ([64(E57), 5 (ny)]) =
= = ([04(8)5" 3 (0)7]) = F(4(6), 5 (m)-

For a tangent vector v € Tgy we have G4(v) = Ry« (v) + 0(04(v))¥, where the
second term is vertical. Since f; is a tensorial 2-form, we obtain

f1(04(€), 04 (n)) = Ado—1(5.7) (&, m),
which proves the claim. [ ]
Combining Proposition with Proposition 210, we obtain:
Ad,—i(fr) = fro = s + R(ls(0)),
so we obtain the following formula for the composition € o [;.
Corollary 2.11. With the notations introduced in Definition[2.7, we have:
tyoly(0) = (Ady—1 —id)(fs)-

In particular, if f; = 0, we have €50 [; = 0.
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3. THE HOLDER VERSION NEWLANDER-NIRENBERG THEOREM FOR PRINCIPAL
BUNDLES

Let P be C* principal G-bundle on U and k € [0,0]. A bundle ACS of class C*
on P is an almost complex structure on P satisfying the conditions of Definition
21 which, regarded as section of the vector bundle End(7'p), is of class C*. Equiv-
alently, a bundle ACS of class C* on P is a bundle ACS of class C° on P, such
that, for any local section T € I'(W, P), the form a7 € A%} (W, g'?) is of class (has
coefficients in) C*.

We will denote by Jp the space of bundle ACS of class C* on P. It is an affine
space with model space the space C*(U, Ay} ® Ad(P)) of Ad(P)-valued (0, 1) forms
of class C*. Throughout this section we will fix a Hermitian inner product on the
Lie algebra g.

3.1. The case n = 1. In the case n = 1 Theorem states that for any J € Jp
there exists a J-pseudo-holomorphic section of class C**! around any point x € U.

Consider first the case of the closed Riemann surface P'. Choosing a partition
of unity subordinated with the standard atlas

{P'\{x} = C, P"\{0} = C}
of P! we obtain explicit norms on the Hélder spaces C*(P!, g), C*(P*, OIF’,} ®g), see

section (4]
The kernel of the operator

o:Cr (P, g) — C*(PY, N ®9)
is the space of constant maps P! — g (which will be denoted by g to save on
notations). On the other hand, by Dolbeault theorem and Holder elliptic regularity,
the cokernel of this operator is identified with H!(P!, Op:1 ®c g), which vanishes,
because
Hl(]P)l,O[pl Rc g) = Hl(Pl,Opl) ®c g =0.

Let K be a closed complement of g in the Banach space C"T(P!,g). Such a
complement exists by Hahn-Banach theorem, because g is finite dimensional. It
follows that the restriction Jp = 3|K K — C“(IPl, OIP’,} ® g) is an isomorphism of
Banach spaces. We can now state

Proposition 3.1. There exists an open neighborhood N of 0 in C*(P!, Oﬂ;} ® g)
and, for any A € N, a solution u = MN(\) € K = C**1(PL, g) of the equation

[(exp(u) = A
such that the obtained map N : Ny — K is holomorphic and satisfies: 9(0) = 0,
dn(0) = o,

Proof. We make use of Lemma proved below, taking in this Lemma U = P!,
V=g F=g"0~g w=exp*(@ ). It follows that the composition d = [0 exp
defines a holomorphic map C*T(P!, g) — C*(P!, OIF;} ® g). Moreover, for s = 0,
the map wo € C**1(U, Hom(g, g)) is the constant map U 3 x — id, so by Lemma
(3), the differential at 0 of d is @ : C**1(P', g) — C*(P', Al ® g). It follows
that the differential of the restriction

61( = 6|K K HCK(]P)l, OIFI’} ®g)

at 0 is the invertible operator 50, so 0k is a local biholomorphism around 0. Let
M c K, N c C*(P!, OE;} ® g) be open neighborhoods of 0 in the respective spaces
such that 0x induces a biholomorphism 99 = M — N. It suffices to put N = 551.
| ]
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Before stating Lemma used in the above proof, we need a brief preparation:
Let V, F be finite dimensional Hermitian vector spaces, and w € QY0(V, F) a
holomorphic F-valued form of bidegree (1,0) on V, regarded as holomorphic map
V — Hom(V'%, F), where V¢ = V ®g C.

Let X be a complex manifold, U < X be relatively compact and open such that
U is either a submanifold with smooth boundary U\U, or U = U = X, in which
case X being a closed complex manifold. We choose a pair (A, (xn)nea) consisting
of a finite atlas of U and a partition of unity subordinate to the open cover (Vi )nea
to define effective explicit norms on the Hélder spaces on U (see section AT)).

Let s € C**1(U,V). The form ds € C*(U, N ® V) can be identified with the

cr(U, Homc(Tg’l, V(C1 %))-component of the complexified differential
ds ®idc : U — Home (Ty ® C, Ve) = Home (T @ T, Ve P @ V).
Put ws := w o s, and note that
ws € C*HY (T, Hom(V20, F)).

This follows from Palais’ composition theorem [Pal section 11] applied to w : V —
Hom(V(C1 ’O,F ) regarded as a differentiable fiber preserving map of trivial vector
bundles

UxV —UxHom(V2", F))

over U.

Lemma 3.2. Under the assumptions above we have:
(1) The form s*(w)%' is given by the section ws - 0s € C“(U,Hom@(Tg’l,F)),
where - stands for the fiberwise bilinear vector bundle map
Homc(Ve?, F) x Home (T, Ve?) — Home (T}, F)
on U given fiberwise by the compositions

Home (V2 F) x Home (T35, VE°) — Home (T, F), w e U.

(2) The map L:C*Y(U,V) 3 s~ s*(w)"! e C*(U, 0[,71 ® F) is holomorphic.

(3) The differential of L at a holomorphic element s € CKTH(U, V) is given by
dL(s)(8) = ws - 05. (18)

Proof. The first claim follows by the definition of the pull back form s*(w) and its

(0,1) component.
The second claim follows using:

e The already proved claim (1) which yields a continuous bilinear map
CHHH U, Hom(Ve °, F)) x C*H U, Ny @ V) — ¥ (U, Ny @ F)

of Banach spaces.

e The holomorphy of the map s — w;. This follows by Palais’ differentiability
theorem [Pal, Theorem 11.3] and a well known holomorphy criterion [Mul,
Theorem 13.16 p. 107] in terms of C-differentiability for maps between
Banach spaces . -

e the fact that s — 0s induces a continuous C-linear operator C**1(U, V) —
CHU, Ny ® V) = C*(U, Home (T, V2 0)).

The third claim follows using Leibniz rule applied to the continuous bilinear map
rt1(77 1,0 k177 A1 , k(7 A0
C*HY(U, Hom (Vg ™, F))) x C** Y (U, Ny @ V) — C*(U, A\ ® F)

of Banach spaces mentioned above and noting that the term containing ds vanishes
if s is holomorphic. n
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We can prove now the effective Newlander-Nirenberg Theorem for principal bun-
dles in the case n = 1 we have stated in the introduction:

Proof. (of Theorem [[.8) The main ingredient in the proof is the existence of a
continuous extension operator

EE - CRU, Ny ®@g) — C*(P', Nt ® 9).
This follows from the extension Lemma [GiTtl, Lemma 6.37] noting that the form

dz gives a trivialization of the line bundle /\O(é1 on C, so an obvious isomorphism

CHU, Ny ®g) = C*(U, g).
To complete the proof it suffices to put Ny = (£)~'(N), where N is the open
neighborhood of 0 in C*(P!, OIF;{ ® g) given by Proposition Bl and to define

Ny : Ny — (U, g)

by Ny (A) = NEFN) -
u

3.2. The case n > 2. Suppose now n = dim(U) > 2. Note first that if J € Jf
with & > 1, then f; € C*"1(U, N}’ ® Ad(P)) and the condition f; = 0 has an
obvious sense. In fact this condition has sense even for x = 0:

Definition 3.3. Let J € jjg be a continuous bundle ACS on P. We will say that
7 vanishes in distributional sense, and we will write f; = 0, if for any local section
7€ D(W, P) the (0,2)-form {7 = da’; + 1[a7) A o] vanishes in distributional sense,
i.e. for any compactly supported form o € AM"=2(W, Ad(P)*) we have

(RO ORE Y R IO

If J € Jp with k > 1, this condition is equivalent to the vanishing of f; as
element of C*~1(U, N3 ® Ad(P)) < (U, N3 ® Ad(P)).

Remark 3.4. Let J € j}; be a continuous bundle ACSon P andlet s: U — P be a
J-pseudo-holomorphic section of class C'. Then f; vanishes in distributional sense.

Proof. Let 7: W — P be a local section of class C* and let o € C}(W, G) be such
that sl = 7o~!. Since J is of class C° we know that a7 € C°(W, g). By Remark
24 we have

(o) = a.

Let (0,) be a sequence in C*(W,G) converging in the C' topology to o. It
follows that (I(0,,))n converges in the C° topology to I(0) = a7. By Corollary 2.11]
we have ¢(I(c,,)) = 0, so

o 1 _
0(l{om)) + 5[(Kon)) A (Kow))] = 0

for any n € N. Taking the limit for n — oo in distributional sense, we obtain
= 1
oo’y + 5[&5 A al] =0,
as claimed. m
Let X be a Hermitian manifold of dimension n > 2, and let U < X be a relatively
compact strictly pseudoconvex open subset with smooth boundary oU = U\U.
The L?-structures used in the arguments above are associated with the Hermitian

structure of X, whereas the Holder spaces C*(U, /\Olqu ® g) are endowed with the
explicit norms associated with a pair (A, (X4 )nea) consisting of a finite atlas of U
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and a partition of unity subordinate to the open cover (V4)nea (see section [4.1]in
the appendix).

Under these our strict pseudo-convexity assumption the Dolbeault cohomology
groups H(U, Oy) can be identified with the harmonic spaces H®¢ [LM, Theorem
4.1 p. 314]) for ¢ > 0. If we assume that X is Stein, these spaces vanish for all
g > 0 [LM| Theorem 7.9 p. 180]).

Let
P:L*(U,g) — L*(U,g) n O(U,g)
be the Bergman projection on the space of L? holomorphic g-valued functions on
U. Let x € (0, +0)\N and let k := [£] be its integer part. Put

K = {f e ker(P) n C' (U, g)| [ 0f e~ < o0},
and we endow this vector space with the norm
[flx = 10f]cx.

Lemma 3.5. Under the assumptions above, suppose H'(U,Oy) = 0. Let Z%! be
the closed subspace of C*(U, /\0[’—]1 ®g) defined by
0,1 ._ k(77 AO,1 Ay _
Z7 i ={\eC (U’/\U ®g)| 0N =0},
where, for k = 0, the condition 0\ = 0 is meant in distributional sense on U.
(1) The operator 0 induces a (norm preserving) isomorphism of normed spaces
00 : K= 701 in particular K is a Banach space.
(2) K is contained in C*(U,g) and the inclusion operator is continuous.

(3) We have K < C**Y(U,g). Moreover, for any relatively compact V € U,
there exists Cyy > 0 such that for any u € K we have the estimate:

[ulvleservy < Cvllul k. (19)

Proof. (1) Tt is clear that dy : K — Z%! is injective and preserves the norm. For
the surjectivity: Let A € C*(U, /\O’U1 ® g) with o\ = 0.

Since the harmonic space H%! vanishes, the equation du = X is solvable. More
precisely, the corresponding canonical solution [LM| p. 209], [LM, Corollary 3.2
p. 305], [FK|, Proposition 3.1.15] f = 0* N\ belongs to ker(P), so it belongs to K
because 0f = A e C*(U, 0[,71 ®g).

(2) The proof of (1) shows that the inverse of dg is the restriction of 0* N to Z%1,
so it suffices to show that ¢* N restricts to a continuous operator

C*(U, \g ®9) — (U, 9).
By [BGS, Theorem 1 (a)] it follows that N restricts to a continuous operator
cr(U, /\O’U1 ®g) — C”‘”(_U, /\O’U1 ®g). Since N takes values in dom((J) = dom(d*)
[LM, p. 209], on which 0* is given by the first order differential operator ¢ [LM]
p. 206], it follows that 0* N restricts to a continuous operator C*(U, /\0[’31 ®g) —
Cx(U, gl as claimed.

(3) The first claim of (3) follows using standard regularity property of the first order
elliptic operator 0+ 0* : @<ggcpn A"*I(U) = D1cogr1<n AV (U). The second
claim follows using interior estimates [DN], Theorem 4, p. 529] for the same operator

IThe quoted theorem uses the ”standard Lipschitz spaces” A, where k > 0. For non-integer
k, this space can be identified with the Holder space ClrlA—[x] [Stl Propositions 6, 9 in section
V.4 and section VI.2.3] which we denote C*. Note also that in fact, by [BGS| Theorem 2 (a)],

0* N maps continuously A, even to An+l~
2
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taking into account (2) which gives an estimate of | f||co in terms of ||f|x = |0f]cx-
|

Lemma 3.6. The formula 3(u) = [(exp(u)) defines a holomorphic map
N . s+l /77 K(TT 0,1
0:C"(U,9) = C"(U, A\ ®9)

whose image is contained in the closed subset
, w(fr A0 . K (7 AOLL
W.:{/\GC(U,/\U®g)|8)\+§[/\A)\]=O cCMU, A\ ®@9),

and whose differential at 0 is d(0)(0)(3) = 05.

In the case k = 0 (i.e. 0 < k < 1) the condition dX + $[A A A] = 0 in the
definition of W is meant in distributional sense on U.

Proof. We use Lemma B2 taking V = g, F = ¢! ~ g, w = exp*(0'°) regarded
as holomorphic 1-form on g. Noting that d(u) = (exp ou)*(01:°)% = u*(w)%1, we
obtain d(u) € C*(U, /\0[’71@)9) by Lemma[32 (1). The other claims follow by Lemma
32 (2), (3). n

Let K : C*(U, /\0[’71 ®g) — C*(U, /\O[’71 ® g) be the map defined by
1 .
KA =X+ 5(8*N)[)\ A Al

This map is well defined and holomorphic. Indeed, using the mentioned above
regularity property of the operator N and a standard multiplicative property of
Holder spaces, it follows that the second term of K is a continuous quadratic (2-
homogeneous) map C*(U, /\0(’71 ®g) — C*(U, /\0[’71 ®g) [Mul section 1.2]. Therefore
K is even polynomial in the sense of [Mul, Definition 1.2.8].

Lemma 3.7. Suppose H1(U,Oy) = 0 for g€ {1,2}. Then K(W) < Z%1.

Proof. Let A € W. We have in distributional sense
_ - 1-- 1 1 1-,.=
OK(A) = oA+ 588*]\7[/\ AN = —5[/\ AN+ §DN[>\ AA]— 58*81\7[/\ A Al

Since the harmonic space H’? vanishes, we have [JN = id on L? forms of type
(0,2), so we get in distributional sense:

1-.=
OK(N) = —53*3N[)\ A AL (20)
The range of ON is contained in the domain of 0*, because N takes values in
dom([J) = {f e LQ(U, 0&2 ®g)| f € dom(d) N dom(d*),
of € dom(0*), ¢* f € dom(0)}
(see [LM} p. 201]). Therefore the right hand term of 20) belongs to L?, more
precisely it belongs to the range R(0*) of 0* as closed and densely defined operator
on L? (see [LM, p. 185]). But then (20) shows that the distribution JKC()) belongs
to L?, more precisely it belongs to the range R(0) of 0 as closed and densely

defined operator on L? (see [LM, Theorem 2.6 p. 187]). Since R(0)LR(0*) (see
[ILM| Theorem 5.14, or Theorem 6.2]), we get 0iC(A) = 0. [ |

For the differential d/C(0) of K at 0 we have diC(0) = id, so d(K02)(0) = dd(0) = 0
by Lemma On the other hand, by Lemmas 3.6} B.7, K o0 takes values in Z%1.
Therefore
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Remark 3.8. The induced map ¢ == Kod|x : K — Z%! is also holomorphic, and its
differential at 0 is dc(0) = g, which is a (norm preserving) isomorphism of normed
spaces by Lemma

Proposition 3.9. Suppose H1(U,Oy) = 0 for q € {1,2}. There exists an open
neighborhood Ny of 0 in W and a continuous map N : Ny — K such that 91(0) = 0,

00N =idy, andlimy_,o % =1.

Proof. By the local inverse theorem applied to K and ¢, there exists:

e an open neighborhood B of 0 in C*(U, /\0(’71 ® g) on which K is injective,
e an open neighborhood M < K of 0 in K on which ¢ is injective, and such
that R = ¢(M) is open in Z%! and ¢ induces a biholomorphism ¢ : M — R.

We choose M sufficiently small such that 9(M) < B. This is possible, because 0
is holomorphic, hence continuous.

The intersection K~1(R) n W is open in W because it coincides with the pre-
image of R via the restriction K|y : W — Z%! (see Lemma [B7). It follows that
Ny = B n K~}(R) n W is an open neighborhood of 0 in W.

We claim that in fact B n K~1(R) € W, i.e. that Ny = B n K~}(R). Indeed,
for any A € B n K~!(R) we have K()\) € R, so ¢; ' (K()\))) € M < K, so

K@ (K(A)) = (K o)k (eg " (K(A) = e(eg (KN)) = KA. (21)
But both A and d(¢; ' (K(\))) belong to B. The former because we have chosen

A € B n K7Y(R), the latter because ¢y (K(\)) € M and we have chosen M such
that 9(M) < B. Therefore, since K is injective on B, formula (2I]) implies

A =0(cg (K(N)), (22)
in particular A € W by Lemma [B.6] and the claim is proved.
Put M= ¢;* o K|y, : Ny — K. Formula [22) gives
00N =idy,. (23)
On the other hand

fo O I Ok KOs

A0 Ales A0 R flex 4] ’

because the differentials d(c;*)(0), d(K)(0) are isomorphisms of normed spaces.

Theorem [T stated in the introduction follows from Proposition [3.9] taking into
account Lemma (3).

Now we can prove our Holder version of the Newlander-Nirenberg theorem:

Proof. (of Theorem [[L2) Suppose first k € (0, +00)\N.
(2)=(1) follows from Remark 3.4

(1)=(2): Let J € J§ such that, in the case n = 2, we have f; = 0. The problem is
local, so we can assume that

e U is an open neighborhood of 0 in C™ and x = 0.
e P is the trivial G-bundle U x G on U.

Let o € C*(U, 0b1® g) be the form which corresponds to J via the identifications
explained in Remark[221(1), (2). Note first that, by Proposition[Z.3] the assumption
f7 =0 (in the case n > 2) becomes

(904+%[04A04]=0 (24)

(in distributional sense for x € (0,1)). Let 7 > 0 be sufficiently small such that
B, < U, where B, stands for the radius r ball around 0. Taking into account
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Remark 2.4] (generalized in the obvious way for bundle ACS of class C*) it suffices
to prove:

Claim. For sufficiently small ¢ € (0, 1] the equation
[(exp(u)) = al.,

has a solution u € C**1(B.,, g).

To prove this claim note that, since U is an open subset of C™, « is given by a
map
& : U — Homg(C", g)
of class C* taking values in the space of anti-linear maps C* — g. Moreover, we

have a5 |ex = |@|g,, e (see section ECT)). Let h. : B, — Bc, be the contraction
he(z) = ez. Put

0. = 1¥(alp,,) € C*(Br, N @)
The corresponding map @, : B, — Homg(C", g) is &, = ed o he. This shows that,
denoting as usual k == [k], v =k — k,
e for any multi-index 3 € N?" with |3| < k and for any = € B, we have
Pa(z) = ePF (%) (ex).
e for any multi-index 3 € N?" with |3| = k and for any z, y € B, we have
[0%Gc (@) = 0%Gc()] _ _ws1]0Pdlex) — 0%a(ey)|

|z =yl lex — eyl

Therefore for any ¢ € (0, 1] we have

lacler = llacle < elals,, llex = ellalp,, le~ < elag,|- (25)

- Suppose n = 1. We apply Theorem to the bounded domain B, < C.
Formula (28] shows that, for sufficiently small ¢ > 0 we have a. € Np,_,
so the equation [(exp(u)) = a. has a solution u. € C**1(B,,g). Therefore
us o h;! € C"H1(B.,, g) is a solution of the equation [(exp(u)) = a5, .

- Suppose n = 2. We apply Theorem [I.7] to the strictly pseudo-convex open
subset B, of X = C". By formula [24)) we have a. € W for any ¢ € (0, 1].
Moreover, formula (28] shows that, for sufficiently small € > 0 the form «.
belongs to the open neighborhood Ng, of 0 in W given by Theorem [[.7]
so the equation [(exp(u)) = a. has a solution u. € C**!(B,,g). Therefore
u. o h-t € C*+1(B.,, g) is a solution of the equation [(exp(u)) = a|p., .

For k = +00 the claim follows from Proposition[[ T} in this case J is an integrable
bundle ACS of class C* on P and the bundle map p : P — U becomes a holomorphic
submersion. Local holomorphic sections of p will be of class C*. ]

Remark 3.10. Let k € (0,00]\N. In the case when G is a complex Lie subgroup of
GL(r, C), the equation [(¢) = a can be written as 0~ 'do = a. One can then use
elliptic regularity and bootstrapping to prove that, for a € C*(W, g) any solution in
CY(W, G) of the equation [(¢) = a belongs to C**1 (W, G). Therefore, for a bundle
ACS J € J§, any local J-pseudo-holomorphic section of class C! is of class C**+1.

We can prove now Corollaries [[.4] stated in the introduction:

Proof. (of Corollary [[4)

Let b be the set of J-pseudo-holomorphic local sections of P which are of class
C**+1. Tt suffices to prove that h; is a holomorphic structure on (the underlying
topological bundle of) P in the sense of Definition [[31 By Theorem [[2] s satisfies
condition (1) in this efinition. In order to prove the second condition (holomorphic
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compatibility), let 7 : W — P, 7/ : W' — P be J-pseudo-holomorphic local
sections of class C**! of P. We have to prove that for two the comparison map
Ve : WAW’' — G is holomorphic. The maps ¥ : WxG — Py, ¥ : W/ xG — Py
defined by

U(z,g9) = 7(z)g, V(w,9) =7'(z)g
are diffeomorphisms of class C**!'. Moreover, they are J-pseudo-holomorphic be-

cause 7, 7" are J-pseudo-holomorphic and the action P x G — P is .J-pseudo-
holomorphic. It follows that the C**! diffeomorphism

U ol : (WAW)xG—(WnW)xG

is holomorphic. But
vlo \I]/(xag) = ($, wTT’(‘T)g)a
in particular ¥~ o ¥/(z,e) = (z,%,.(z)), which proves that 1., is holomorphic.
Finally note that by is maximal (with respect to inclusion) satisfying (1), (2).
Indeed, a local continuous section ¢ of P which is holomorphically compatible with
any 7 € by is obviously J-pseudo-holomorphic and of class C**!, so it belongs to

h. ]

Proof. (of Corollary [LLG)

Put E = P xg F, and let ¢ : V — FE be a holomorphic (with respect to b )
local section. This means that the corresponding G-equivariant map ¢ : Py — F
is holomorphic with respect to h;. We have to prove that ¢ is of class "1, i.e.
that the composition ¢ o o : W, — F is of class C"*! for any C® local section
oc: Wy > P with W, cV . Let t € W, and let 7 : W, — P be a local section
belonging to h; with z € W, < W,. Since we assumed that ¢ is holomorphic, we
know that ¢ o7 : W, — F'is holomorphic. For y € W, we have

(@oo)(y) = ¢loy) = ¢(T(Y)¥ro(y)) = Yra(y) T (P o T)(y),

so p oo is of class C**! on W, because ¢ o7 is holomorphic and, since 7 is of class
C**1 the comparison map 1, : W, — G is of class C**1. [ |

4. APPENDIX

4.1. Lipschitz spaces, Holder spaces. Let k € (0, +0)\N, k =[], v ==k — k.
For a finite dimensional normed space T let Lip”(R™,T) be the order x Lipschitz
space of T-valued maps on R” in supremum norm [JWI p. 2], [Stl p. 176]:

Lip"(R",T) = {f € CWI(R", T)| | f|[Lip= < o0}, (26)
where

| flLipe = inf{m € Ry| sup|&?f]| < m, for |j| < [x], and
© (27)
167 f(x) = & F ()| < mlax —y |~ for |j| = [x], =, y e R"}.

Let © < R" be a bounded domain with smooth boundary. We refer to [GiTxl
section 4.1] for the standard definition of the Holder spaces C*¥ () and we note
that the definition extends in an obvious way to T-valued maps. We will denote
by C*¥(Q,T) or C*(€, T) the resulting Banach space. Using the extension Lemma
[GiTr, Lemma 6.37] we obtain an equivalent definition of the space C*(Q2,T):

C™Q,T) = {f €C%(Q,T)| 3f € Lip®(R™, T) such that f|g = f}. (28)
This shows that the restriction epimorphism

lo : Lip"(R",T) — C"(Q,T)
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induces an isomorphism of Banach spaces

Lip®(R™, T NP
P e L 1) 1 =0) = CUQD).

We also define the Lipschitz space Lip” (R, T") of T-valued maps on the half-space

R" == {z e R"| z, = 0 by

Lip®(R,T) = {f € C°(R%,T)| 3f € Lip"(R", T) such that flz» = f}.

Endowed with the norm | - [|Lip= induced by the obvious isomorphism

Li K RW,T ~ K n
1p ( )/{w c LipK(Rn,T” ¢|R1 = O} — Lip (R+,T),

Lip"(R%,T) becomes a Banach space.

Let now M (U) be an n-dimensional differentiable manifold (with boundary),

and Aps (Ag) be the maximal atlas (the set of charts) of M (U). We define the
spaces

C*(M,T) = {f e CO(M,T)| (xflv,) o h~* € Lip"(R",T) for any

open h open . o (29)
(M > V,—->W, c R")e Ay and x € CF(Vj,,R)},

C*(U,T) = {feC®U,T)| (xflv,) oh~" € Lip*(R},T) for any

open (30)
C Ri) € AU and X € C?(Vh,R)}

@5 v, Lw,

The space C*(M,T) (C*(U,T)) is naturally a Fréchet space. When M (U) is

compact, the topology of this space can be defined by a single norm, so it becomes

a Banach space. More precisely, for a finite atlas A < Ay (A < Ap) of a compact

manifold M (with boundary U) and a partition of unity (x)nea subordinate to the

open cover (Vi )nea of M (U), we obtain a norm on C*(M,T) (C*(U,T)), defining
its topology, given by

If

v = D1 10ef i) © B v (31)

he A

where | - |Lip~ stands for the norm defined above on the space Lip™(R™,T') (respec-
tively Lip®(R’,T")). In particular we obtain a third equivalent definition of the
Banach space C*(Q,T) associated with a bounded domain Q@ = R™ with smooth
boundary.

Let © be such a domain. A T-valued differential form of degree d on 2 can be
regarded as a map 2 — L% (R", T) with values in the space L% (R", T) of T-valued
alternating d-linear maps on (R™)?. Using the identification

Ck(Qv /\dQ ® T) - Ck(Qv Lglt (Rna T)),

we obtain a natural definition of the Hélder space C*(Q2, A%, ®T): one just replaces
T by L% (R",T) in the definition of C*(Q,T). More generally, using formulae
similar to 29), B0) we obtain — for a differentiable manifold (with boundary) M
(U) — the Fréchet spaces C*(M, N, ® T') (respectively C*(U, A& @ T)); these
spaces become Banach spaces when M (U) is compact. In this case, choosing a
pair (A, (xn)nea) consisting of a finite atlas of M (U) and a partition of unity
subordinate to the open cover (Vj,)nea, we obtain — using a formula similar to (1))

— defining norms on the spaces C*(Q, AL, ® T), d > 0.
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4.2. The Newlander-Nirenberg theorem for vector bundles. Let U be a
connected n-dimensional complex manifold and E a differentiable complex vector
bundle of rank r on U. Let

§: A°U,E) —» A>Y(U,E)

be a Dolbeault operator (semi-connection) on E, i.e. a first order differential oper-
ator satisfying the Leibniz rule §(fo) = dpo + féo (see for instance [DK| section
2.2.2] [LO} section 1], [T}, section 4.3]). We denote by the same symbol the natural
extension A%(U, E) — A%9*1(U, E) and recall that §% : A°(U, E) — A%2(U, E) is
an order 0 operator, so it is given by a form Fs € A%2(U, End(F)). With respect
to a local trivialization & has the form 0 + a for a gl(r, C)-valued form « of type
(0,1), and then, in the same trivialization, Fs is given by da + a A a.

By the vector bundle version of the Newlander-Nirenberg theorem the End(E)-
valued (0,2)-form Fj is the obstruction to the integrability of ¢ [Grl Proposition p.
419], [AHS| Theorem 5.1}, [Kol Proposition 1.3.7], [DK| Theorem 2.1.53)):

Theorem 4.1 (Newlander-Nirenberg theorem for vector bundles). Let § be a Dol-
beault operator on E. The following conditions are equivalent:
(1) Fs =0.
(2) ¢ is integrable in the following sense: for any point x € U there exists
an open neighborhood W of x and a frame (01,...,0,) € A°(W, E)" with
80; = 0.

If this is the case, § defines a holomorphic structure hs on E. For an open set
W < U, a section o € A°(W, E) is holomorphic with respect to bs if and only if
0o = 0.

The map 0 — bhs defines a bijection between the set of integrable Dolbeault
operators and the set of holomorphic structures on E. This result has important
consequences: the set of isomorphism classes of holomorphic bundles which are
differentiably isomorphic to E can be identified with the quotient D™ (E)/Aut(E)
of gauge classes of integrable Dolbeault operators on E. Therefore ideas and tech-
niques from gauge theory can be used in the construction of moduli spaces of
holomorphic bundles. This idea has been used in [LO| to give a gauge theoretical
construction of the moduli space of simple holomorphic bundles with fixed differ-
entiable type.

4.3. Vector fields on principal bundles. Let G be a Lie group, P a differentiable
manifold, and P x G — P a smooth right action of G on P. The infinitesimal
action of the Lie algebra g of G on P can be regarded a g*-valued vector field
ve (P, Tp ® g*). Explicitly v is given by

vy(a) = a# Vye P, Vaeg.
For any map A € C*(P, g) we obtain a vector field v - A given by

(- Ny = vy (A®) = A»)F-

In other words v - A is the image of the g* ® g-valued vector field ¥ ® A under the
canonical vector bundle morphism Tpr ® (g* ® g) — Tp. We will use the simpler
notation \” for the vector field v - A. If A is the constant map associated with a € g,
then \¥ = a#.

The g*-valued vector field v is obviously invariant under any local diffeomor-
phisms P U L v %E" P which commutes with the infinitesimal G-action on
P, i.e. such that f(a”|y) = a”|v. Using this fact we obtain:
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Remark 4.2. Let £ € X(P) be vector field whose associated local 1-parameter
group of diffeomorphisms (¢;); commutes with the infinitesimal G-action on P, i.e.
it satisfies the property

P: For any = € P there exists €, > 0 and an open neighborhood U, of x in P
such that for any ¢t € (—&,,e,), the local diffeomorphism ¢; is defined on U, and
ot : Uy — ¢4(U,) commutes with the infinitesimal G-action on P in the sense
defined above.

Then L¢(v) = 0.

Proof. Indeed, property P implies @y (v), = v, for any ¢t € (—e,,&,) for which
¢; H(x) € U,. Differentiating with respect to ¢ at ¢ = 0 we obtain L¢(v), =0. ®

Using [KN|, Corollary 1.8 p. 14] applied to the vector fields a*, a € g and [KN|,
Corollary 1.11 p. 16] it follows that ¢ has property P if only if [¢,a#] = 0 for any
a € g, i.e. if only if £ is invariant under the infinitesimal G-action on P.

We obtain:

Remark 4.3. Let £ € X(P) be a vector field on P which is invariant under the
infinitesimal G-action on P, i.e. such that [£,a#] = 0 for any a € g. Then L¢(v) =
0, in particular for any map A € C*(P, g) we have L¢(A”) = L¢(N)Y, ie.

(£, A"] = &) (32)

Suppose now that p: P — U is a principal G-bundle. For any A € C*(P, g) the
vector field A is vertical. If A is Ad-equivariant, i.e. if A belongs to CX(P,g) =
AY(U, Ad(P)), then the vector field A\ is G-invariant, so Remark applies and

B2) gives

(A7 A" ] = (A7) (X)) (33)
for any X' € C*(P,g). If X is also Ad-equivariant, we have
A)N) = =[] (34)

This follows by noting that, via the diffeomorphism f, : G — yoG associated with
a point yo € P, the restriction of A" to the fiber yoG is given by g — Ad,-1 (X (yo)),
whereas the restriction of A to yoG is the right invariant vector field associated
with A(yo). Therefore, we obtain

Remark 4.4. Let p : P — U is a principal G-bundle, and A, X € C4(P,g) =
A%(U, Ad(P)). Then
[N, A7) = =[N\ N

This formula can also be obtained by noting that, for A € C{;(P, g), A” is the
vector field (infinitesimal transformation) associated with A regarded as element
in the Lie algebra I'(U, Ad(P)) of the gauge group Aut(P) = T'(U,¢(P)). Since
Aut(P) acts on P from the left, the linear map C{,(P, g) = Lie(Aut(P)) — X (P)
is an anti-homomorphism of Lie algebras.
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