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Chapron et al. 2018

Yang & Memin 2019

…

Crisan et al., 2017

Gay-Balmaz & Holm 2017

Cotter and al. 2018 a, b

Cotter and al. 2019

  …

Holm, 2015

Holm and 

Tyranowski, 2016

Arnaudon et al. 2017

Mikulevicius &  

Rozovskii, 2004

Flandoli, 2011
References :

Cotter and al. 2017   Resseguier et al. 2020, 2021, …

Initially for
uncertainty 

quantification
& data assimilation
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𝑣 = ҧ𝑣 + 𝑣′

Large scale
group velocity: 
 

 ҧ𝑣
Small scale
group velocity:
 

 𝑣′ = 𝜎𝑑𝐵𝑡/𝑑𝑡
(Q Wiener process)

+𝐶𝑔
0



Time decorrelation
assumption for 𝑣′

• Advantages : 

• Simpler / analytic formula   

⇨ physical comprehension & lighter CPU for simulations

• No precise knowledge needed about 𝑣′ time dependency : 

Markovian closure

• Validity :

𝜖 =
Along−ray 𝑣’ correlation time

characteristic time of
wave group properties evolution

=

𝑙𝑣′

𝐶𝑔
0

1
𝛻𝑣

≪ 1

• Limitations : 

• Swells 𝐶𝑔
0 ≫ 1

• Small-scale currents 𝑙𝑣′ ≪ 1
• Moderate current gradients 𝛻𝑣 ≪ 1 ( ⇨ moderate 𝛻𝑣′ ❗️)

Large scale
group velocity: 
 

 ҧ𝑣
Small scale
group velocity:
 

 𝑣′ = 𝜎𝑑𝐵𝑡/𝑑𝑡

Wave:

Doppler
frequency:

+𝐶𝑔
0
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Large scale
group velocity: 
 

 ҧ𝑣 

Small scale
group velocity:
 

 𝑣′ = 𝜎𝑑𝐵𝑡/𝑑𝑡
(Q Wiener process)

Wave:

𝑎𝑒
𝑖
𝜖 𝜙 𝜖𝑡,𝜖𝑥

Group velocity
without current

𝐶𝑔
0 = ∇𝑘𝜔0

∇ = ∇𝑥

Conservation of action

Amplitude

Simple linear case

Ray 

Refraction & contraction/dilatation

Wave-vector
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+𝐶𝑔
0

𝑑𝑘 = −𝛻 ҧ𝑣𝑑𝑡 + 𝜎𝑑𝐵𝑡
𝑇𝑘

𝑑𝑋𝑟 = 𝐶𝑔
0 + ҧ𝑣 𝑑𝑡 + 𝜎𝑑𝐵𝑡

𝑑𝐴 = ∇ ⋅ 𝐶𝑔
0 + ҧ𝑣 𝑑𝑡 + 𝜎𝑑𝐵𝑡 𝐴



Simple linear case 1:
stationary deterministic,

divergence-free and
linear in x large-scale velocity

Stretching of phase

𝑑𝑘 = −𝛻 ҧ𝑣𝑇𝑘 𝑑𝑡

with  𝛻 ҧ𝑣𝑇 = 𝜎𝑤
1 𝑟

−𝑟 −1
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Wave shortening Wave rotation

Large scale
group velocity: 
 

 ҧ𝑣

Wave:

 𝑘 = ∇𝜙 

    = 𝜅 cos 𝜃
sin 𝜃

 𝜁 = 2𝜃 −
𝜋

2
 

+𝐶𝑔
0

𝑑𝜁

𝑑𝑡
= 𝑟 − cos 𝜁 = −

𝜕𝑉

𝜕𝜁
𝜁

with 𝑉 𝜁 = 𝑟 𝜁 − 𝑠𝑖𝑛 𝜁

𝑑 𝑙𝑛 𝜅

𝑑𝑡
= − sin 𝜁



Simple linear case 2:
no large-scale current

+ isotropic and divergence-free
small-scale velocity

Stochastic stretching of phase

𝑑𝑘 = −𝛻 𝜎𝑑𝐵𝑡
𝑇𝑘 Log-normal wave- number
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Large scale
group velocity: 
 

 

Small scale
group velocity:
 

 𝑣′ = 𝜎𝑑𝐵𝑡/𝑑𝑡
(Q Wiener process)

Wave:

 𝑘 = ∇𝜙 

    = 𝜅 cos 𝜃
sin 𝜃

 𝜁 = 2𝜃 −
𝜋

2
 

+𝐶𝑔
0

ቐ
ln 𝜅 𝑡 = 𝛼2𝑡 + 𝛼𝐵𝑡

1

𝜁 𝑡 = 12𝛼 𝐵𝑡
2

with 𝛼2 =
3

2
𝔼 ∇ 𝜎𝑑𝐵𝑡

𝑇 2/𝑑𝑡.



Simple linear case 3
               divergence-free and linear-in-x large-scale current

+ isotropic and divergence-free
small-scale velocity

Stochastic stretching of phase

𝑑𝑘 = −𝛻 ҧ𝑣𝑑𝑡 + 𝜎𝑑𝐵𝑡
𝑇𝑘
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Large scale
group velocity: 
 

 ҧ𝑣 

Small scale
group velocity:
 

 𝑣′ = 𝜎𝑑𝐵𝑡/𝑑𝑡
(Q Wiener process)

Wave:

 𝑘 = ∇𝜙 

    = 𝜅 cos 𝜃
sin 𝜃

 𝜁 = 2𝜃 −
𝜋

2
 

+𝐶𝑔
0

൞
𝑑 ln 𝜅 𝑡 = 𝛼2 − sin 𝜁 𝑡 𝑑𝑡 + 𝛼𝑑𝐵𝑡

1

𝑑𝜁 𝑡 = −
𝜕𝑉

𝜕𝜁
𝜁 𝑡 𝑑𝑡 + 12𝛼 𝑑𝐵𝑡

2

with 𝑉 𝜁 = 𝑟 𝜁 − 𝑠𝑖𝑛 𝜁 and 𝛼2 =
3

2
𝔼 ∇ 𝜎𝑑𝐵𝑡

𝑇 2/𝑑𝑡.

We can solve the stationary Fokker-Planck for 𝜁,
and then get the stationary distribution of 𝑘
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group velocity: 
 

 ҧ𝑣 

Small scale
group velocity:
 

 𝑣′ = 𝜎𝑑𝐵𝑡/𝑑𝑡
(Q Wiener process)

Wave:

 𝑘 = ∇𝜙 

    = 𝜅 cos 𝜃
sin 𝜃

 𝜁 = 2𝜃 −
𝜋

2
 

Simple linear case 3
               divergence-free and linear-in-x large-scale current

+ isotropic and divergence-free
small-scale velocity

Stochastic stretching of 
phase

𝑑𝑘 = −𝛻 ҧ𝑣𝑑𝑡 + 𝜎𝑑𝐵𝑡
𝑇𝑘
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+𝐶𝑔
0

൞
𝑑 ln 𝜅 𝑡 = 𝛼2 − sin 𝜁 𝑡 𝑑𝑡 + 𝛼𝑑𝐵𝑡

1

𝑑𝜁 𝑡 = −
𝜕𝑉

𝜕𝜁
𝜁 𝑡 𝑑𝑡 + 12𝛼 𝑑𝐵𝑡

2

with 𝑉 𝜁 = 𝑟 𝜁 − 𝑠𝑖𝑛 𝜁 and 𝛼2 =
3

2
𝔼 ∇ 𝜎𝑑𝐵𝑡

𝑇 2/𝑑𝑡.



Large scale
group velocity: 
 

 ҧ𝑣 

Small scale
group velocity:
 

 𝑣′ = 𝜎𝑑𝐵𝑡/𝑑𝑡
(Q Wiener process)

Wave:

 𝑘 = ∇𝜙 

    = 𝜅 cos 𝜃
sin 𝜃

 𝜁 = 2𝜃 −
𝜋
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Stochastic shortening

ShorteningRotation Rotation

Weak

shortening

Weak

shorteningShortening

with rotation

bursts

𝛼

Simple linear case 3
               divergence-free and linear-in-x large-scale current

+ isotropic and divergence-free
small-scale velocity

Stochastic stretching of 
phase

𝑑𝑘 = −𝛻 ҧ𝑣𝑑𝑡 + 𝜎𝑑𝐵𝑡
𝑇𝑘
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+𝐶𝑔
0

൞
𝑑 ln 𝜅 𝑡 = 𝛼2 − sin 𝜁 𝑡 𝑑𝑡 + 𝛼𝑑𝐵𝑡

1

𝑑𝜁 𝑡 = −
𝜕𝑉

𝜕𝜁
𝜁 𝑡 𝑑𝑡 + 12𝛼 𝑑𝐵𝑡

2

with 𝑉 𝜁 = 𝑟 𝜁 − 𝑠𝑖𝑛 𝜁 and 𝛼2 =
3

2
𝔼 ∇ 𝜎𝑑𝐵𝑡

𝑇 2/𝑑𝑡.



Large scale
group velocity: 
 

 ҧ𝑣 

Small scale
group velocity:
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Stochastic shortening

ShorteningRotation Rotation

Weak
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bursts

𝛼

Simple linear case 3
               divergence-free and linear-in-x large-scale current

+ isotropic and divergence-free
small-scale velocity

Stochastic stretching of 
phase

𝑑𝑘 = −𝛻 ҧ𝑣𝑑𝑡 + 𝜎𝑑𝐵𝑡
𝑇𝑘

Depends on 
small scale’s

statistics
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+𝐶𝑔
0

൞
𝑑 ln 𝜅 𝑡 = 𝛼2 − sin 𝜁 𝑡 𝑑𝑡 + 𝛼𝑑𝐵𝑡

1

𝑑𝜁 𝑡 = −
𝜕𝑉

𝜕𝜁
𝜁 𝑡 𝑑𝑡 + 12𝛼 𝑑𝐵𝑡

2

with 𝑉 𝜁 = 𝑟 𝜁 − 𝑠𝑖𝑛 𝜁 and 𝛼2 =
3

2
𝔼 ∇ 𝜎𝑑𝐵𝑡

𝑇 2/𝑑𝑡.



Large scale
group velocity: 
 

 ҧ𝑣 

Small scale
group velocity:
 

 𝑣′ = 𝜎𝑑𝐵𝑡/𝑑𝑡
(Q Wiener process)

Wave:

 𝑘 = ∇𝜙 

    = 𝜅 cos 𝜃
sin 𝜃

 𝜁 = 2𝜃 −
𝜋

2
 

Stochastic stretching of 
phase

𝑑𝑘 = −𝛻 ҧ𝑣𝑑𝑡 + 𝜎𝑑𝐵𝑡
𝑇𝑘

Stochastic shortening

ShorteningRotation Rotation

Weak

shortening

Weak

shorteningShortening

with rotation

bursts
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+𝐶𝑔
0

൞
𝑑 ln 𝜅 𝑡 = 𝛼2 − sin 𝜁 𝑡 𝑑𝑡 + 𝛼𝑑𝐵𝑡

1

𝑑𝜁 𝑡 = −
𝜕𝑉

𝜕𝜁
𝜁 𝑡 𝑑𝑡 + 12𝛼 𝑑𝐵𝑡

2

with 𝑉 𝜁 = 𝑟 𝜁 − 𝑠𝑖𝑛 𝜁 and 𝛼2 =
3

2
𝔼 ∇ 𝜎𝑑𝐵𝑡

𝑇 2/𝑑𝑡.

Depends on 
small scale’s

statistics

𝛼



Large scale
group velocity: 
 

 ҧ𝑣 

Small scale
group velocity:
 

 𝑣′ = 𝜎𝑑𝐵𝑡/𝑑𝑡
(Q Wiener process)

Wave:

 𝑘 = ∇𝜙 

    = 𝜅 cos 𝜃
sin 𝜃

 𝜁 = 2𝜃 −
𝜋

2
 

Stochastic stretching of 
phase

𝑑𝑘 = −𝛻 ҧ𝑣𝑑𝑡 + 𝜎𝑑𝐵𝑡
𝑇𝑘

Stochastic shortening

ShorteningRotation Rotation

Weak

shortening

Weak

shorteningShortening

with rotation

bursts
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+𝐶𝑔
0

൞
𝑑 ln 𝜅 𝑡 = 𝛼2 − sin 𝜁 𝑡 𝑑𝑡 + 𝛼𝑑𝐵𝑡

1

𝑑𝜁 𝑡 = −
𝜕𝑉

𝜕𝜁
𝜁 𝑡 𝑑𝑡 + 12𝛼 𝑑𝐵𝑡

2

with 𝑉 𝜁 = 𝑟 𝜁 − 𝑠𝑖𝑛 𝜁 and 𝛼2 =
3

2
𝔼 ∇ 𝜎𝑑𝐵𝑡

𝑇 2/𝑑𝑡.

Depends on 
small scale’s

statistics

𝛼



Conclusion
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Conclusion

We propose multi-scale closures for simulation of wave-turbulence interactions.

• At large scales,

the oceanic currents are known because measured by satellite.

• At intermediate scales,

new stochastic closure, which is non-Markovian, with stochastic currents multi-scale 

in space and time.

• For smaller scales,

Markovian approaches – e.g., LU & SALT [2,1,3,4,5] – applied (in the wave frame). 

We found an analytical formula for the probability distribution of wave properties at 

long time.

In the future, we would like to use it as prior emulator of data assimilation.
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Large scale
group velocity: 
 

 ҧ𝑣
Small scale
group velocity:
 

 𝑣′ = 𝜎𝑑𝐵𝑡/𝑑𝑡

Wave:

Doppler
frequency:

+𝐶𝑔
0

𝑣′ = 𝜎 ሶ𝐵 = filter ∗ white noise

Time-uncorrelated model for 𝑣′

56
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Numeric simulations
with heterogenous 

turbulence
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Heterogenous flow : the jet example

| 𝑣 |

Agulhas current
Mercator current (01/01/2016)

+ SSHA weekly

Our simulationSituation to mimic:



Time-correlated model for 𝑣′

Forward ray tracing

Deterministic
reference:

wave groups in

512 x 512 SQG flow

Deterministic
benchmark:

wave groups in

smoothed flow ҧ𝑣 (16 x 16)

Our random
model

wave groups in

smoothed flow ҧ𝑣 (16 x 16)

+ time-correlated 𝑣′
27

Vorticity Vorticity Vorticity

𝑣 = ҧ𝑣 + 𝑣′ 𝑣 = ҧ𝑣 + 𝑣cor
′𝑣 = ҧ𝑣
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Time-correlated model for 𝑣′

Wave spectra
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Time-correlated model for 𝑣′

Wave spectra
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