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THE NEWLANDER-NIRENBERG THEOREM FOR PRINCIPAL

BUNDLES

ANDREI TELEMAN

Abstract. Let G be an arbitrary (not necessarily isomorphic to a subgroup
of GLpr,Cq) complex Le group, U a complex manifold and p : P Ñ U a
C8 principal G-bundle on U . We introduce and study the space Jκ

P
of bundle

almost complex structures of Hölder class Cκ on P . To any J P Jκ
P

we associate
an AdpP q-valued form fJ of type (0,2) on U which should be interpreted as the

obstruction to the integrability of J . For κ ě 1 we have fJ P Cκ´1pU,
Ź0,2

U
b gq

whereas, for κ P r0, 1q, fJ is a form with distribution coefficients.
Let J P Jκ

P
with κ P p0,`8szN. We prove that J admits locally J-pseudo-

holomorphic sections of class Cκ`1 if and only if fJ “ 0. If this is the case,
J defines a holomorphic reduction of the underlying Cκ`1-bundle of P in the
sense of the theory of principal bundles on complex manifolds. The proof is
based on classical regularity results for the B̄-Neumann operator on compact,
strictly pseudo-convex complex manifolds with boundary.

The result will be used in forthcoming articles dedicated to moduli spaces
of holomorphic bundles (on a compact complex manifold X) framed along a
real hypersurface S Ă X.
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Notations: We will use the notation
Ź

d
U (

Źp,q
U ) for the vector bundle of forms of

degree d (bidegree pp, qq) on a (complex) manifold U . The space of sections of class
C8 in this bundle, i.e. the space of differrential forms of degree d (bidegree pp, qq)
on U will be denoted by AdpUq (Ap,qpUq). The notation ΓpW,Eq (ΓpW,P q) will
stand for the set of C8 sections of a differentiable vector (principal) bundle above
an open subset W of its base manifold.

For a vector space (bundle) E on a manifold (with boundary) U (Ū) we will use
the notation CκpU,Eq (CκpŪ , Eq) for the space of E-valued maps (sections in E) of
class Cκ above U (Ū).
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1. Introduction

The classical Newlander-Nirenberg [NN] theorem states that that an almost com-
plex structure J on a differentiable manifold M is integrable (i.e. is induced by a
holomorphic structure onM) if and only if its Nijenhuis tensorNJ vanishes. Several
renowned proofs [NN], [Ko], [FK], [We], [Hö], [Ma], based on different techniques
are available.

The Newlander-Nirenberg theorem has a well-known version for vector bundles,
which is due to Griffiths [Gr, Proposition p. 419] (see also [AHS, Theorem 5.1],
[Ko, Proposition I.3.7], [DK, Theorem 2.1.53 and section 2.2.2]) and plays a crucial
role in Gauge Theory (see for instance [DK]). This vector bundle version of the
Newlander-Nirenberg theorem states that a Dolbeault operator (semi-connection)
δ : A0pEq Ñ A0,1pEq on a differentiable complex vector bundle E on a complex
manifold U is integrable (i.e. is induced by a holomorphic structure on E) if and
only if the form Fδ P A0,2pU,EndpEqq associated with δ2 : A0pEq Ñ A0,2pEq
vanishes (see section 4.2 in the Appendix).

The starting point of this article is a natural generalization of this result to prin-
cipal G-bundles, where G is an arbitrary (not necessarily isomorphic to a subgroup
of GLpr,Cq) complex Lie group.

In the framework of principal bundles the role of Dolbeault operators is played by
bundle almost complex structures, which are introduced and studied in section 2. A
bundle almost complex structure (bundle ACS) on a principal G-bundle p : P Ñ U

is an almost complex structure J on P which makes the G-action on P and the map
p pseudo-holomorphic. The space JP of bundle ACS on P is a affine space with
model space A0,1pU,AdpP qq and comes with a natural action of the gauge group
AutpP q of P .

The principal bundle version of the Newlander-Nirenberg theorem states that
(see section 2 for details):

Proposition 1.1. A bundle ACS J P JP on P is integrable if and only if the
canonically associated form fJ P A0,2pU,AdpP qq vanishes.

The proof is an easy application of a well known remark related to the general
Newlander-Nirenberg theorem: the vanishing of the Nijenhuis tensor NJ of an ACS
on M is equivalent to the integrability of the distribution T

0,1
J Ă TC

M associated
with J .

Proposition 1.1 is not sufficient for our purposes. In [TT], [Te], we will construct
and study moduli spaces of S-framed holomorphic bundles on a compact complex
manifold X , where S Ă X is a fixed real hypersurface. These moduli spaces are
infinite dimensional. In order to endow such a moduli space with the structure of
a Banach analytic space in the sense of Douady, we have to work with bundle ACS
belonging to a fixed Hölder differentiability class Cκ – Crκs,κ´rκs with κ P p0,8qzN
(see section 4.1) and to study the integrability condition in the appropriate sense
for such a bundle ACS.

Our main result is a Hölder version of Proposition 1.1:

Theorem 1.2 (Newlander-Nirenberg theorem for bundle ACS of class Cκ). Let G
be a complex Lie group and p : P Ñ U a differentiable principal G-bundle on U . Let
J be a bundle ACS of class Cκ on P with κ P p0,`8szN. The following conditions
are equivalent:

(1) fJ “ 0.
(2) for any point x P U there exists an open neighborhood W of x and a J-

pseudo-holomorphic section σ P Cκ`1pW,P q.
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Note that for κ P p0, 1q the condition fJ “ 0 is meant in distributional sense, see
Definition 3.3 in section 3. Note also that the regularity class of J in the general
Newlander-Nirenberg theorem for almost complex structures on manifolds of real
dimension ě 4 is Cκ with κ ą 1 [We, Theorem 3.1], so the bundle version of this
theorem requires a weaker regularity assumption.

In the theory of principal bundles on complex manifolds one does not use or
consider (almost) complex structures on the total spaces of the considered bundles.
The fundamental objects in this theory are holomorphic principal bundles in the
following sense:

Definition 1.3. Let P
p

Ñ U be a topological principal G-bundle on U . A (bundle)
holomorphic structure on p is a set h of continuous local sections τ : Wτ Ñ P of p
such that:

(1)
Ť

τPhWτ “ U .

(2) Any two elements τ , τ 1 P h are holomorphically compatible, i.e. the com-
parison map ψττ 1 :Wτ XWτ 1 Ñ G defined by τ 1 “ τψττ 1 , is holomorphic.

(3) h is maximal (with respect to inclusion) satisfying (1), (2).

A holomorphic principal G-bundle on U is a pair pP
p

Ñ U, hq consisting of a topo-
logical principal G-bundle on U and a (bundle) holomorphic structure on p.

The first consequence of Theorem 1.2 is

Corollary 1.4. Let κ P p0,`8szN. A bundle ACS J of class Cκ with fJ “ 0 on
P defines a (bundle) holomorphic structure hJ on its underlying topological bundle.
For an open set W Ă U , a section σ P C1pW,P q belongs to hJ if and only if it is
J-pseudo-holomorphic. Moreover, hJ is contained in the set of local trivializations
of class Cκ`1 of P , so it provides a holomorphic reduction of the underlying Cκ`1

bundle of P .

Remark 1.5. Using the local trivializations associated with sections τ P hJ , one
obtains in particular a complex manifold structure on P which is compatible with
J . Note that for κ P p0, 1q one cannot obtain this structure using directly the general
Newlander-Nirenberg theorem, because, as mentioned above, in this theorem the
required regularity class of J is Cκ with κ ą 1.

Corollary 1.6. Let U be a complex manifold, G a complex Lie group, and P a
principal bundle of class C8 on U . Let κ P p0,`8szN, let J be an bundle ACS of
class Cκ on P with fJ “ 0, G ˆ F Ñ F a holomorphic action of G on a complex
manifold F . The sheaf of holomorphic (with respect to the holomorphic structure
induced by hJ) local sections of the associated bundle P ˆG F is contained in the
sheaf of its local sections of class Cκ`1.

Let θ P A1pG, gq be the canonical left invariant g-valued form on G [KN, p. 41].

For a map U
open
Ą V σÑ́ G of class C1 put l̄pσq – σ˚pθ1,0q0,1. From an analytical

point of view the meaning of Theorem 1.2 is the following: for a g-valued form

α P CκpW,
Ź0,1

W b gq (with κ P p0,`8szN and W
open
Ă U open), the non-linear first

order differential equation

l̄pσq “ α

is locally solvable on W if and only if B̄α ` 1
2

rα ^ αs “ 0 in distributional sense.

In the case dimpUq ě 2 the proof of Theorem 1.2 is based on the following
effective version of the Newlander-Nirenberg theorem for the trivial G-bundle on a
strictly pseudo-convex manifold:
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Theorem 1.7. Let X be a Hermitian manifold of dimension n ě 2, and let U Ă X

be a relatively compact strictly pseudoconvex open subset with smooth boundary
B̄U “ ŪzU . Suppose HqpU,OU q “ 0 for q P t1, 2u and let κ P p0,`8qzN. There
exists an open neighborhood NU of 0 in the closed subset

W –

"

λ P CκpŪ ,
Ź0,1

Ū
b gq| B̄λ`

1

2
rλ^ λs “ 0

*

Ă CκpŪ ,
Ź0,1

Ū
b gq,

and, for any λ P NU , a solution u “ Npλq P Cκ`1pU, gq of the equation

l̄pexppuqq “ λ

which satisfies estimates of the form

}u|V }Cκ`1 ď CV }λ}Cκ (1)

for relatively compact subdomains V Ť U .

The proof is based on classical regularity results for the B̄-Neumann operator
[FK], [LM], [BGS] and elliptic interior estimates [DN].

In the case dimpUq “ 1 we have the following effective version of the Newlander-
Nirenberg theorem for the trivial G-bundle on a relatively compact open subset
U Ă C with smooth boundary:

Theorem 1.8. Let U Ă C be a bounded domain with smooth boundary and let
κ P p0,`8qzN. There exists an open neighborhood NU of 0 in CκpŪ ,

Ź0,1

Ū
b gq and,

for any λ P NU , a solution u “ NU pλq P Cκ`1pŪ , gq of the equation

l̄pexppuqq “ λ

such that the obtained map NU : NU Ñ Cκ`1pŪ , gq is holomorphic and satisfies
NU p0q “ 0.

The proof uses the ellipticity of the operator B̄ on the closed manifold P1 and a
well known extension lemma for Hölder spaces.

2. Bundle almost complex structures on principal bundles

2.1. The Newlander-Nirenberg theorem for bundles in the smooth case.

Let G be a complex Lie group and g its Lie algebra. Let JG P ΓpG,EndRpTGqq be
the almost complex structure on G defining its complex structure and Jg P EndRpgq
the endomorphism defining the complex structure of g. We obtain as usually direct
sum decompositions

TC

G “ T
1,0
G ‘ T

0,1
G , gC “ g1,0 ‘ g0,1

of the complexified tangent bundle, respectively Lie algebra of G.
Let θ P A1pG, gq be the canonical left invariant form of G [KN, p. 41], and θ1,0

the composition

TG bR C
θbRidC´́ ´́ Ñ́ gC Ñ g1,0

Since θ is holomorphic, θ bR idC preserves the type, so θ1,0 is a g1,0-valued form
of type p1, 0q; it can obviously be identified with θ via the standard isomorphisms

pTG, JGq Ñ T
1,0
G , pg, Jgq Ñ g1,0.

Let p : P Ñ U be a differentiable principal G-bundle on U . Denote by V Ă TP
the vertical distribution of P , and recall that this vector bundle comes with a
canonical trivialization ϑ : V Ñ P ˆ g given by py, aq ÞÑ a#y , which extends to a

trivialization ϑC : V C Ñ P ˆ gC of the complexified vertical bundle. The complex
structure Jg of g induces via ϑ a complex structure on the bundle V , so a direct sum
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decomposition V C “ V 1,0 ‘ V 0,1 which corresponds via ϑC to the decomposition
gC “ g1,0 ‘ g0,1. The subbundle p´1

˚ pT 0,1
U q of TC

P fits in the short exact sequence

0 Ñ V C “ V 1,0 ‘ V 0,1 ãÑ p´1
˚ pT 0,1

U q
p˚

´́Ñ p˚pT 0,1
U q Ñ 0. (2)

Definition 2.1. A bundle almost complex structure (ACS) on P is an almost
complex structure J on P which makes the G-action P ˆ G Ñ P and the map
p : P Ñ U pseudo-holomorphic.

Let J be a bundle ACS on P . The subbundle T 0,1
P,J Ă TC

P of type (0,1) tangent

vectors with respect to J is a G-invariant subbundle of p´1
˚ pT 0,1

U q which contains

V 0,1 and is a complement of V 1,0 in p´1
˚ pT 0,1

U q. Therefore one can write

T
0,1
P,J “ kerpαJ q

for a well defined section αJ P ΓpP, p´1
˚ pT 0,1

U q˚ bg1,0q with the following properties:

(Pa) αJ is invariant with respect to the G action g Ñ Rt g˚ bAdg on p
´1
˚ pT 0,1

U q˚ bg.
(Pb) αJ agrees with the g1,0-valued form

V C ϑC

´́Ñ P ˆ pg1,0 ‘ g0,1q Ñ g1,0

on V C. In other words αJ vanishes on V 0,1 and induces the canonical isomor-

phism V 1,0
y

ϑC

y
´́Ñ g1,0 for any y P P .

The subbundle p´1
˚ pT 0,1

U q Ă TC

P splits as a direct sum

p´1
˚ pT 0,1

U q “ T
0,1
P,J ‘ V 1,0,

and the projection on the first summand is

βJ : p´1
˚ pT 0,1

U q Ñ T
0,1
P,J , βJ pvq “ v ´ αJpvq#y for y P P, v P p´1

˚ pT 0,1
U qy . (3)

Remark 2.2. Let p : P Ñ U be a principal G-bundle on U .

(1) The assignment J ÞÑ αJ gives a bijection between the set JP of bundle

ACS on P and the set AP of sections α P ΓpP, p´1
˚ pT 0,1

U q˚ b g1,0q satisfying
properties (Pa), (Pb).

(2) If P “ UˆG is the trivial bundle over U , the short exact sequence (2) comes
with an obvious splitting, and AP can be identified with A0,1pU, g1,0q. The
product bundle ACS J0 on U ˆG corresponds to αJ0

“ 0.
(3) Let J P JP . A local section τ P ΓpW,P q of P defines a trivialization

PW
»
Ñ W ˆ C, so, by (2), αJ gives a form ατ

J P A0,1pW, g1,0q. Explicitly,
in terms of τ , we have for any v P TW :

ατ
J pvq – pαJ ˝ τ˚qpv0,1q. (4)

(4) Let J P JP . A local section τ P ΓpW,P q of P is J-pseudo-holomorphic if
and only if ατ

J “ 0.

The map τ ÞÑ ατ
J satisfies the following transformation formula:

Remark 2.3. Let f P C8pW,Gq. Then

α
τf
J “ Adf´1pατ

Jq ` f˚pθ1,0q0,1. (5)

Proof. Put τ 1 – τf . For y P P denote by ly : G Ñ P the map g ÞÑ yg. For any
v P TC

U,x we have

τ 1
˚pvq “Rfpxq˚pτ˚pvqq ` l

τpxq
˚ pf˚pvqq “ Rfpxq˚pτ˚pvqq ` l

τpxqfpxq
˚ pl´1

fpxq˚pf˚pvqqq

“Rfpxq˚pτ˚pvqq ` pθpf˚pvqqq#
τpxqfpxq.



6 ANDREI TELEMAN

Using properties (Pa), (Pb) we obtain for any v P T 0,1
U,x

ατ 1

J pvq “ Adfpxq´1pατ
Jpvqq ` θ1,0pf˚pvqq “ Adfpxq´1pατ

J pvqq ` f˚pθ1,0qpvq,

which proves the claim.

Remark 2.4. Let J P JP and τ P ΓpW,P q. The map σ ÞÑ τσ´1 induces a bijection
between the set of solutions of the equation

ατ
J “ σ˚pθ1,0q0,1 (6)

for σ P C8pW,Gq and the set of J-pseudo-holomorphic sections of P on W .

Proof. Indeed, by Remark 2.2 (4) we know that τσ – τσ´1 is J pseudo-holomorphic
if and only if ατσ

J “ 0. Writing τ “ τσσ, formula (5) shows that the equation ατσ
J “ 0

is equivalent to (6).

Let J P JP , put α – αJ and consider the anti-symmetric C8pP,Cq-bilinear map

ΓpP, T 0,1
P,Jq2 Q pA,Bq Ñ αprA,Bsq.

Since the subbundle T 0,1
P,J is G-invariant, it follows that ra#, ¨s leaves the space

ΓpP, T 01
P,Jq invariant for any a P gC, in particular αprA,Bsq “ 0 if A or B is vertical.

It follows that the formula

ΓpP, TC

P,Jq2 Q pA,Bq
fJÞÝÑ ´αprA0,1

J , B
0,1
J sq

defines a g1,0-valued tensorial (0,2)-form of type Ad on P (see [KN, section II.5]),

i.e. an element of the space A0,2
AdpP, g1,0q. Identifying g1,0 with g in the canonical

way, we may regard fJ as a g-valued tensorial form of type p0, 2q on P , i.e. as an

element of A0,2
AdpP, gq “ A0,2pU,AdpP qq. We will denote by the same symbol the

corresponding element of A0,2pU,AdpP qq.

With these notations we can prove the Newlander-Nirenberg theorem for prin-
cipal bundles in the smooth case:

Proof. (of Proposition 1.1) The distribution p´1
˚ pT 0,1

X q Ă TC

P is obviously integrable

(because it is the pull-back of T 0,1
U , and U is a complex manifold) and contains

T
0,1
P,J . For vector fields A, B P ΓpP, T 0,1

P,J q the Poisson bracket rA,Bs will still belong

to ΓpP, p´1
˚ pT 0,1

U qq, but not necessarily to ΓpP, T 0,1
P,Jq; it belongs to this subspace if

and only if αprA,Bsq “ 0. Therefore the obstruction to the integrability of J is the
tensorial form fJ as claimed.

Let τ P ΓpW,P q be a smooth local section. Although the pull back τ˚ on forms
is not necessarily type preserving, we have

τ˚pfJ q P A0,2pW, g1,0q. (7)

Indeed, for a tangent vector v P T 1,0
x,U , we have

τ˚pvq P p´1
˚τpxqpT

1,0
U,xq “ T

1,0

P,τpxq ‘ V
0,1

τpxq.

Since fJpA,Bq “ 0 if A orB is of type p1, 0q or vertical, it follows that τ˚pfJqpv, wq “
0 if v or w is of type (1,0). Taking into account this remark, we define, for a local
section τ P ΓpW,P q:

fτJ – τ˚pfJ q P A0,2pW, g1,0q » A0,2pW, gq. (8)

Proposition 2.5. Let τ P ΓpW,P q be a local section of P . Then

fτJ “ B̄ατ
J `

1

2
rατ

J ^ ατ
J s. (9)
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Proof. Note first that τ defines a smooth map

γτ : p´1pW q Ñ G

uniquely determined by the condition τpppyqqγτ pyq “ y. Using this map we obtain
a monomorphism

τ̃ : p˚pT 0,1
W q Ñ p´1

˚ pT 0,1
W q

of vector bundles on p´1pW q given by

τ̃ypvq “ Rγτ pyq˚pτ˚pvqq @y P p´1pW q @v P T 0,1

ppyq. (10)

By definition, τ̃ verifies the G-invariance property:

Rg˚ ˝ τ̃ “ τ̃ @g P G. (11)

Note that τ̃ is just the ”horizontal lift” operator with respect to the unique flat
connection on PW which makes τ parallel.

For a vector field ξ P A0,1pW q let τ̃ pξq be the section of p´1
˚ pT 0,1

W q Ă TC

PW

corresponding to ξ via τ̃ . Formula (11) shows that τ̃pξq is a G-invariant vector field
on PW . The obtained map

αJ pτ̃ pξqq : PW – p´1pW q Ñ g1,0

will be Ad-equivariant, so can be regarded a a section in the associated vector
bundle PW ˆAd g

1,0 Ă PW ˆAd g
C.

Let ξ, η P ΓpW,T 0,1
W q. Using the notations introduced in section 4.3 of the

Appendix, formula (3) shows that the projections of τ̃ pξq, τ̃ pηq on T 0,1
P,J are given

by

τ̃pξq0,1 “ τ̃ pξq ´ αJpτ̃ pξqqν , τ̃ pηq0,1 “ τ̃ pηq ´ αJ pτ̃ pηqqν ,

so, taking into account that τ̃ commutes with r¨, ¨s, and Remarks 4.3, 4.4:

rτ̃pξq0,1, τ̃ pηq0,1s “ rτ̃pξq, τ̃ pηqs ` rτ̃ pηq, αJ pτ̃ pξqqν s ´ rτ̃pξq, αJ pτ̃ pηqqν s

` rαJpτ̃ pξqqν , αJpτ̃ pηqqν s “

“ rτ̃pξq, τ̃ pηqs `
`

τ̃ pηqpαJ pτ̃ pξqq
˘ν

´
`

τ̃ pξqpαJ pτ̃ pηqq
˘ν

´ rαJpτ̃ pξqq, αJ pτ̃ pηqqsν .

(12)

Since τ̃ pηqpαJ pτ̃ pξqq, τ̃pξqpαJ pτ̃ pηqq and rαJpτ̃ pξqq, αJ pτ̃ pηqqs are g1,0-valued maps,
property (Pb) gives

αJ

`

p
`

τ̃ pηqpαJ pτ̃ pξqq
˘ν˘

“ τ̃ pηqpαJ pτ̃ pξqq, αJ

``

τ̃pξqpαJ pτ̃ pηqq
˘ν˘

“ τ̃ pξqpαJ pτ̃ pηqq,

αJ

`

rαJpτ̃ pξqq, αJ pτ̃ pηqqsν
˘

“ rαJpτ̃ pξqq, αJ pτ̃ pηqqs,

so, taking into account the definition of fJ and that τ̃ commutes with r¨, ¨s,

fJpτ̃ pξq, τ̃ pηqq “ ´ αJpτ̃ prξ, ηsqq ´ τ̃ pηqpαJ pτ̃ pξqq ` τ̃pξqpαJ pτ̃ pηqq

` rαJpτ̃ pξqq, αJ pτ̃ pηqqs.

Composing from the right with τ and taking into account that τ̃pξq, τ̃ pηq are tangent
to impτq and that their restriction to impτq coincide with τ˚pξq, respectively τ˚pξq,
we obtain

fτJ pξ, ηq “ fJ pτ˚pξq, τ˚pηqq “ ´ατ
Jprξ, ηsq ´ ηpατ

J pξqq ` ξpατ
Jpηqq ` rατ

Jpξq, ατ
J pηqs

“ pdατ
J qpξ, ηq `

1

2
rατ

J ^ ατ
J spξ, ηq “ pB̄ατ

Jqpξ, ηq `
1

2
rατ

J ^ ατ
J spξ, ηq.

For the last equality, we took into account that ξ, η are vector fields of type p0, 1q.
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2.2. The associated Dolbeault operator. Let ρ : G Ñ GLpF q be a represen-
tation of ρ on a finite dimensional complex vector space F and Eρ – P ˆρ F

be the associated vector bundle. Let J P JP be a bundle ACS on P and s P
A0pU,Eρq. Regard s as an element of C8

ρ pPW , F q, and note that the differential

B̄Jpsq P A
0,1
J pP, F q is a tensorial F -valued (0,1)-form of type ρ on P , so it can be

regarded as an element B̄ρ
Js P A0,1pU,Eρq. The obtained first order differential

operator B̄ρ
J : A0pU,Eρq Ñ A0,1pU,Eρq is a Dolbeault operator on Eρ. We will use

the simpler notation B̄J “ B̄ρ
J when ρ is obvious from the context.

Via the identification ΓpW,Eρq » C8pU, F q induced by a local section τ P
ΓpW,P q, B̄ρ

J is given by the formula

B̄ρ,τ
J s “ B̄s` rpατ

J qs, (13)

where r : g Ñ glpF q is the Lie algebra morphism associated with ρ. The EndpEρq-
valued (0,2)-form FB̄ρ

J
associated with pB̄ρ

J q2 : A0pU,Eρq Ñ A0,2pU,Eρq (which is

the obstruction to the integrability of B̄ρ
J) is given by

FB̄ρ
J

“ rpfJ q. (14)

Its pull back via τ is

F τ
B̄ρ

J
“ B̄rpατ

J q ` rpατ
J q ^ rpατ

J q P A0,2pU,EndpEρqq,

where ^ on the right is induced by the wedge product of forms and composition of
endomorphisms.

Formula (14) shows that obtained map

Dρ : JP Ñ DEρ

maps J int
P into Dint

Eρ .

Remark 2.6. The map Dρcan
associated with the canonical representation

ρcan : GLpr,Cq Ñ GLpCrq

is a bijection and restricts to a bijection J int
P Ñ Dint

EP
, where EP – P ˆGLpr,Cq C

r.

Note that the canonical form θ on GLpr,Cq van be written as g´1dg, so, identi-
fying glpr,Cq1,0 with glpr,Cq in the standard way, the transformation formula (5)
becomes

α
τf
J “ Adf´1pατ

J q ` f´1B̄f,

which is the well-known formula transformation formula for the glpr,Cq-valued (0,1)
form associated with a Dolbeault operator in a trivialization.

2.3. The affine space JP and its gauge symmetry. Taking into account the
properties (Pa), (Pb) it follows that the space AP has a natural structure of an

affine space with model space A0,1
AdpP, g1,0q » A0,1pU,AdpP qq of tensorial type (0,1)-

forms of type Ad with values in g1,0 » g on P . The space JP of bundle ACS on P
will also be regarded as an A0,1

AdpP, g1,0q-affine space via the bijection J ÞÑ αJ given
by Remark 2.2.

Let ι : G Ñ AutpGq be the group morphism which assigns to g P G the inner
automorphism ιg. The group C8

ι pP,Gq of ι-equivariant maps P Ñ G can be iden-
tified with the space of sections ΓpU, ιpP qq, where ιpP q – P ˆι G can be identified
with the bundle of fiberwise automorphisms of P . Therefore the space C8

ι pP,Gq
can also be identified with the gauge group AutpP q. The gauge transformation σ̃
associated with σ P C8

ι pP,Gq is given explicitly by

σ̃pyq “ yσpyq @y P P. (15)

When no confusion can occur, we will write σ instead of σ̃ to save on notations.
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Definition 2.7. Let J P JP . We define

l̄J : C8
ι pP,Gq Ñ A

0,1
AdpP, g1,0q, l̄J pσq“σ˚pθ1,0q0,1J

k̄J : A0,1
AdpP, g1,0q Ñ A

0,2
AdpP, g1,0q, k̄J pbq“B̄Jb`

1

2
rb^ bs,

where B̄J stands for B̄Ad
J (see section 2.2) and A0,q

AdpP, g1,0q stands for the space of
g1,0-valued tensorial forms of type Ad on P of bidegree p0, qq with respect to J .

Example 2.1. In the special case of the trivial bundle U ˆ G endowed with the
product bundle ACS J0 we obtain (via the standard identification g » g1,0) the
maps

l̄ : C8pU,Gq Ñ C8pU,
Ź0,1

U b gq, l̄pσq“σ˚pθ1,0q0,1

k̄ : C8pU,
Ź0,1

U b gq Ñ C8pU,
Ź0,2

U b gq, k̄pbq“B̄b`
1

2
rb^ bs.

Note that formula (6) in Remark 2.4 can be written ατ
J “ l̄pσq, whereas formula

(9) in Proposition 2.5 can be written fτJ “ k̄pατ
Jq.

Lemma 2.8. Let σ P C8
ι pPW , Gq and τ P ΓpW,P q. Put στ – σ ˝ τ P C8pW,Gq.

We have

τ˚p̄lJ pσqq “ σ˚
τ pθ1,0q0,1 ` pAd

σ
´1

τ
´ idqpατ

J q.

Proof. Let v P T
0,1
U,x, y “ τpxq P P and w – τ˚pvq P pp˚q´1pT 0,1

U qy Ă TC

P,y, a –

αJpwq P g1,0. Since w0,1
J “ w ´ αJpwq#y “ w ´ a#y , we have:

τ˚ p̄lJ pσqqpvq “ θ1,0pσ˚pw0,1
J qq “ θ1,0pσ˚pw ´ a#y qq. (16)

In general, for any c P g we have

θpσ˚pc#y qq “ θ
` d

dt
|0Ade´tcpσpyqq

˘

“ θp´rσpyq˚pcq ` lσpyq˚pcqq “

“ c ´ l´1
σpyq˚ ˝ rσpyq˚pcq “ c´ Adσpyq´1pcq.

(17)

This implies

pθ b idCqpσ˚pc#y qq “ pid ´ Adσpyq´1qpcq @c P gC,

in particular

θ1,0pσ˚pc#y qq “ pid ´ Adσpyq´1qpcq @c P g1,0,

so (17) gives θ1,0pσ˚pa#y qq “ pid ´ Adσpyq´1qpaq and (16) becomes

τ˚ p̄lJpσqqpvq “ θ1,0pσ˚pτ˚pvqq ´ pid ´ Adσpyq´1qpαJ pτ˚pvqq

“ θ1,0pστ˚pvqq ` pAdσpyq´1 ´ idqpατ
J pvqq.

This proves the claim.

Proposition 2.9. Let J P JP and b P A0,1
AdpP, g1,0q. We have

fJ`b “ fJ ` κ̄Jpbq.

Proof. Put J 1 – J ` b. Let τ P ΓpW,P q be a local section of P , and note that the
argument which justified formula (7) gives bτ – τ˚pbq P A0,1pW, g1,0q. Taking into
account formula (13), its follows that the form

pB̄Jbq
τ – τ˚pB̄Jbq P A0,2pW, g1,0q

which corresponds to B̄Jb in the local trivialization associated with τ is

pB̄Jbq
τ “ B̄bτ ` rατ

J ^ bτ s.
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By Proposition 2.5, we have

fτJ 1 “ B̄ατ
J 1 `

1

2
rατ

J 1 ^ ατ
J 1 s “ pB̄ατ

J ` B̄bτ q `
1

2
rpατ

J ` bτ q ^ pατ
J ` bτ qs

“ fτJ ` B̄bτ ` rατ
J ^ bτ s `

1

2
rbτ ^ bτ s “ fτJ ` pB̄Jbq

τ `
1

2
rbτ ^ bτ s,

which obviously coincides with τ˚pfJ ` κ̄Jpbqq.

We let the group C8
ι pP,Gq act on JP from the right by

J ¨ σ “ σ̃´1
˚ ˝ J ˝ σ̃˚,

In other words J ¨σ is defined such that the gauge transformation σ̃ associated with
σ becomes a pseudo-holomorphic map pP, J ¨ σq Ñ pP, Jq. Taking into account

that σ˚ leaves the subbundle p´1
˚ pT 0,1

X q Ă TC

P invariant, it is easy to see that the
corresponding AutpP q-action on AP is:

α ¨ σ “ α ˝ σ̃˚.

Proposition 2.10. Let σ P C8
ι pP,Gq. For any J P JP we have:

(1) J ¨ σ “ J ` l̄J pσq.
(2) fJ¨σ “ Adσ´1pfJ q.

Proof. Put J 1 – J ¨ σ.
(1) Let τ P ΓpW,P q be a local section. As in Lemma 2.8 put στ – σ˝τ P C8pW,Gq.
We have

ατ
J 1 “ αJ 1 ˝ τ˚ “ αJ ˝ σ̃˚ ˝ τ˚ “ ασ̃˝τ

J .

on T 0,1
W . By (15) we know that σ̃ ˝ τ “ τστ , so, by the transformation formula (5),

it follows:

ασ̃˝τ
J “ Ad

σ
´1

τ
pατ

J q ` σ˚
τ pθ1,0q0,1.

On the other hand, by Lemma 2.8,

τ˚p̄lJ pσqq “ σ˚
τ pθ1,0q0,1 ` pAdσ

´1

τ
´ idqpατ

J q,

which proves the claim.

(2) For complex vector fields ξ, η on P we have:

fJ 1 pξ, ηq “ ´αJ 1 prξ0,1J 1 , η
0,1
J 1 sq “ ´αJ pσ̃˚prξ0,1J 1 , η

0,1
J 1 sq “ ´αJ prσ̃˚pξ0,1J 1 q, σ̃˚pη0,1J 1 qsq “

“ ´αJprσ̃˚pξq0,1J , σ̃˚pηq0,1J sq “ fJ pσ̃˚pξq, σ̃˚pηqq.

For a tangent vector v P TC

P,y we have σ̃˚pvq “ Rσpyq˚pvq ` θpσ˚pvqq#y , where the
second term is vertical. Since fJ is a tensorial 2-form, we obtain

fJ pσ̃˚pξq, σ̃˚pηqq “ Adσ´1pfJ qpξ, ηq,

which proves the claim.

Combining Proposition 2.9 with Proposition 2.10, we obtain:

Adσ´1pfJq “ fJ¨σ “ fJ ` κ̄J p̄lJ pσqq,

so we obtain the following formula for the composition k̄J ˝ l̄J .

Corollary 2.11. With the notations introduced in Definition 2.7, we have:

k̄J ˝ l̄J pσq “ pAdσ´1 ´ idqpfJ q.

In particular, if fJ “ 0, we have k̄J ˝ l̄J “ 0.
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3. The Hölder version Newlander-Nirenberg theorem for principal

bundles

Let P be C8 principal G-bundle on U and κ P r0,8s. A bundle ACS of class Cκ

on P is an almost complex structure on P satisfying the conditions of Definition
2.1 which, regarded as section of the vector bundle EndpTP q, is of class Cκ. Equiv-
alently, a bundle ACS of class Cκ on P is a bundle ACS of class C0 on P , such
that, for any local section τ P ΓpW,P q, the form ατ

J P A0,1pW, g1,0q is of class (has
coefficients in) Cκ.

We will denote by J κ
P the space of bundle ACS of class Cκ on P . It is an affine

space with model space the space CκpU,
Ź0,1

U bAdpP qq of AdpP q-valued p0, 1q forms
of class Cκ. Throughout this section we will fix a Hermitian inner product on the
Lie algebra g.

3.1. The case n “ 1. In the case n “ 1 Theorem 1.2 states that for any J P J κ
P

there exists a J-pseudo-holomorphic section of class Cκ`1 around any point x P U .
Consider first the case of the closed Riemann surface P1. Choosing a partition

of unity subordinated with the standard atlas
 

P
1zt8u »Ñ́ C, P1zt0u »Ñ́ C

(

of P1 we obtain explicit norms on the Hölder spaces CκpP1, gq, CκpP1,
Ź0,1

P1 b gq, see
section 4.1

The kernel of the operator

B̄ : Cκ`1pP1, gq Ñ CκpP1,
Ź0,1

P1 b gq

is the space of constant maps P
1 Ñ g (which will be denoted by g to save on

notations). On the other hand, by Dolbeault theorem and Hölder elliptic regularity,
the cokernel of this operator is identified with H1pP1,OP1 bC gq, which vanishes,
because

H1pP1,OP1 bC gq “ H1pP1,OP1q bC g “ 0.

Let K be a closed complement of g in the Banach space Cκ`1pP1, gq. Such a
complement exists by Hahn-Banach theorem, because g is finite dimensional. It
follows that the restriction B̄0 – B̄|K : K Ñ CκpP1,

Ź0,1

P1 b gq is an isomorphism of
Banach spaces. We can now state

Proposition 3.1. There exists an open neighborhood N of 0 in CκpP1,
Ź0,1

P1 b gq
and, for any λ P N , a solution u “ Npλq P K Ă Cκ`1pP1, gq of the equation

l̄pexppuqq “ λ

such that the obtained map N : NU Ñ K is holomorphic and satisfies: Np0q “ 0,
dNp0q “ B̄´1

0 .

Proof. We make use of Lemma 3.2 proved below, taking in this Lemma U “ P1,
V “ g, F “ g1,0 » g, ω “ exp˚pθ1,0q. It follows that the composition d̄ “ l̄ ˝ exp

defines a holomorphic map Cκ`1pP1, gq Ñ CκpP1,
Ź0,1

P1 b gq. Moreover, for s “ 0,

the map ω0 P Cκ`1pŪ ,Hompg, gqq is the constant map Ū Q x ÞÑ idg, so by Lemma

3.2 (3), the differential at 0 of d is B̄ : Cκ`1pP1, gq Ñ CκpP1,
Ź0,1

P1 b gq. It follows
that the differential of the restriction

d̄K – d̄|K : K Ñ CκpP1,
Ź0,1

P1 b gq

at 0 is the invertible operator B̄0, so d̄K is a local biholomorphism around 0. Let
M Ă K, N Ă CκpP1,

Ź0,1

P1 b gq be open neighborhoods of 0 in the respective spaces

such that d̄K induces a biholomorphism d̄0 “ M Ñ N . It suffices to put N – d̄´1
0 .
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Before stating Lemma 3.2 used in the above proof, we need a brief preparation:
Let V , F be finite dimensional Hermitian vector spaces, and ω P Ω1,0pV, F q a
holomorphic F -valued form of bidegree p1, 0q on V , regarded as holomorphic map

V Ñ HompV 1,0
C

, F q, where VC – V bR C.
Let X be a complex manifold, U Ă X be relatively compact and open such that

Ū is either a submanifold with smooth boundary ŪzU , or U “ Ū “ X , in which
case X being a closed complex manifold. We choose a pair pA, pχhqhPAq consisting
of a finite atlas of Ū and a partition of unity subordinate to the open cover pVhqhPA

to define effective explicit norms on the Hölder spaces on Ū (see section 4.1).

Let s P Cκ`1pŪ , V q. The form B̄s P CκpŪ ,
Ź0,1

Ū
b V q can be identified with the

CκpŪ ,HomCpT 0,1
U , V

1,0
C

qq-component of the complexified differential

dsb idC : U Ñ HomCpTU b C, VCq “ HomCpT 1,0
U ‘ T

0,1
U , V

1,0
C

‘ V
0,1
C

q.

Put ωs – ω ˝ s, and note that

ωs P Cκ`1pŪ ,HompV 1,0
C

, F qq.

This follows from Palais’ composition theorem [Pa, section 11] applied to ω : V Ñ

HompV 1,0
C

, F q regarded as a differentiable fiber preserving map of trivial vector
bundles

Ū ˆ V Ñ Ū ˆ HompV 1,0
C

, F qq

over Ū .

Lemma 3.2. Under the assumptions above we have:

(1) The form s˚pωq0,1 is given by the section ωs ¨ B̄s P CκpŪ ,HomCpT 0,1
U , F qq,

where ¨ stands for the fiberwise bilinear vector bundle map

HomCpV 1,0
C

, F q ˆ HomCpT 0,1
U , V

1,0
C

q Ñ HomCpT 0,1
U , F q

on U given fiberwise by the compositions

HomCpV 1,0
C

, F q ˆ HomCpT 0,1
U,x, V

1,0
C

q Ñ HomCpT 0,1
U,x, F q, x P U.

(2) The map L : Cκ`1pŪ , V q Q s ÞÑ s˚pωq0,1 P CκpŪ ,
Ź0,1

Ū
b F q is holomorphic.

(3) The differential of L at a holomorphic element s P Cκ`1pŪ , V q is given by

dLpsqp 9sq “ ωs ¨ B̄ 9s. (18)

Proof. The first claim follows by the definition of the pull back form s˚pωq and its
p0, 1q component.

The second claim follows using:

‚ The already proved claim (1) which yields a continuous bilinear map

C
κ`1pŪ ,HompV 1,0

C
, F qq ˆ C

κ`1pŪ ,
Ź0,1

Ū
b V 1,0q Ñ C

κpŪ ,
Ź0,1

Ū
b F q.

of Banach spaces.
‚ The holomorphy of the map s ÞÑ ωs. This follows by Palais’ differentiability

theorem [Pa, Theorem 11.3] and a well known holomorphy criterion [Mu,
Theorem 13.16 p. 107] in terms of C-differentiability for maps between
Banach spaces .

‚ the fact that s ÞÑ B̄s induces a continuous C-linear operator Cκ`1pŪ , V q Ñ

CκpŪ ,
Ź0,1

Ū
b V q “ CκpŪ ,HomCpT 0,1

U , V
1,0
C

qq.

The third claim follows using Leibniz rule applied to the continuous bilinear map

Cκ`1pŪ ,HompV 1,0
C

, F qqq ˆ Cκ`1pŪ ,
Ź0,1

Ū
b V 1,0q Ñ CκpŪ ,

Ź0,1

Ū
b F q

of Banach spaces mentioned above and noting that the term containing B̄s vanishes
if s is holomorphic.
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We can prove now the effective Newlander-Nirenberg Theorem for principal bun-
dles in the case n “ 1 we have stated in the introduction:

Proof. (of Theorem 1.8) The main ingredient in the proof is the existence of a
continuous extension operator

Eκ
Ū
: CκpŪ ,

Ź0,1

Ū
b gq Ñ CκpP1,

Ź0,1

P1 b gq.

This follows from the extension Lemma [GiTr, Lemma 6.37] noting that the form

dz̄ gives a trivialization of the line bundle
Ź0,1

C
on C, so an obvious isomorphism

CκpŪ ,
Ź0,1

Ū
b gq »Ñ́ CκpŪ , gq.

To complete the proof it suffices to put NU – pEκ
Ū

q´1pNq, where N is the open

neighborhood of 0 in CκpP1,
Ź0,1

P1 b gq given by Proposition 3.1, and to define

NU : NU Ñ Cκ`1pŪ , gq

by NU pλq “ NpEκ
Ū

pλqq|Ū .

3.2. The case n ě 2. Suppose now n – dimpUq ě 2. Note first that if J P J κ
P

with κ ě 1, then fJ P Cκ´1pU,
Ź0,2

U b AdpP qq and the condition fJ “ 0 has an
obvious sense. In fact this condition has sense even for κ “ 0:

Definition 3.3. Let J P J 0
P be a continuous bundle ACS on P . We will say that

fJ vanishes in distributional sense, and we will write fJ “ 0, if for any local section
τ P ΓpW,P q the p0, 2q-form fτJ “ B̄ατ

J ` 1
2

rατ
J ^ατ

J s vanishes in distributional sense,

i.e. for any compactly supported form ϕ P An,n´2
c pW,AdpP q˚q we have

ż

U

xατ
J ^ B̄ϕy “

1

2

ż

U

@

rατ
J ^ ατ

J s ^ ϕ
D

.

If J P J κ
P with κ ě 1, this condition is equivalent to the vanishing of fJ as

element of Cκ´1pU,
Ź0,2

U b AdpP qq Ă C0pU,
Ź0,2

U b AdpP qq.

Remark 3.4. Let J P J 0
P be a continuous bundle ACS on P and let s : U Ñ P be a

J-pseudo-holomorphic section of class C1. Then fJ vanishes in distributional sense.

Proof. Let τ : W Ñ P be a local section of class C8 and let σ P C1pW,Gq be such
that s|W “ τσ´1. Since J is of class C0 we know that ατ

J P C0pW, gq. By Remark
2.4 we have

l̄pσq “ ατ
J .

Let pσnq be a sequence in C8pW,Gq converging in the C1 topology to σ. It
follows that p̄lpσnqqn converges in the C0 topology to lpσq “ ατ

J . By Corollary 2.11
we have k̄p̄lpσnqq “ 0, so

B̄p̄lpσnqq `
1

2
rp̄lpσnqq ^ p̄lpσnqqs “ 0

for any n P N. Taking the limit for n Ñ 8 in distributional sense, we obtain

B̄ατ
J `

1

2
rατ

J ^ ατ
J s “ 0,

as claimed.

LetX be a Hermitian manifold of dimension n ě 2, and let U Ă X be a relatively
compact strictly pseudoconvex open subset with smooth boundary B̄U “ ŪzU .
The L2-structures used in the arguments above are associated with the Hermitian
structure of X , whereas the Hölder spaces CκpŪ ,

Ź0,q

Ū
b gq are endowed with the

explicit norms associated with a pair pA, pχhqhPAq consisting of a finite atlas of Ū
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and a partition of unity subordinate to the open cover pVhqhPA (see section 4.1 in
the appendix).

Under these our strict pseudo-convexity assumption the Dolbeault cohomology
groups HqpU,OU q can be identified with the harmonic spaces H0,q [LM, Theorem
4.1 p. 314]) for q ą 0. If we assume that X is Stein, these spaces vanish for all
q ą 0 [LM, Theorem 7.9 p. 180]).

Let

P : L2pU, gq Ñ L2pU, gq X OpU, gq

be the Bergman projection on the space of L2 holomorphic g-valued functions on
U . Let κ P p0,`8qzN and let k – rκs be its integer part. Put

K – tf P kerpP q X C1pU, gq| }B̄f}Cκ ă 8u,

and we endow this vector space with the norm

}f}K – }B̄f}Cκ.

Lemma 3.5. Under the assumptions above, suppose H1pU,OU q “ 0. Let Z0,1 be

the closed subspace of CκpŪ ,
Ź0,1

Ū
b gq defined by

Z0,1 – tλ P CκpŪ ,
Ź0,1

Ū
b gq| B̄λ “ 0u,

where, for k “ 0, the condition B̄λ “ 0 is meant in distributional sense on U .

(1) The operator B̄ induces a (norm preserving) isomorphism of normed spaces
B̄0 : K »Ñ́ Z0,1, in particular K is a Banach space.

(2) K is contained in CκpŪ , gq and the inclusion operator is continuous.
(3) We have K Ă Cκ`1pU, gq. Moreover, for any relatively compact V Ť U ,

there exists CV ą 0 such that for any u P K we have the estimate:

}u|V }Cκ`1pV q ď CV }u}K . (19)

Proof. (1) It is clear that B̄0 : K Ñ Z0,1 is injective and preserves the norm. For

the surjectivity: Let λ P CκpŪ ,
Ź0,1

Ū
b gq with B̄λ “ 0.

Since the harmonic space H0,1 vanishes, the equation B̄u “ λ is solvable. More
precisely, the corresponding canonical solution [LM, p. 209], [LM, Corollary 3.2
p. 305], [FK, Proposition 3.1.15] f “ B̄˚Nλ belongs to kerpP q, so it belongs to K

because B̄f “ λ P CκpŪ ,
Ź0,1

Ū
b gq.

(2) The proof of (1) shows that the inverse of B̄0 is the restriction of B̄˚N to Z0,1,
so it suffices to show that B̄˚N restricts to a continuous operator

C
κpŪ ,

Ź0,1

Ū
b gq Ñ C

κpŪ , gq.

By [BGS, Theorem 1 (a)] it follows that N restricts to a continuous operator

CκpŪ ,
Ź0,1

Ū
b gq Ñ Cκ`1pŪ ,

Ź0,1

Ū
b gq. Since N takes values in domplq Ă dompB̄˚q

[LM, p. 209], on which B̄˚ is given by the first order differential operator ϑ [LM,

p. 206], it follows that B̄˚N restricts to a continuous operator CκpŪ ,
Ź0,1

Ū
b gq Ñ

CκpŪ , gq1 as claimed.

(3) The first claim of (3) follows using standard regularity property of the first order
elliptic operator B̄ ` B̄˚ :

À

0ď2qďn A
0,2qpUq Ñ

À

1ď2q`1ďn A
0,2q`1pUq. The second

claim follows using interior estimates [DN, Theorem 4, p. 529] for the same operator

1The quoted theorem uses the ”standard Lipschitz spaces” Λκ, where κ ą 0. For non-integer
κ, this space can be identified with the Hölder space Crκs,κ´rκs [St, Propositions 6, 9 in section
V.4 and section VI.2.3] which we denote Cκ. Note also that in fact, by [BGS, Theorem 2 (a)],
B̄˚N maps continuously Λκ even to Λ

κ` 1

2

.
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taking into account (2) which gives an estimate of }f}C0 in terms of }f}K “ }B̄f}Cκ .

Lemma 3.6. The formula d̄puq – l̄pexppuqq defines a holomorphic map

d̄ : Cκ`1pŪ , gq Ñ CκpŪ ,
Ź0,1

Ū
b gq

whose image is contained in the closed subset

W –

"

λ P CκpŪ ,
Ź0,1

Ū
b gq| B̄λ`

1

2
rλ^ λs “ 0

*

Ă CκpŪ ,
Ź0,1

Ū
b gq,

and whose differential at 0 is dpd̄qp0qp 9sq “ B̄ 9s.

In the case k “ 0 (i.e. 0 ă κ ă 1) the condition B̄λ ` 1
2

rλ ^ λs “ 0 in the
definition of W is meant in distributional sense on U .

Proof. We use Lemma 3.2 taking V “ g, F “ g1,0 » g, ω “ exp˚pθ1,0q regarded
as holomorphic 1-form on g. Noting that d̄puq “ pexp ˝uq˚pθ1,0q0,1 “ u˚pωq0,1, we

obtain d̄puq P CκpŪ ,
Ź0,1

Ū
bgq by Lemma 3.2 (1). The other claims follow by Lemma

3.2 (2), (3).

Let K : CκpŪ ,
Ź0,1

Ū
b gq Ñ CκpŪ ,

Ź0,1

Ū
b gq be the map defined by

Kpλq “ λ`
1

2
pB̄˚Nqrλ^ λs.

This map is well defined and holomorphic. Indeed, using the mentioned above
regularity property of the operator N and a standard multiplicative property of
Hölder spaces, it follows that the second term of K is a continuous quadratic (2-

homogeneous) map CκpŪ ,
Ź0,1

Ū
b gq Ñ CκpŪ ,

Ź0,1

Ū
b gq [Mu, section I.2]. Therefore

K is even polynomial in the sense of [Mu, Definition I.2.8].

Lemma 3.7. Suppose HqpU,OU q “ 0 for q P t1, 2u. Then KpW q Ă Z0,1.

Proof. Let λ P W . We have in distributional sense

B̄Kpλq “ B̄λ`
1

2
B̄B̄˚N rλ^ λs “ ´

1

2
rλ^ λs `

1

2
lN rλ^ λs ´

1

2
B̄˚B̄N rλ^ λs.

Since the harmonic space H
0,2 vanishes, we have lN “ id on L2 forms of type

(0,2), so we get in distributional sense:

B̄Kpλq “ ´
1

2
B̄˚B̄N rλ^ λs. (20)

The range of B̄N is contained in the domain of B̄˚, because N takes values in

domplq “
 

f P L2pU,
Ź0,2

U b gq| f P dompB̄q X dompB̄˚q,

B̄f P dompB̄˚q, B̄˚f P dompB̄q
(

(see [LM, p. 201]). Therefore the right hand term of (20) belongs to L2, more
precisely it belongs to the range RpB̄˚q of B̄˚ as closed and densely defined operator
on L2 (see [LM, p. 185]). But then (20) shows that the distribution B̄Kpλq belongs
to L2, more precisely it belongs to the range RpB̄q of B̄ as closed and densely
defined operator on L2 (see [LM, Theorem 2.6 p. 187]). Since RpB̄qKRpB̄˚q (see
[LM, Theorem 5.14, or Theorem 6.2]), we get B̄Kpλq “ 0.

For the differential dKp0q of K at 0 we have dKp0q “ id, so dpK˝d̄qp0q “ dd̄p0q “ B̄
by Lemma 3.6. On the other hand, by Lemmas 3.6, 3.7, K ˝ d̄ takes values in Z0,1.
Therefore
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Remark 3.8. The induced map c – K ˝ d̄|K : K Ñ Z0,1 is also holomorphic, and its
differential at 0 is dcp0q “ B̄0, which is a (norm preserving) isomorphism of normed
spaces by Lemma 3.5.

Proposition 3.9. Suppose HqpU,OU q “ 0 for q P t1, 2u. There exists an open
neighborhood NU of 0 inW and a continuous map N : NU Ñ K such that Np0q “ 0,

d̄ ˝ N “ idNU
and limλÑ0

}Npλq}K
}λ}Cκ

“ 1.

Proof. By the local inverse theorem applied to K and c, there exists:

‚ an open neighborhood B of 0 in CκpŪ ,
Ź0,1

Ū
b gq on which K is injective,

‚ an open neighborhood M Ă K of 0 in K on which c is injective, and such
that R – cpMq is open in Z0,1 and c induces a biholomorphism c0 :M Ñ R.

We choose M sufficiently small such that d̄pMq Ă B. This is possible, because d̄
is holomorphic, hence continuous.

The intersection K´1pRq X W is open in W because it coincides with the pre-
image of R via the restriction K|W : W Ñ Z0,1 (see Lemma 3.7). It follows that
NU – B X K´1pRq XW is an open neighborhood of 0 in W .

We claim that in fact B X K´1pRq Ă W , i.e. that NU “ B X K´1pRq. Indeed,
for any λ P B X K´1pRq we have Kpλq P R, so c´1

0 pKpλqqq P M Ă K, so

Kpd̄pc´1
0 pKpλqqqq “ pK ˝ d̄q|Kpc´1

0 pKpλqqqq “ cpc´1
0 pKpλqqq “ Kpλq. (21)

But both λ and d̄pc´1
0 pKpλqqq belong to B. The former because we have chosen

λ P B X K´1pRq, the latter because c´1
0 pKpλqq P M and we have chosen M such

that d̄pMq Ă B. Therefore, since K is injective on B, formula (21) implies

λ “ d̄pc´1
0 pKpλqqq, (22)

in particular λ P W by Lemma 3.6, and the claim is proved.

Put N – c´1
0 ˝ K|NU

: NU Ñ K. Formula (22) gives

d̄ ˝ N “ idNU
. (23)

On the other hand

lim
λÑ0

}Npλq}K
}λ}Cκ

“ lim
λÑ0

}c´1
0 pKpλqq}K
}Kpλq}Cκ

}Kpλq}Cκ

}λ}Cκ

“ 1,

because the differentials dpc´1
0 qp0q, dpKqp0q are isomorphisms of normed spaces.

Theorem 1.7 stated in the introduction follows from Proposition 3.9 taking into
account Lemma 3.5 (3).

Now we can prove our Hölder version of the Newlander-Nirenberg theorem:

Proof. (of Theorem 1.2) Suppose first κ P p0,`8qzN.
(2)ñ(1) follows from Remark 3.4.

(1)ñ(2): Let J P J κ
P such that, in the case n ě 2, we have fJ “ 0. The problem is

local, so we can assume that

‚ U is an open neighborhood of 0 in Cn and x “ 0.
‚ P is the trivial G-bundle U ˆG on U .

Let α P CκpU,
Ź0,1

U bgq be the form which corresponds to J via the identifications
explained in Remark 2.2 (1), (2). Note first that, by Proposition 2.5, the assumption
fJ “ 0 (in the case n ě 2) becomes

B̄α `
1

2
rα ^ αs “ 0 (24)

(in distributional sense for κ P p0, 1q). Let r ą 0 be sufficiently small such that
B̄r Ă U , where Br stands for the radius r ball around 0. Taking into account
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Remark 2.4 (generalized in the obvious way for bundle ACS of class Cκ) it suffices
to prove:

Claim. For sufficiently small ε P p0, 1s the equation

l̄pexppuqq “ α|Bεr

has a solution u P Cκ`1pBεr , gq.

To prove this claim note that, since U is an open subset of Cn, α is given by a
map

α̃ : U Ñ HomRpCn, gq

of class Cκ taking values in the space of anti-linear maps Cn Ñ g. Moreover, we
have }α|B̄εr

}Cκ “ }α̃|B̄εr
}Cκ (see section 4.1). Let hε : B̄r Ñ B̄εr be the contraction

hεpzq “ εz. Put

αε – h˚
ε pα|B̄εr

q P C
κpB̄r,

Ź0,1

B̄r
b gq.

The corresponding map α̃ε : B̄r Ñ HomRpCn, gq is α̃ε “ εα̃ ˝ hε. This shows that,
denoting as usual k – rκs, ν – κ ´ k,

‚ for any multi-index β P N2n with |β| ď k and for any x P B̄r we have

Bβα̃εpxq “ ε|β|`1pBβα̃qpεxq.

‚ for any multi-index β P N
2n with |β| “ k and for any x, y P B̄r we have

}Bβα̃εpxq ´ Bβα̃εpyq}

}x´ y}ν
“ εκ`1 }Bβα̃pεxq ´ Bβα̃pεyq}

}εx´ εy}ν
.

Therefore for any ε P p0, 1s we have

}αε}Cκ “ }α̃ε}Cκ ď ε}α̃|B̄εr
}Cκ “ ε}α|B̄εr

}Cκ ď ε}αB̄r
}. (25)

- Suppose n “ 1. We apply Theorem 1.8 to the bounded domain Br Ă C.
Formula (25) shows that, for sufficiently small ε ą 0 we have αε P NBr

,
so the equation l̄pexppuqq “ αε has a solution uε P Cκ`1pB̄r , gq. Therefore
uε ˝ h´1

ε P Cκ`1pB̄εr, gq is a solution of the equation l̄pexppuqq “ α|B̄εr
.

- Suppose n ě 2. We apply Theorem 1.7 to the strictly pseudo-convex open
subset Br of X “ Cn. By formula (24) we have αε P W for any ε P p0, 1s.
Moreover, formula (25) shows that, for sufficiently small ε ą 0 the form αε

belongs to the open neighborhood NBr
of 0 in W given by Theorem 1.7,

so the equation l̄pexppuqq “ αε has a solution uε P Cκ`1pBr , gq. Therefore
uε ˝ h´1

ε P Cκ`1pBεr, gq is a solution of the equation l̄pexppuqq “ α|Bεr
.

For κ “ `8 the claim follows from Proposition 1.1: in this case J is an integrable
bundle ACS of class C8 on P and the bundle map p : P Ñ U becomes a holomorphic
submersion. Local holomorphic sections of p will be of class C8.

Remark 3.10. Let κ P p0,8szN. In the case when G is a complex Lie subgroup of
GLpr,Cq, the equation l̄pσq “ α can be written as σ´1B̄σ “ α. One can then use
elliptic regularity and bootstrapping to prove that, for α P CκpW, gq any solution in
C1pW,Gq of the equation l̄pσq “ α belongs to Cκ`1pW,Gq. Therefore, for a bundle
ACS J P J κ

P , any local J-pseudo-holomorphic section of class C1 is of class Cκ`1.

We can prove now Corollaries 1.4, 1.6 stated in the introduction:

Proof. (of Corollary 1.4)
Let hJ be the set of J-pseudo-holomorphic local sections of P which are of class

Cκ`1. It suffices to prove that hJ is a holomorphic structure on (the underlying
topological bundle of) P in the sense of Definition 1.3. By Theorem 1.2 hJ satisfies
condition (1) in this efinition. In order to prove the second condition (holomorphic
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compatibility), let τ : W Ñ P , τ 1 : W 1 Ñ P be J-pseudo-holomorphic local
sections of class Cκ`1 of P . We have to prove that for two the comparison map
ψττ 1 :WXW 1 Ñ G is holomorphic. The maps Ψ :WˆG Ñ PW , Ψ1 :W 1ˆG Ñ PW 1

defined by

Ψpx, gq “ τpxqg, Ψ1px, gq “ τ 1pxqg

are diffeomorphisms of class Cκ`1. Moreover, they are J-pseudo-holomorphic be-
cause τ , τ 1 are J-pseudo-holomorphic and the action P ˆ G Ñ P is J-pseudo-
holomorphic. It follows that the Cκ`1 diffeomorphism

Ψ´1 ˝ Ψ1 : pW XW 1q ˆG Ñ pW XW 1q ˆG

is holomorphic. But

Ψ´1 ˝ Ψ1px, gq “ px, ψττ 1pxqgq,

in particular Ψ´1 ˝ Ψ1px, eq “ px, ψττ 1pxqq, which proves that ψττ 1 is holomorphic.
Finally note that hJ is maximal (with respect to inclusion) satisfying (1), (2).

Indeed, a local continuous section σ of P which is holomorphically compatible with
any τ P hJ is obviously J-pseudo-holomorphic and of class Cκ`1, so it belongs to
hJ .

Proof. (of Corollary 1.6)
Put E – P ˆG F , and let ϕ : V Ñ E be a holomorphic (with respect to hJ)

local section. This means that the corresponding G-equivariant map ϕ̂ : PV Ñ F

is holomorphic with respect to hJ . We have to prove that ϕ is of class Cκ`1, i.e.
that the composition ϕ̂ ˝ σ : Wσ Ñ F is of class Cκ`1 for any C8 local section
σ : Wσ Ñ P with Wσ Ă V . Let x P Wσ and let τ : Wτ Ñ P be a local section
belonging to hJ with x P Wτ Ă Wσ. Since we assumed that ϕ is holomorphic, we
know that ϕ̂ ˝ τ :Wτ Ñ F is holomorphic. For y P Wτ we have

pϕ̂ ˝ σqpyq “ ϕ̂pσpyqq “ ϕ̂pτpyqψτσpyqq “ ψτσpyq´1pϕ̂ ˝ τqpyq,

so ϕ̂ ˝ σ is of class Cκ`1 on Wτ because ϕ̂ ˝ τ is holomorphic and, since τ is of class
Cκ`1, the comparison map ψτσ :Wτ Ñ G is of class Cκ`1.

4. Appendix

4.1. Lipschitz spaces, Hölder spaces. Let κ P p0,`8qzN, k – rκs, ν – κ ´ k.
For a finite dimensional normed space T let LipκpRn, T q be the order κ Lipschitz
space of T -valued maps on Rn in supremum norm [JW, p. 2], [St, p. 176]:

LipκpRn, T q – tf P C
rκspRn, T q| }f}Lipκ ă 8u, (26)

where

}f}Lipκ – inf
 

m P R`| sup
Rn

}Bjf} ď m, for |j| ď rκs, and

}Bjfpxq ´ Bjfpyq} ď m}x´ y}κ´rκs for |j| “ rκs, x, y P R
n
(

.
(27)

Let Ω Ă R
n be a bounded domain with smooth boundary. We refer to [GiTr,

section 4.1] for the standard definition of the Hölder spaces Ck,νpΩ̄q and we note
that the definition extends in an obvious way to T -valued maps. We will denote
by Ck,νpΩ̄, T q or CκpΩ̄, T q the resulting Banach space. Using the extension Lemma
[GiTr, Lemma 6.37] we obtain an equivalent definition of the space CκpΩ̄, T q:

C
κpΩ̄, T q “ tf P C

0pΩ̄, T q| Df̃ P LipκpRn, T q such that f̃ |Ω̄ “ fu. (28)

This shows that the restriction epimorphism

|Ω̄ : LipκpRn, T q Ñ C
κpΩ̄, T q
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induces an isomorphism of Banach spaces

LipκpRn, T qL
tf P LipκpRn, T q| f |Ω̄ ” 0u

»Ñ́ C
κpΩ̄, T q.

We also define the Lipschitz space LipκpRn
`, T q of T -valued maps on the half-space

Rn
` – tx P Rn| xn ě 0 by

LipκpRn
`, T q – tf P C0pRn

`, T q| Df̃ P LipκpRn, T q such that f̃ |Rn
`

“ fu.

Endowed with the norm } ¨ }Lipκ induced by the obvious isomorphism

LipκpRn, T qL
tψ P LipκpRn, T q| ψ|Rn

`
” 0u

»Ñ́ LipκpRn
`, T q

LipκpRn
`, T q becomes a Banach space.

Let now M (Ū) be an n-dimensional differentiable manifold (with boundary),
and AM (AŪ q be the maximal atlas (the set of charts) of M (Ū). We define the
spaces

C
κpM,T q – tf P C

0pM,T q| pχf |Vh
q ˝ h´1 P LipκpRn, T q for any

pM
open
Ą Vh

h
Ñ Wh

open
Ă R

nq P AU and χ P C8
c pVh,Rqu,

(29)

CκpŪ , T q – tf P C0pŪ , T q| pχf |Vh
q ˝ h´1 P LipκpRn

`, T q for any

pŪ
open
Ą Vh

h
Ñ Wh

open
Ă R

n
`q P AU and χ P C

8
c pVh,Rqu.

(30)

The space CκpM,T q (CκpŪ , T q) is naturally a Fréchet space. When M (Ū) is
compact, the topology of this space can be defined by a single norm, so it becomes
a Banach space. More precisely, for a finite atlas A Ă AM (A Ă AŪ ) of a compact
manifold M (with boundary Ū) and a partition of unity pχqhPA subordinate to the
open cover pVhqhPA of M (Ū), we obtain a norm on CκpM,T q (CκpŪ , T q), defining
its topology, given by

}f}Cκ “
ÿ

hPA

}pχf |Vh
q ˝ h´1}Lipκ , (31)

where } ¨ }Lipκ stands for the norm defined above on the space LipκpRn, T q (respec-
tively LipκpRn

`, T q). In particular we obtain a third equivalent definition of the
Banach space CκpΩ̄, T q associated with a bounded domain Ω Ă Rn with smooth
boundary.

Let Ω be such a domain. A T -valued differential form of degree d on Ω can be
regarded as a map Ω Ñ Ld

altpR
n, T q with values in the space Ld

altpR
n, T q of T -valued

alternating d-linear maps on pRnqd. Using the identification

C
kpΩ,

Ź

d
Ω b T q »Ñ́ C

kpΩ, Ld
altpR

n, T qq,

we obtain a natural definition of the Hölder space CκpΩ̄,
Ź

d
Ω bT q: one just replaces

T by Ld
altpR

n, T q in the definition of CκpΩ̄, T q. More generally, using formulae
similar to (29), (30) we obtain – for a differentiable manifold (with boundary) M
(Ū) – the Fréchet spaces CkpM,

Ź

d
M b T q (respectively CkpŪ ,

Ź

d
Ū

b T q); these

spaces become Banach spaces when M (Ū) is compact. In this case, choosing a
pair pA, pχhqhPAq consisting of a finite atlas of M (Ū) and a partition of unity
subordinate to the open cover pVhqhPA, we obtain – using a formula similar to (31)
– defining norms on the spaces CκpΩ̄,

Ź

d
Ω b T q, d ě 0.
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4.2. The Newlander-Nirenberg theorem for vector bundles. Let U be a
connected n-dimensional complex manifold and E a differentiable complex vector
bundle of rank r on U . Let

δ : A0pU,Eq Ñ A0,1pU,Eq

be a Dolbeault operator (semi-connection) on E, i.e. a first order differential oper-
ator satisfying the Leibniz rule δpfσq “ B̄ϕσ ` fδσ (see for instance [DK, section
2.2.2] [LO, section 1], [LT, section 4.3]). We denote by the same symbol the natural
extension A0,qpU,Eq Ñ A0,q`1pU,Eq and recall that δ2 : A0pU,Eq Ñ A0,2pU,Eq is
an order 0 operator, so it is given by a form Fδ P A0,2pU,EndpEqq. With respect
to a local trivialization δ has the form B̄ ` α for a glpr,Cq-valued form α of type
(0,1), and then, in the same trivialization, Fδ is given by B̄α ` α ^ α.

By the vector bundle version of the Newlander-Nirenberg theorem the EndpEq-
valued (0,2)-form Fδ is the obstruction to the integrability of δ [Gr, Proposition p.
419], [AHS, Theorem 5.1], [Ko, Proposition I.3.7], [DK, Theorem 2.1.53]):

Theorem 4.1 (Newlander-Nirenberg theorem for vector bundles). Let δ be a Dol-
beault operator on E. The following conditions are equivalent:

(1) Fδ “ 0.
(2) δ is integrable in the following sense: for any point x P U there exists

an open neighborhood W of x and a frame pθ1, . . . , θrq P A0pW,Eqr with
δθi “ 0.

If this is the case, δ defines a holomorphic structure hδ on E. For an open set
W Ă U , a section σ P A0pW,Eq is holomorphic with respect to hδ if and only if
δσ “ 0.

The map δ ÞÑ hδ defines a bijection between the set of integrable Dolbeault
operators and the set of holomorphic structures on E. This result has important
consequences: the set of isomorphism classes of holomorphic bundles which are
differentiably isomorphic to E can be identified with the quotient DintpEq{AutpEq
of gauge classes of integrable Dolbeault operators on E. Therefore ideas and tech-
niques from gauge theory can be used in the construction of moduli spaces of
holomorphic bundles. This idea has been used in [LO] to give a gauge theoretical
construction of the moduli space of simple holomorphic bundles with fixed differ-
entiable type.

4.3. Vector fields on principal bundles. LetG be a Lie group, P a differentiable
manifold, and P ˆ G Ñ P a smooth right action of G on P . The infinitesimal
action of the Lie algebra g of G on P can be regarded a g˚-valued vector field
ν P ΓpP, TP b g˚q. Explicitly ν is given by

νypaq “ a#y @y P P, @a P g.

For any map λ P C8pP, gq we obtain a vector field ν ¨ λ given by

pν ¨ λqy “ νypλpyqq “ λpyq#y .

In other words ν ¨ λ is the image of the g˚ b g-valued vector field ν b λ under the
canonical vector bundle morphism TP b pg˚ b gq Ñ TP . We will use the simpler
notation λν for the vector field ν ¨λ. If λ is the constant map associated with a P g,
then λν “ a#.

The g˚-valued vector field ν is obviously invariant under any local diffeomor-

phisms P
open
Ą U

f
Ñ́ V

open
Ă P which commutes with the infinitesimal G-action on

P , i.e. such that f˚pa#|U q “ a#|V . Using this fact we obtain:
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Remark 4.2. Let ξ P X pP q be vector field whose associated local 1-parameter
group of diffeomorphisms pϕtqt commutes with the infinitesimal G-action on P , i.e.
it satisfies the property

P: For any x P P there exists εx ą 0 and an open neighborhood Ux of x in P

such that for any t P p´εx, εxq, the local diffeomorphism ϕt is defined on Ux and
ϕt : Ux Ñ ϕtpUxq commutes with the infinitesimal G-action on P in the sense
defined above.

Then Lξpνq “ 0.

Proof. Indeed, property P implies ϕt˚pνqx “ νx for any t P p´εx, εxq for which
ϕ´1
t pxq P Ux. Differentiating with respect to t at t “ 0 we obtain Lξpνqx “ 0.

Using [KN, Corollary 1.8 p. 14] applied to the vector fields a#, a P g and [KN,
Corollary 1.11 p. 16] it follows that ξ has property P if only if rξ, a#s “ 0 for any
a P g, i.e. if only if ξ is invariant under the infinitesimal G-action on P .

We obtain:

Remark 4.3. Let ξ P X pP q be a vector field on P which is invariant under the
infinitesimal G-action on P , i.e. such that rξ, a#s “ 0 for any a P g. Then Lξpνq “
0, in particular for any map λ P C8pP, gq we have Lξpλνq “ Lξpλqν , i.e.

rξ, λν s “ ξpλqν . (32)

Suppose now that p : P Ñ U is a principal G-bundle. For any λ P C8pP, gq the
vector field λν is vertical. If λ is Ad-equivariant, i.e. if λ belongs to C8

AdpP, gq “
A0pU,AdpP qq, then the vector field λν is G-invariant, so Remark 4.3 applies and
(32) gives

rλν , λ1ν s “ ppλν qpλ1qqν . (33)

for any λ1 P C8pP, gq. If λ1 is also Ad-equivariant, we have

pλνqpλ1q “ ´rλ, λ1s. (34)

This follows by noting that, via the diffeomorphism fy : G Ñ y0G associated with
a point y0 P P , the restriction of λ1 to the fiber y0G is given by g ÞÑ Adg´1pλ1py0qq,
whereas the restriction of λν to y0G is the right invariant vector field associated
with λpy0q. Therefore, we obtain

Remark 4.4. Let p : P Ñ U is a principal G-bundle, and λ, λ1 P C8
AdpP, gq “

A0pU,AdpP qq. Then

rλν , λ1ν s “ ´rλ, λ1sν .

This formula can also be obtained by noting that, for λ P C8
AdpP, gq, λν is the

vector field (infinitesimal transformation) associated with λ regarded as element
in the Lie algebra ΓpU,AdpP qq of the gauge group AutpP q “ ΓpU, ιpP qq. Since
AutpP q acts on P from the left, the linear map C8

AdpP, gq “ LiepAutpP qq Ñ X pP q
is an anti-homomorphism of Lie algebras.
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