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Abstract—Graph Neural Networks (GNNs) have recently
emerged as powerful tools for detecting network attacks,
due to their ability to capture complex relationships between
hosts. However, acquiring labeled datasets in the cybersecu-
rity domain is challenging. Consequently, efforts are directed
towards learning representations directly from data using self-
supervised approaches. In this study, we focus on contrastive
methods that aim to maximize agreement between the original
graph and positive graph augmentations, while minimizing
agreement with negative graph augmentations. Our goal is
to benchmark 10 augmentation techniques and provide more
efficient augmentations for network data. We systematically
evaluate 100 pairs of positive and negative graphs and present
our findings in a table, highlighting the best-performing
techniques. In particular, the experiments demonstrate that
leveraging topological and attributive augmentations in the
positive and negative graph generally improves performance,
with up to 1.8% and 2.2% improvement in F1-score on two
different datasets. The analysis further showcases the intrinsic
connection between the performance of graph augmentations
and the underlying data, highlighting the need for careful prior
selection to achieve optimal results.

Index Terms—Attack Detection, Network Security, Con-
trastive Learning, Self-Supervised Learning, Graph Neural
Networks.

I. INTRODUCTION

Attack detection plays a crucial role in ensuring the secu-
rity and integrity of computer networks. With the growing
complexity and sophistication of attacks, it has become
imperative to develop powerful tools and techniques to ac-
curately identify and mitigate network threats. Graph Neural
Networks (GNNs) have emerged as promising solutions
due to their ability to capture complex relationships and
dependencies between network entities [1]. Moreover, the
interconnected nature of networks allows them to be natu-
rally represented as graphs, where nodes represent network
entities and edges capture the relationships between them.
This inherent graph structure makes it well-suited to apply
GNNs as they excel in capturing and modeling dependencies
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Fig. 1. Graph augmentations play a key role in enhancing self-supervised
graph contrastive learning methods for network-based attack detection. This
figure illustrates flow dropping and flow features masking augmentations,
which are among several other augmentations presented in this paper.

within graph-structured data. By leveraging the connectivity
and topology of network data, GNNs have the potential to
uncover hidden patterns and underlying characteristics that
are essential for effective detection of network attacks.

Traditionally, network attack detection methods heavily
rely on labeled datasets, where expert domain knowledge is
used to annotate attack cases. However, in the cybersecurity
domain, obtaining such labeled datasets is often difficult
and time-consuming. This limitation has led researchers to
explore alternative approaches that can learn representations
directly from raw network data, without the need for explicit
labeling. Self-supervised learning has received considerable
attention as an effective approach in this respect, enabling
GNNs to acquire meaningful representations by taking ad-
vantage of the inherent structure and patterns present in
the network data. The aim of self-supervised learning is
to design pretext tasks that can capture the underlying



structure of the data [2]. By formulating the learning task
appropriately, the network can learn representations that
encode crucial information about the network topology,
relationship between hosts and potential attack patterns. In
recent years, contrastive learning has emerged as a promis-
ing self-supervised learning framework. Contrastive learning
aims to maximize agreement between positive augmenta-
tions (perturbed versions) of the original graph and minimize
agreement with negative augmentations, thus encouraging
the network to capture relevant features and distinguish
between normal and abnormal behavior.

In this study, we focus on benchmarking various graph
augmentation techniques, such as those illustrated in Fig.
1, within the contrastive learning framework for network
attack detection using GNNs. Our goal is to evaluate the
performance and effectiveness of ten augmentation strategies
in enhancing the discriminative power of self-supervised
representations. By conducting a comprehensive evaluation
using two real-world network attack datasets, we aim to
provide insight into the strengths and weaknesses of different
augmentation techniques. This analysis will help to identify
more effective graph augmentations and improve the accu-
racy and robustness of network attack detection systems.

The remainder of this paper is organized as follows:
Section 2 provides an overview of graph contrastive learning
and a description of the main principles behind graph
augmentations. Section 3 presents the experimental setup,
along with the different augmentations benchmarked in this
paper and their corresponding results. Section 4 concludes
the paper and outlines the main findings of this study.

This research contributes to the advancement of GNN-
based network attack detection by exploring the potential of
graph augmentations in the contrastive learning paradigm, an
area that remains underexplored, particularly in the domain
of network security. While many existing works in this field
rely on the use of the anchor graph as a positive graph,
our study provides evidence and valuable insights into the
effectiveness of different augmentation pairs. By doing so,
we aim to improve the development of detection systems
based on contrastive learning and GNNs.

II. BACKGROUND

A. Graph Contrastive Learning

Graph contrastive learning is a specific formulation of
self-supervised learning that aims to maximize agreement
between positive graph augmentations and minimize agree-
ment with negative graph augmentations [2], [3]. Let G and
G+ represent the original graph and its positive augmenta-
tion, respectively, and G− represent a negative augmenta-
tion. The goal is to learn a representation function fθ such
as a GNN, that maps an input graph to a meaningful latent
representation. This function satisfies:

fθ(G) ≈ fθ(G
+), (1)

fθ(G) ̸≈ fθ(G
−), (2)

where ≈ denotes high similarity between the original graph
representation and its positive augmentation, and ̸≈ denotes
low similarity between the original and negative graph.
The agreement between the resulting graph representations
is then estimated using a discriminator function gϕ such
as a Multi-Layer-Perceptron (MLP), which projects the
representations to another latent space where the loss will
be calculated. Specifically, the functions fθ and gϕ can be
formalized as encoder and decoder functions, respectively
parameterized by weights θ and ϕ. The weights are updated
by minimizing a contrastive loss function Lssl, with the aim
of generating similar embeddings for positive graphs and
dissimilar embeddings for negative graphs. The contrastive
learning framework can be summarized as:

θ∗, ϕ∗ = argmin
θ,ϕ

Lssl

(
gϕ

(
fθ

(
G+

)
, fθ

(
G−))) , (3)

where θ∗ and ϕ∗ denote the newly updated weights. The
trained model resulting from Eq. 3 can ultimately produce
graph representations that are valuable for a wide range
of supervised or unsupervised downstream tasks, including
node/edge/graph classification, clustering, and anomaly de-
tection.

B. Graph Augmentations

Graph augmentations play a crucial role in graph con-
trastive learning by introducing variations in the original
graph (also called an anchor graph), enhancing the model’s
ability to capture important graph properties and improve
discriminability. Augmentations are generally applied to
generate both positive and negative samples, allowing the
model to learn to discriminate between them effectively. The
choice of graph augmentations in contrastive methods is cru-
cial for capturing diverse features. Different augmentations
introduce variations in the graph structure and attributes,
enabling the model to learn robust representations. This work
evaluates the main types of graph augmentations, which are
explained in more detail in section III.

III. EXPERIMENTS

A. Setup

Our experiments are conducted using the Anomal-E de-
tection system [4], which employs contrastive learning with
GNNs for network-based intrusion detection. Anomal-E is
based on Deep Graph Infomax (DGI) [5], a contrastive
method specifically designed for self-supervised representa-
tion learning with GNNs. Initially, a GNN encoder computes
node representations for both the anchor graph and a neg-
atively augmented graph. The representations of the anchor
graph are then passed through a readout function to gener-
ate a graph summary that captures the global information
embedded within the graph. The representations are learned
by optimizing a binary classification objective using binary
cross-entropy, with the goal of distinguishing between the
anchor graph and the negative graph. This method effectively
maximizes the mutual information between local and global
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Fig. 2. Heatmaps representing the macro F1-score gain (%) between each pair of augmentations and the baseline method using the identity/perm-all-edges
augmentation. Each row indicates a positive augmentation, whereas each column represents a negative augmentation. Left: NF-CSE-CIC-IDS2018-v2
dataset; Right: NF-UNSW-NB15-v2 dataset.

representations, enabling the encoder to learn localized and
global semantic information more effectively.

We adopt the same datasets, configurations and prepro-
cessing steps outlined in Anomal-E, ensuring consistency
and facilitating direct comparisons with the graph aug-
mentation leveraged in the paper. Specifically, Anomal-E
uses random edge permutation as augmentation for negative
graphs, and leverage the anchor graph as positive sample
(denoted here as the identity augmentation), similarly to
the original DGI model. The first benchmark dataset, NF-
CSE-CIC-IDS2018-v2 [6], contains 18,893,708 flows with
around 12% attack samples, whereas the second dataset NF-
UNSW-NB15-v2 [6] contains 2,295,222 flows with 4% at-
tack samples. Both datasets have been standardized using the
Netflow format and 43 network flow features are available
and used here as edge features in the homogeneous graph.
All experiments were conducted in parallel on 6 NVIDIA
Tesla V100 GPUs.

B. Augmentations

In the following experiments, we propose to bench-
mark multiple augmentations for both positive and negative
graphs, categorized in three types [2], in an attempt to
improve the augmentations used in DGI and Anomal-E.
Attributive Augmentations. Attributive augmentations fo-
cus on manipulating the node and edge attributes. These
augmentations involve operations such as attribute masking,
attribute perturbation, or attribute shuffling. By altering
the features in the graph, the model can learn to extract
robust and discriminative representations that capture the
underlying patterns and relationships among attributes. In
these experiments, we used the following attributive aug-
mentations:

• perm-all-edges: randomly permutes all edge features.
• perm-edges: randomly permutes N% of the edge features.
• mask-all-edges: replaces all edge features by random

features generated using Gaussian noise.
• mask-edges: replaces N% of the edge features by random

features generated using Gaussian noise.
Topological Augmentations. Topological augmentations
involve modifying the graph’s connectivity patterns. This
technique includes operations such as edge perturbation,
edge addition or deletion, or graph rewiring. By introduc-
ing variations in the graph’s topology, the model learns
to discern different edge configurations and gain a better
understanding of the graph structure. This work benchmarks
the following topological augmentations:
• drop-nodes: randomly removes N% of the nodes along

with all the connected edges.
• drop-edges: randomly removes N% of the edges.
Hybrid Augmentations. Hybrid augmentations combine
both attributive and topological techniques to create diverse
alterations in the graph. By leveraging both attributive and
topological aspects, hybrid augmentations enable the model
to capture a wide range of features and relationships, which
may lead to more effective representations. In the context of
this work, we implemented the following hybrid augmenta-
tions:
• add-real-nodes: creates N% of new nodes and generates
k incoming edges and d outgoing edges with randomly-
peeked edge features, where k and d denote the mean of
nodes’ in-degree and out-degree, respectively.

• add-real-edges: creates N% of new edges with randomly-
peeked edge features, using random end nodes.

• add-rand-edges: creates N% of new edges with features



generated by Gaussian noise, using random end nodes.
For each augmentation requiring the sampling parameter
N , multiple simulations have been performed using various
values of N . The simulations conclude that a better perfor-
mance is reached with N = 30%.

Using these augmentations, we aim to craft many positive
and negative edges, leveraged during the self-supervised
training of the model. Afterwards, the trained model should
learn how to distinguish between positive and negative
edges, by directly clustering them in the embedding space.

C. Results
The two heatmaps presented in Fig. 2 show the experi-

mental results on both presented datasets. Each value indi-
cates the macro F1-score gain between a positive/negative
pair of augmentations presented previously, and the baseline
augmentation used in Anomal-E, namely the identity/perm-
all-edges augmentation (located in the heatmaps at the first
row and second column). The gain specifically measures
the percentage of increase in F1-score, compared to the
baseline method, and is computed using a mean over 5
experiments. For sampling-based augmentations, N is set to
30, and the learning rate is respectively set to 0.003 and
0.002 for the NF-CSE-CIC-IDS2018-v2 and NF-UNSW-
NB15-v2 datasets. The E-GraphSAGE model [7] is used
as GNN encoder, and an Isolation Forest (IF) classifier [8]
is used as downstream algorithm for classifying the edge
embeddings. The parameters of the IF are grid-searched
using the same techniques employed in Anomal-E. The gain
values were calculated using the F1-scores achieved by the
Anomal-E baseline on both datasets. Specifically, the F1-
scores obtained were 94.47% and 91.02% for each datasets.

On the NF-CSE-CIC-IDS2018-v2 dataset, the experi-
ments show that best performance is reached using the
drop-nodes/perm-all-edges and drop-edges/perm-all-edges
pairs, with a 2.2% and 2.1% F1-score gain, respectively.
This means that better embeddings are produced when the
discriminator of DGI maximizes the similarity between the
anchor graph and a positive graph altered by topological
augmentations. Generally, attributive/topological and topo-
logical /attributive augmentations tend to perform better than
all other pairs of augmentations, as shown by the 4 best
pairs ranging from 1.9% and 2.2% gain. It is also worth
noting interesting pairs, such as mask-all-edges/drop-edges,
which achieves impressive results by randomizing all edge
features in the positive graph while preserving the graph
topology. Nonetheless, we also notice multiple pairs with
large negative gains, which are mostly characterized by
either too simple or too hard augmentations to learn [9].

Using the NF-UNSW-NB15-v2 dataset, we observe a
notable contrast in the data compared to the previous dataset,
characterized by smoother gains, mostly negatives. This im-
plies that the baseline identity/perm-all-edges augmentation
performs relatively well on this network graph compared
to most other augmentation pairs. Nonetheless, we identify
three augmentation pairs that exhibit superior performance,
surpassing the baseline by at least a 1% gain, with a best

1.8% gain using mask-all-edges/drop-nodes and add-rand-
edges/mask-edges augmentations. These findings reaffirm
that combining topological and attributive augmentations can
lead to enhanced results.

On both datasets, it becomes evident that selecting the
identity augmentation as the positive graph is often subop-
timal. This indicates that prevailing contrastive approaches
with GNNs should take into account the evaluation of
multiple positive augmentations in order to maximize per-
formance. Indeed, the performance of any augmentation
technique is intrinsically linked to the underlying data, mak-
ing the automatic selection of augmentations challenging
without benchmarking multiple augmentation pairs. Further-
more, conducting additional experiments on diverse datasets
could aid in the discovery of more general and effective
augmentations for network datasets.

IV. CONCLUSION

In this study, we explored the impact of various graph
augmentation techniques on the performance of network
attack detection systems based on contrastive learning and
GNNs. Through a comprehensive analysis of ten different
augmentations, we assessed their effects on the capture of
both topological and attributive information. Our experi-
mental findings demonstrated that incorporating topological
and attributive augmentations in both positive and negative
graphs consistently outperforms baseline techniques that
solely rely on the anchor graph as the positive graph. Our
investigation underscored the importance of graph augmen-
tation strategies as an additional hyperparameter in training
GNN-based contrastive approaches for detection systems,
emphasizing its role in improving detection accuracy.
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