

AIM

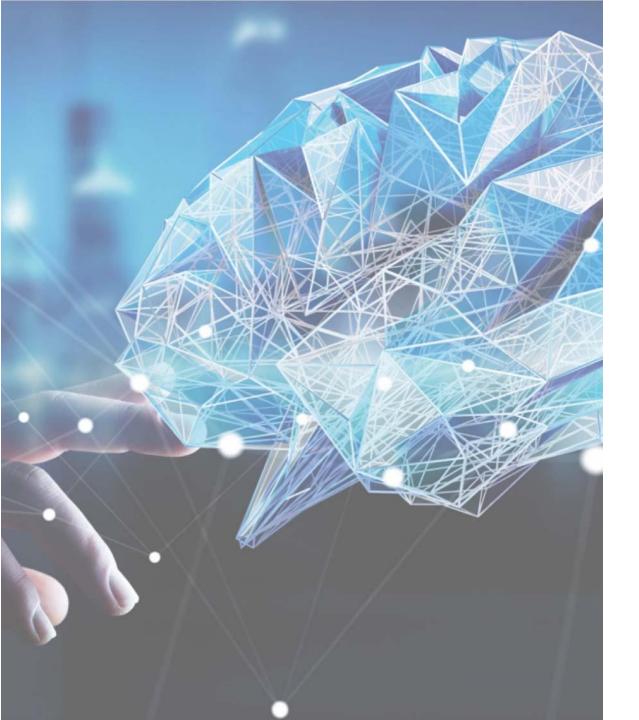
Data assimilation of 3D fluid flow under severe dimensional reduction typically, $10^7 \rightarrow O(10)$ degrees of freedom

Application:

Real-time estimation and prediction using strongly-limited computational resources & few sensors for monitoring or control

CONTENT

- I. State of the art
 - a. Intrusive reduced order model (ROM)
 - b. Data assimilation
- II. Reduced location uncertainty models
 - a. Location uncertainty models (LUM)
 - b. Reduced LUM
- III. Numerical results
 - a. Test cases
 - b. Data assimilation



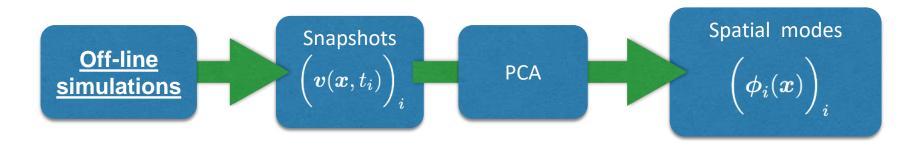
PART I

STATE OF THE ART

- a. Intrusive reduced order model (ROM)
- Data assimilation

Combine physical models and learning approaches

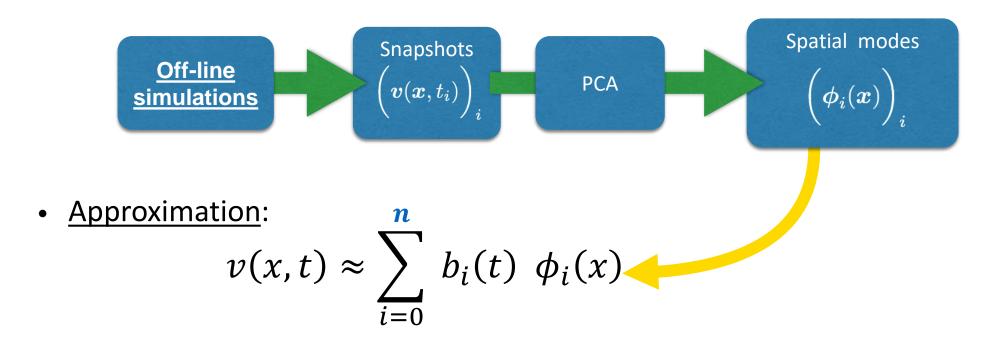
Principal Component Analysis (PCA) on a dataset to reduce the dimensionality:



• Approximation: $v(x,t) \approx \sum_{i=0}^{n} b_i(t) \phi_i(x)$

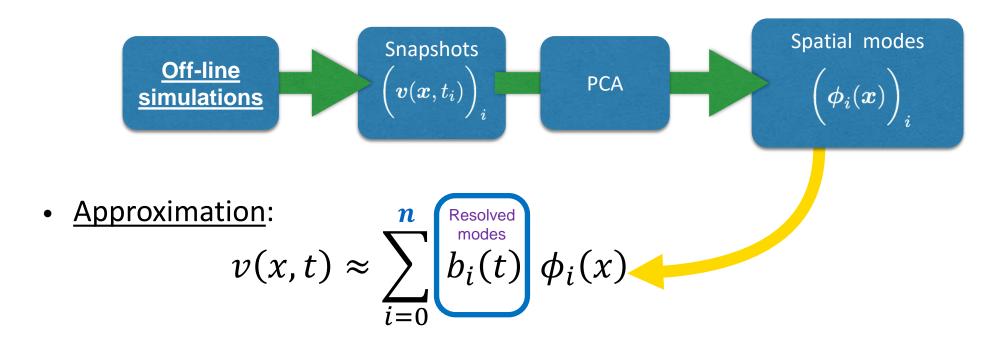
Combine physical models and learning approaches

Principal Component Analysis (PCA) on a dataset to reduce the dimensionality:



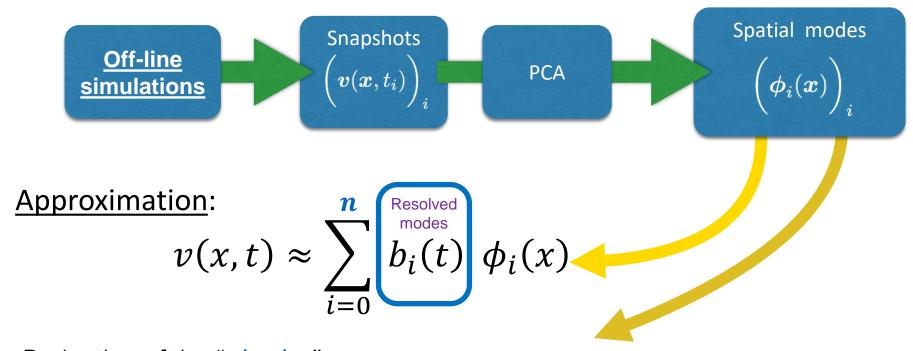
Combine physical models and learning approaches

• Principal Component Analysis (PCA) on a dataset to reduce the dimensionality:



Combine physical models and learning approaches

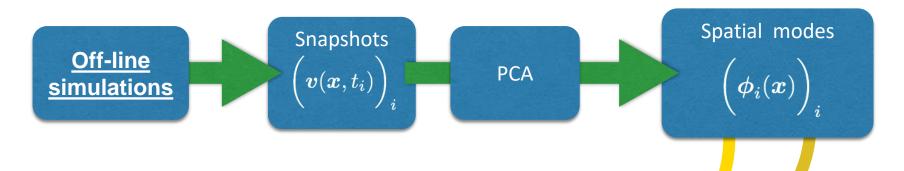
• Principal Component Analysis (PCA) on a dataset to reduce the dimensionality:



$$\int_{\Omega} dx \, \phi_i(x) \cdot (Physical equation (e.g. Navier-Stokes))$$

Combine physical models and learning approaches

• Principal Component Analysis (PCA) on a dataset to reduce the dimensionality:



Approximation:

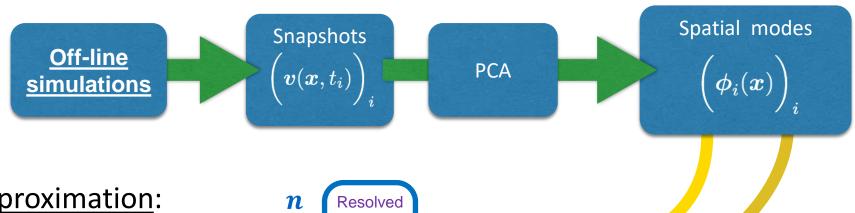
$$v(x,t) \approx \sum_{i=0}^{n} b_i(t) \phi_i(x)$$

$$\int_{\Omega} dx \, \phi_i(x) \cdot (Physical \ equation \ (e.g. \ Navier-Stokes))$$

$$\Rightarrow ROM \ for \ very \ fast \ simulation \ of \ temporal \ modes$$

Combine physical models and learning approaches

<u>Principal Component Analysis (PCA)</u> on a *dataset* to reduce the dimensionality:



Approximation:

$$v(x,t) \approx \sum_{i=0}^{\text{modes}} b_i(t) \phi_i(x)$$

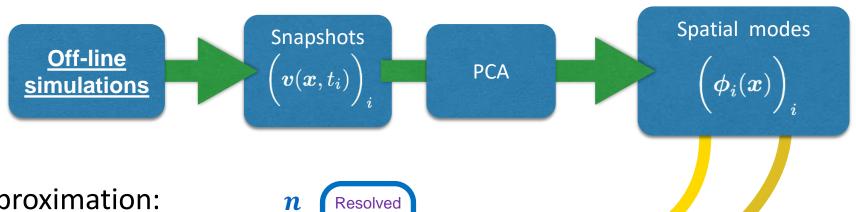
Don't work in extrapolation for advection-dominated problem

$$\int_{\Omega} dx \, \phi_i(x) \cdot (Physical \ equation \ (e.g. \ Navier-Stokes))$$

$$\Rightarrow ROM \ for \ very \ fast \ simulation \ of \ temporal \ modes$$

Combine physical models and learning approaches

<u>Principal Component Analysis (PCA)</u> on a *dataset* to reduce the dimensionality:



Approximation:

$$v(x,t) \approx \sum_{i=0}^{\text{modes}} b_i(t) \phi_i(x)$$

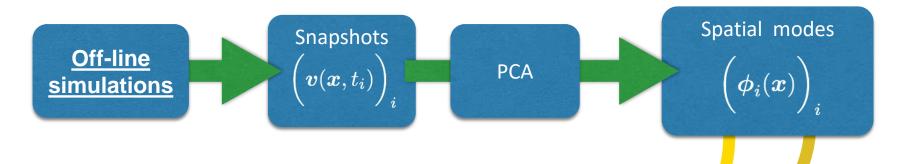
Don't work in extrapolation for advection-dominated problem

$$\int_{\Omega} dx \, \phi_i(x) \cdot \frac{\text{Physical equation}}{\text{Physical equation}} \text{(e.g. Navier-Stokes))}$$

$$\Rightarrow \text{ROM for very fast simulation of temporal modes}$$

Combine physical models and learning approaches

• Principal Component Analysis (PCA) on a dataset to reduce the dimensionality:



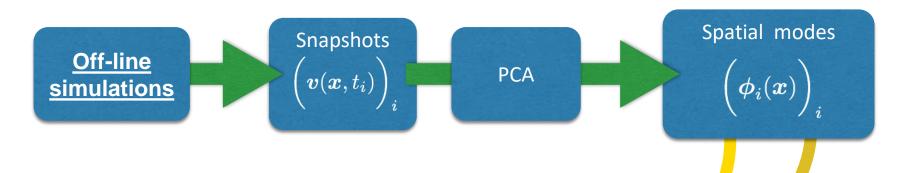
Approximation:

$$v(x,t) \approx \sum_{i=0}^{n} b_i(t) \phi_i(x)$$

$$\int_{\Omega} dx \, \phi_i(x) \cdot \frac{\text{(Physical equation } (\text{e.g. Navier-Stokes}))}{\text{ROM for very fast simulation of temporal modes}}$$

Combine physical models and learning approaches

• Principal Component Analysis (PCA) on a dataset to reduce the dimensionality:



Approximation:

$$v(x,t) \approx \sum_{i=0}^{n} b_i(t) \phi_i(x)$$

SPOILER

$$\int_{\Omega} dx \, \phi_i(x) \cdot \quad \text{(Randomized Navier-Stokes)}$$

$$\rightarrow \text{ROM for very fast simulation of temporal modes}$$

= Coupling simulations and measurements y

Numerical Simulation (ROM)

→ erroneous

On-line measurements

- → incomplete
- → possibly noisy

= Coupling simulations and measurements y

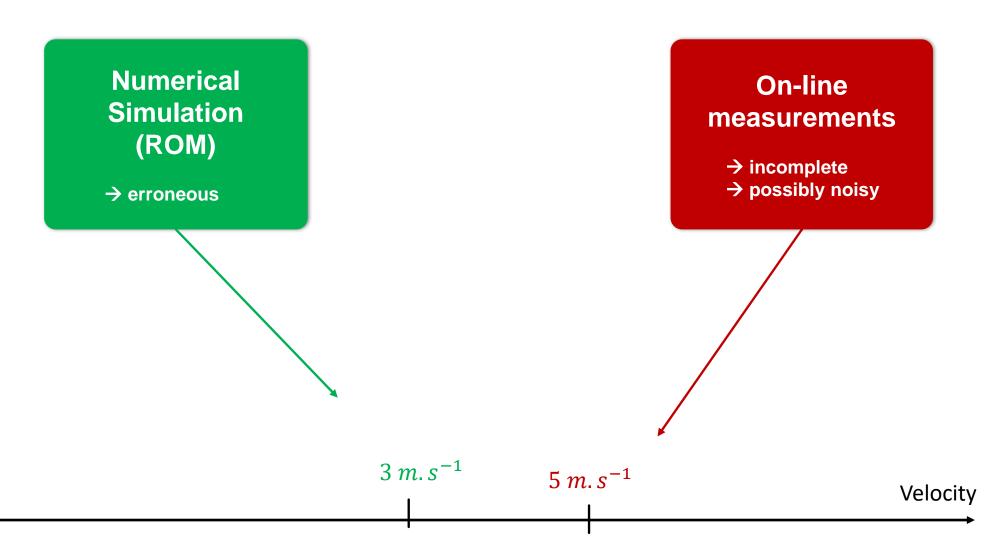
Numerical Simulation (ROM)

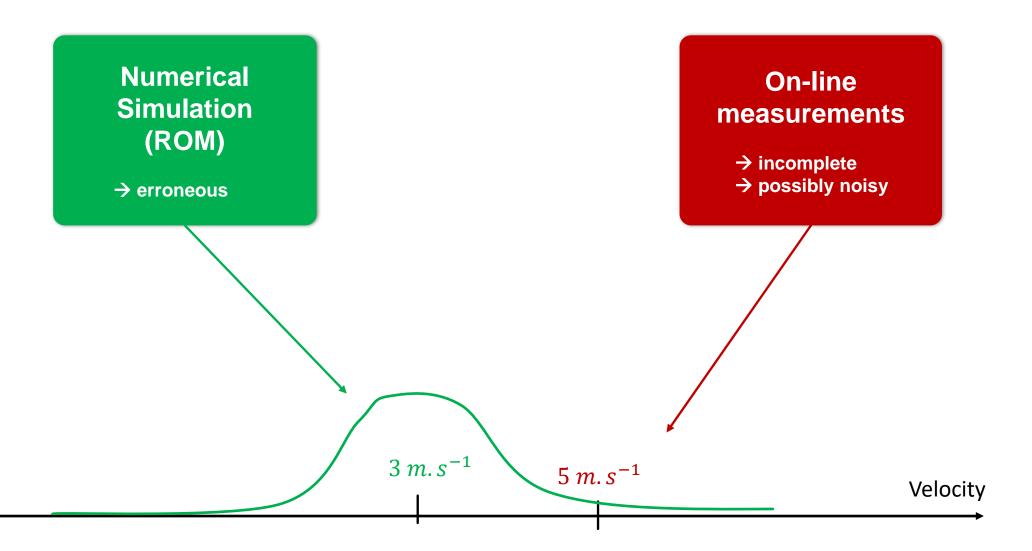
→ erroneous

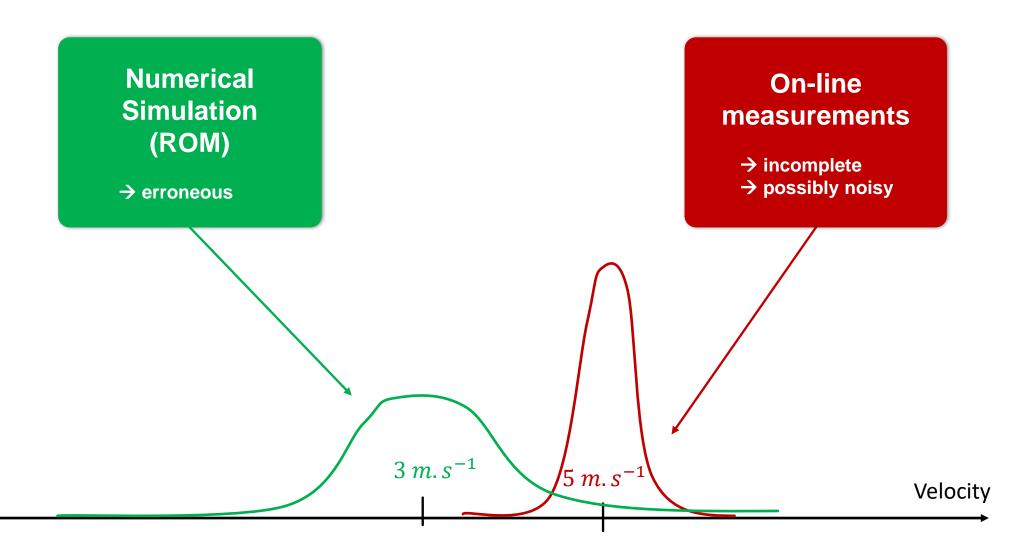
On-line measurements

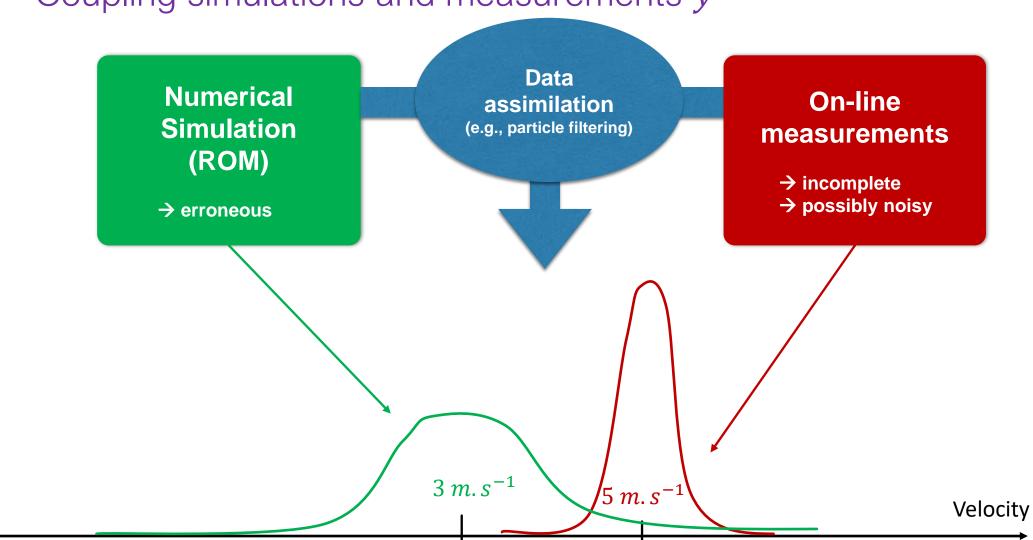
- → incomplete
- → possibly noisy

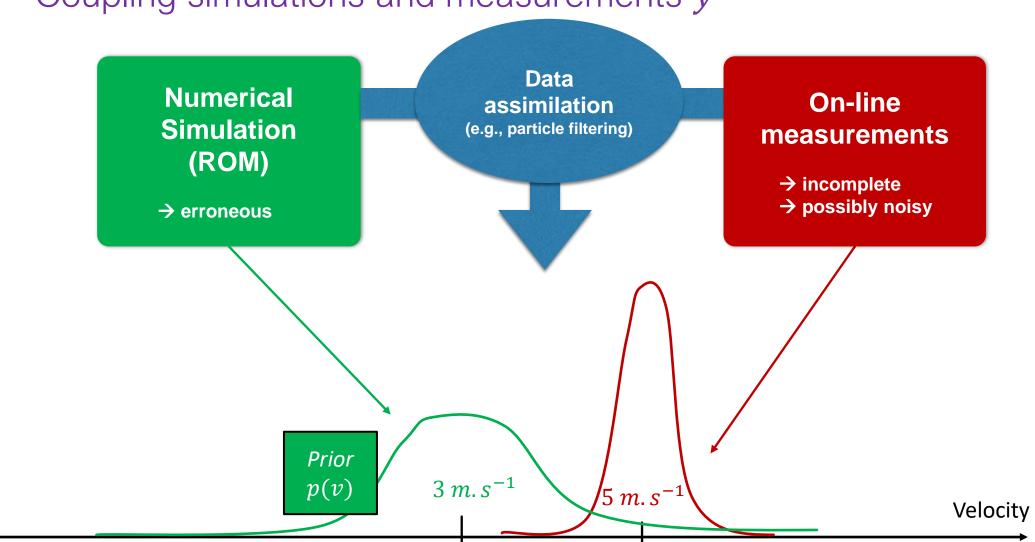
 $3 \, m. \, s^{-1}$

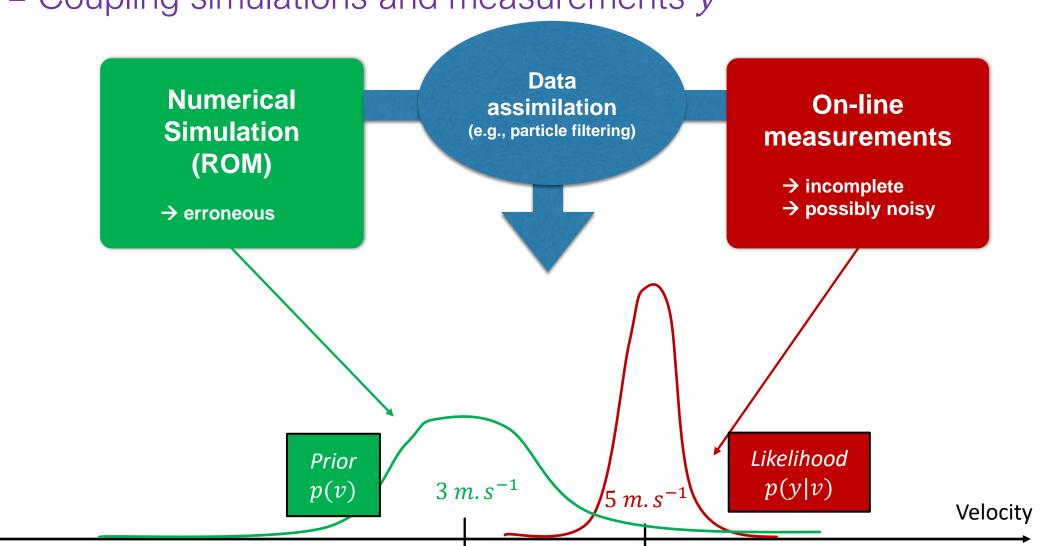


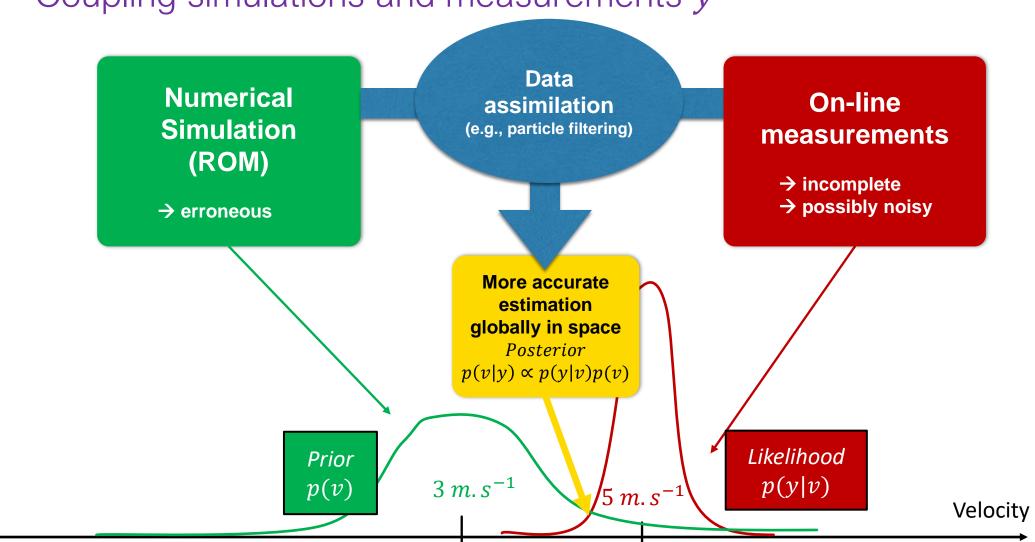


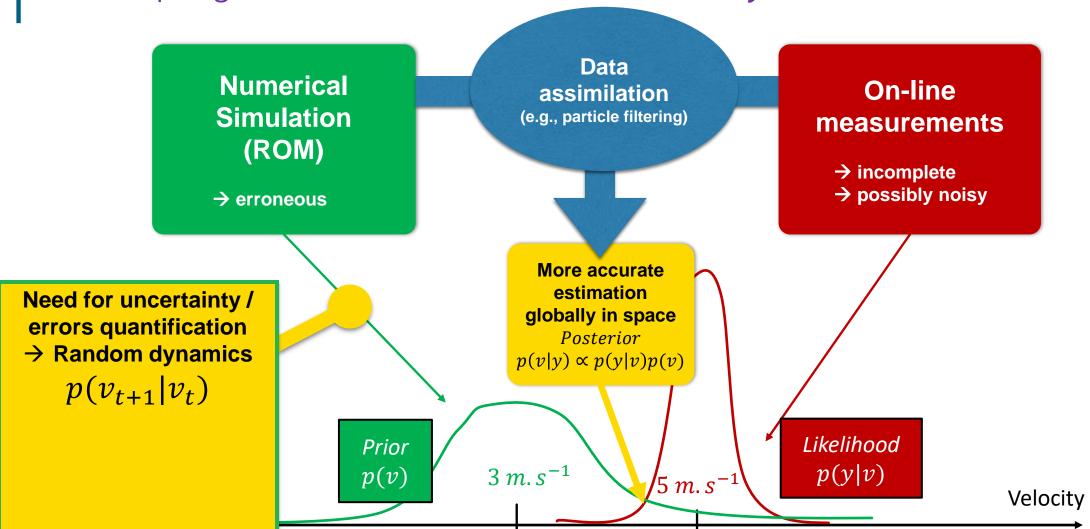


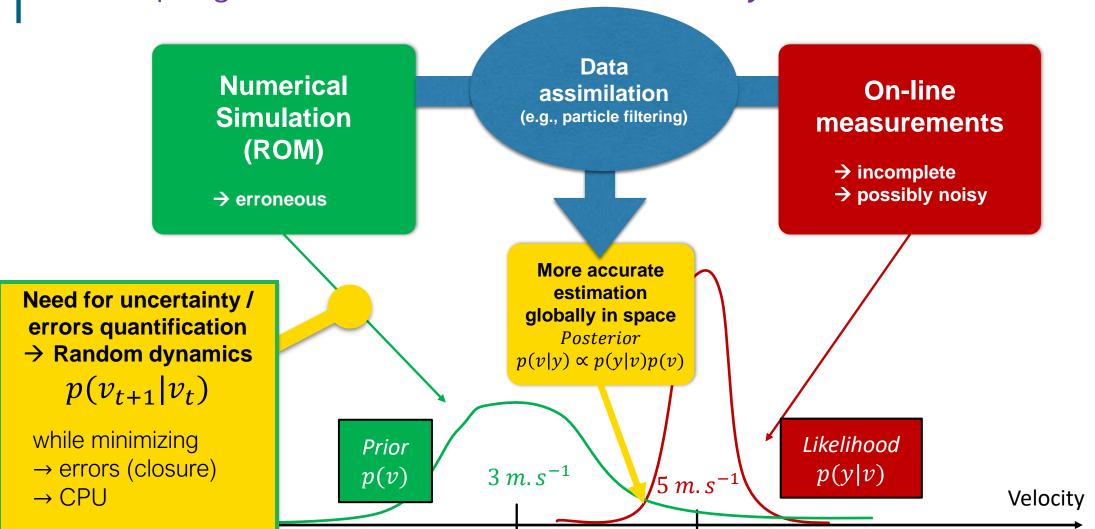


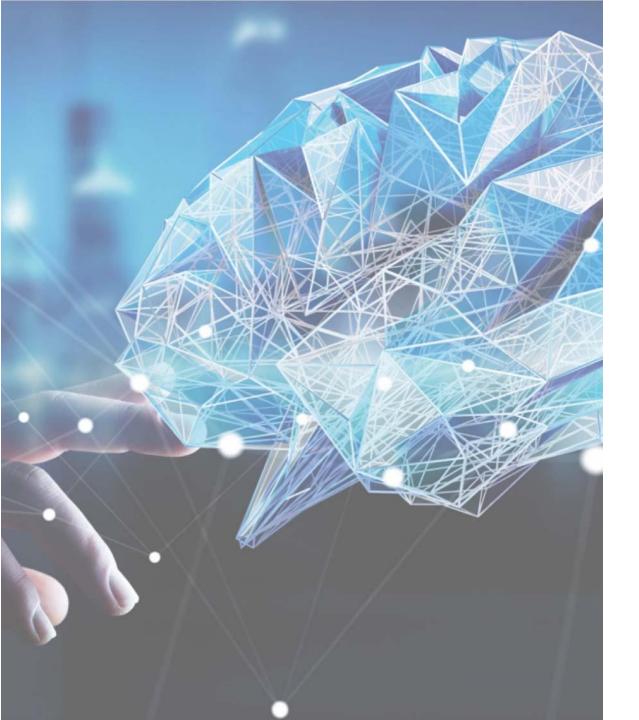












PART II

REDUCED LOCATION UNCERTAINTY MODELS

- a. Location uncertainty models (LUM)
- b. Reduced LUM (Red LUM)

Resolved fluid velocity:

 $w = \sum_{i=0}^{n} b_i \phi_i$

Unresolved fluid velocity:

 $v' = \sigma \dot{B}$

Assumed

(conditionally-)Gaussian & white in time

(non-stationary in space)

v = w + v'

Resolved fluid velocity: $w = \sum_{i=0}^{n} b_i \phi_i$

Unresolved fluid velocity: $v' = \sigma \dot{B}$

Assumed (conditionally-)Gaussian & white in time (non-stationary in space)

Randomized
Navier-Stokes model

- Good closure
- Good model error quantification
 for data assimilation

v = w + v'

Resolved fluid velocity: $w = \sum_{i=0}^{n} b_i \phi_i$

Unresolved fluid velocity: $v' = \sigma \dot{B}$

Assumed (conditionally-)Gaussian & white in time (non-stationary in space)

Randomized
Navier-Stokes model

- Good closure
- Good model error quantification

for data assimilation

References:

Mikulevicius & Rozovskii, 2004 Flandoli, 2011

LUM

Memin, 2014 Resseguier et al. 2017 a, b, c, d Cai et al. 2017 Chapron et al. 2018 Yang & Memin 2019

SALT

Holm, 2015 Holm and Tyranowski, 2016 Arnaudon et al. 2017 Crisan et al., 2017 Gay-Balmaz & Holm 2017 Cotter and al. 2018 a, b Cotter and al. 2019

...

Cotter and al. 2017 Resseguier et al. 2020 a, b

v = w + v'

Resolved fluid velocity: $w = \sum_{i=0}^{n} b_i \phi_i$

Unresolved fluid velocity: $v' = \sigma \dot{B}$

References:

Assumed (conditionally-)Gaussian & white in time (non-stationary in space)

Randomized
Navier-Stokes model

- Good closure
- Good model error quantification
 for data assimilation

Randomized ROM

LUM

Mikulevicius & Rozovskii, 2004 Flandoli, 2011 Memin, 2014 Resseguier et al. 2017 a, b, c, d Cai et al. 2017 Chapron et al. 2018 Yang & Memin 2019

Holm, 2015 Holm and Tyranowski, 2016 Arnaudon et al. 2017 Crisan et al., 2017 Gay-Balmaz & Holm 2017 Cotter and al. 2018 a, b Cotter and al. 2019

...

SALT

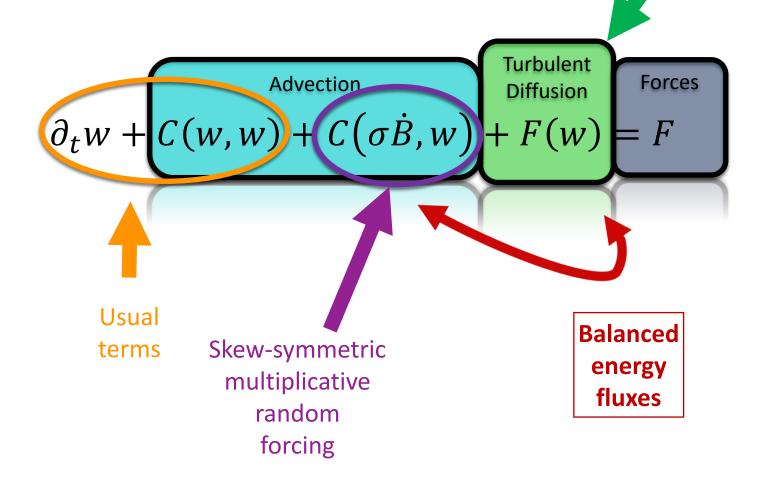
Cotter and al. 2017 Resseguier et al. 2020 a, b

Randomized Navier-Stokes

v = w + v'

Resolved fluid velocity:

Unresolved fluid velocity: $v' = \sigma \dot{B}$ (Gaussian, white wrt t)



From Ito-Wentzell formula (Kunita 1990) with Ito notations

Symmetric

negative

POD-Galerkin gives SDEs for resolved modes

Full order : $M \sim 10^7$

Reduced order: $n \sim 10$

$$v = w + v'$$

Resolved fluid velocity: $w(x,t) = \sum_{i=0}^{n} b_i(t)\phi_i(x)$

Unresolved fluid velocity: $v' = \sigma B$ (Gaussian, white wrt t)

$$\int_{\Omega} \phi_i(x) \cdot \left(\partial_t w + C(w, w) + F(w) + C(\sigma \dot{B}, w) = F \right) dx$$

POD-Galerkin gives SDEs for resolved modes

Full order : $M \sim 10^7$

Reduced order: $n \sim 10$

$$v = w + v'$$

Resolved fluid velocity: $w(x,t) = \sum_{i=0}^{n} b_i(t)\phi_i(x)$

Unresolved fluid velocity: $v' = \sigma B$ (Gaussian, white wrt t)

$$\int_{\Omega} \phi_i(x) \cdot \left(\partial_t w + C(w, w) + F(w) + C(\sigma \dot{B}, w) = F \right) dx$$

POD-Galerkin gives SDEs for resolved modes

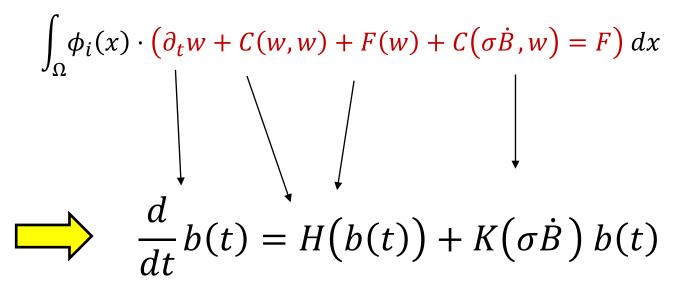
Full order: $M \sim 10^7$

Reduced order: $n \sim 10$

$$v = w + v'$$

Resolved fluid velocity: $w(x,t) = \sum_{i=0}^{n} b_i(t)\phi_i(x)$

Unresolved fluid velocity: $v' = \sigma B$ (Gaussian, white wrt t)



POD-Galerkin gives SDEs for resolved modes

Full order : $M \sim 10^7$ Reduced order : $n \sim 10$

v = w + v'

Resolved fluid velocity: $w(x,t) = \sum_{i=0}^{n} b_i(t)\phi_i(x)$

Unresolved fluid velocity: $v' = \sigma B$ (Gaussian, white wrt t)

2nd order polynomial

POD-Galerkin gives SDEs for resolved modes

Full order : $M \sim 10^7$

Reduced order: $n \sim 10$

v = w + v'

Resolved fluid velocity: $w(x,t) = \sum_{i=0}^{n} b_i(t)\phi_i(x)$

Unresolved fluid velocity: $v' = \sigma B$ (Gaussian, white wrt t)

$$\int_{\Omega} \phi_{i}(x) \cdot (\partial_{t}w + C(w, w) + F(w) + C(\sigma \dot{B}, w) = F) dx$$

$$\frac{d}{dt}b(t) = H(b(t)) + K(\sigma \dot{B})b(t)$$
Multiplicative skew-symmetric noise

2nd order polynomial

POD-Galerkin gives SDEs for resolved modes

Full order : $M \sim 10^7$ Reduced order : $n \sim 10$

v = w + v'

Resolved fluid velocity: $w(x,t) = \sum_{i=0}^{n} b_i(t)\phi_i(x)$

Unresolved fluid velocity: $v' = \sigma B$ (Gaussian, white wrt t)

2nd order polynomial

$$K_{jq}[\xi] = -\int_{\Omega} \phi_j \cdot C(\xi, \phi_q)$$

POD-Galerkin gives SDEs for resolved modes

$$v = w + v'$$

Resolved fluid velocity: $w(x,t) = \sum_{i=0}^{n} b_i(t)\phi_i(x)$

Unresolved fluid velocity:

$$v' = \frac{\sigma dB_t}{dt}$$
 (Gaussian, white wrt t)

Variance tensor:

$$a(x,x) = \frac{\mathbb{E}\{(\sigma dB_t)(\sigma dB_t)^T\}}{dt}$$

$$\int_{\Omega} \phi_i(x) \cdot \left(\partial_t w + C(w, w) + F(w) + C(\sigma \dot{B}, w) = F\right) dx$$

POD-Galerkin gives SDEs for resolved modes

$$v = w + v'$$

Resolved fluid velocity: $w(x,t) = \sum_{i=0}^{n} b_i(t)\phi_i(x)$

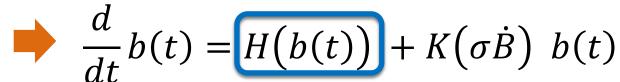
Unresolved fluid velocity:

$$v' = \frac{\sigma dB_t}{dt}$$
 (Gaussian, white wrt t)

Variance tensor:

$$a(x,x) = \frac{\mathbb{E}\{(\sigma dB_t)(\sigma dB_t)^T\}}{dt}$$

$$\int_{\Omega} \phi_i(x) \cdot \left(\partial_t w + C(w, w) + F(w) + C(\sigma \dot{B}, w) = F\right) dx$$



2nd order polynomial

Coefficients given by:

- Randomized Navier-Stokes
- $(\phi_j)_j$
- $a(x) \approx \Delta t \, \overline{v'(v')^T}$

$$\overline{f} = \frac{1}{T} \int_0^T f$$

$$K_{jq}[\xi] = -\int_{\Omega} \phi_j \cdot C(\xi, \phi_q)$$

POD-Galerkin gives SDEs for resolved modes

$$v = w + v'$$

Resolved fluid velocity: $w(x,t) = \sum_{i=0}^{n} b_i(t)\phi_i(x)$

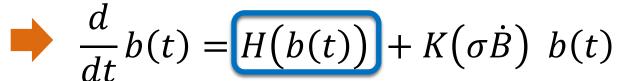
Unresolved fluid velocity:

$$v' = \frac{\sigma dB_t}{dt}$$
 (Gaussian, white wrt t)

Variance tensor:

$$a(x,x) = \frac{\mathbb{E}\{(\sigma dB_t)(\sigma dB_t)^T\}}{dt}$$

$$\int_{\Omega} \phi_i(x) \cdot \left(\partial_t w + C(w, w) + F(w) + C(\sigma \dot{B}, w) = F\right) dx$$



2nd order polynomial

Coefficients given by:

- Randomized Navier-Stokes
- $(\phi_j)_j$
- $a(x) \approx \Delta t \ \overline{v'(v')^T}$

$$\overline{f} = \frac{1}{T} \int_0^T f$$

Randomized Navier-Stokes

$$K_{jq}[\xi] = -\int_{\Omega} \phi_j \cdot C(\xi, \phi_q)$$

POD-Galerkin gives SDEs for resolved modes

$$v = w + v'$$

Resolved fluid velocity: $w(x,t) = \sum_{i=0}^{n} b_i(t)\phi_i(x)$

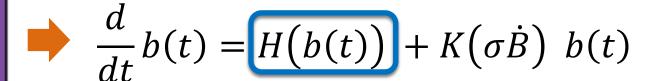
Unresolved fluid velocity:

$$v' = \frac{\sigma dB_t}{dt}$$
 (Gaussian, white wrt t)

Variance tensor:

$$a(x,x) = \frac{\mathbb{E}\{(\sigma dB_t)(\sigma dB_t)^T\}}{dt}$$

$$\int_{\Omega} \phi_i(x) \cdot \left(\partial_t w + C(w, w) + F(w) + C(\sigma \dot{B}, w) = F\right) dx$$



2nd order polynomial

Coefficients given by:

- Randomized Navier-Stokes
- $(\phi_j)_j$
- $a(x) \approx \Delta t \, \overline{v'(v')^T}$

$$\overline{f} = \frac{1}{T} \int_0^T f$$

Randomized Navier-Stokes

PCA modes

$$K_{jq}[\xi] = -\int_{\Omega} \phi_j \cdot C(\xi, \phi_q)$$

POD-Galerkin gives SDEs for resolved modes

$$v = w + v'$$

Resolved fluid velocity: $w(x,t) = \sum_{i=0}^{n} b_i(t)\phi_i(x)$

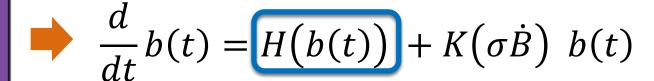
Unresolved fluid velocity:

$$v' = \frac{\sigma dB_t}{dt}$$
 (Gaussian, white wrt t)

Variance tensor:

$$a(x,x) = \frac{\mathbb{E}\{(\sigma dB_t)(\sigma dB_t)^T\}}{dt}$$

$$\int_{\Omega} \phi_i(x) \cdot \left(\partial_t w + C(w, w) + F(w) + C(\sigma \dot{B}, w) = F\right) dx$$



Coefficients given by:

- Randomized Navier-Stokes
- $(\phi_j)_j$
- $a(x) \approx \Delta t \ \overline{v'(v')^T}$

$$\overline{f} = \frac{1}{T} \int_0^T f$$

Randomized Navier-Stokes

PCA modes

PCA residual v'

$$K_{jq}[\xi] = -\int_{\Omega} \phi_j \cdot C(\xi, \phi_q)$$

POD-Galerkin gives SDEs for resolved modes

$$v = w + v'$$

Resolved fluid velocity: $w(x,t) = \overline{\sum_{i=0}^{n} b_i(t) \phi_i(x)}$

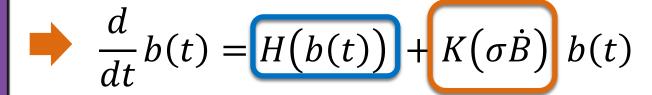
Unresolved fluid velocity:

$$v' = \frac{\sigma dB_t}{dt}$$
 (Gaussian, white wrt t)

Variance tensor:

$$a(x,x) = \frac{\mathbb{E}\{(\sigma dB_t)(\sigma dB_t)^T\}}{dt}$$

$$\int_{\Omega} \phi_i(x) \cdot (\partial_t w + C(w, w) + F(w) + C(\sigma \dot{B}, w) = F) dx$$



2nd order polynomial

Coefficients given by:

- Randomized Navier-Stokes
- $(\phi_j)_i$

• $a(x) \approx \Delta t \ v' \ (v')^T$

Multiplicative skew-symmetric noise

PCA residual v'

$$K_{jq}[\xi] = -\int_{\Omega} \phi_j \cdot C(\xi, \phi_q)$$

POD-Galerkin gives SDEs for resolved modes

$$v = w + v'$$

Resolved fluid velocity: $w(x,t) = \overline{\sum_{i=0}^{n} b_i(t) \phi_i(x)}$

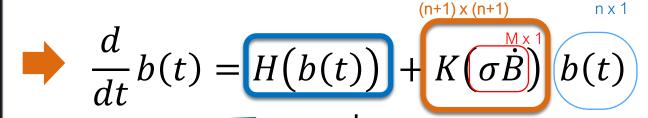
Unresolved fluid velocity:

$$v' = \frac{\sigma dB_t}{dt}$$
 (Gaussian, white wrt t)

Variance tensor:

$$a(x,x) = \frac{\mathbb{E}\{(\sigma dB_t)(\sigma dB_t)^T\}}{dt}$$

$$\int_{\Omega} \phi_i(x) \cdot (\partial_t w + C(w, w) + F(w) + C(\sigma \dot{B}, w) = F) dx$$



2nd order polynomial

Coefficients given by:

- Randomized Navier-Stokes
- $(\phi_j)_i$
- $a(x) \approx \Delta t \ v' \ (v')^T$

$$u(x) \sim \Delta t \, v \, (v)$$

Randomized Navier-Stokes

Multiplicative skew-symmetric noise

PCA modes

PCA residual v'

$$K_{jq}[\xi] = -\int_{\Omega} \phi_j \cdot C(\xi, \phi_q)$$

n x 1

POD-Galerkin gives SDEs for resolved modes

Full order : $M \sim 10^7$

Reduced order: $n \sim 10$

$$v = w + v'$$

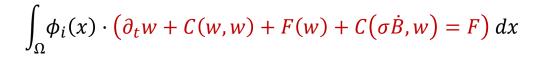
Resolved fluid velocity: $w(x,t) = \overline{\sum_{i=0}^{n} b_i(t) \phi_i(x)}$

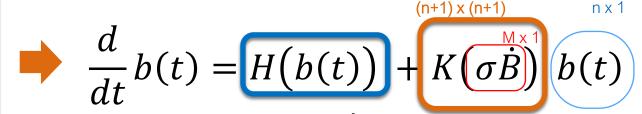
Unresolved fluid velocity:

$$v' = \frac{\sigma dB_t}{dt}$$
 (Gaussian, white wrt t)

Variance tensor:

$$a(x,x) = \frac{\mathbb{E}\{(\sigma dB_t)(\sigma dB_t)^T\}}{dt}$$





Multiplicative skew-symmetric noise

2nd order polynomial

Coefficients given by:

- Randomized Navier-Stokes
- $(\phi_j)_i$

• $a(x) \approx \Delta t \ v' \ (v')^T$

Randomized Navier-Stokes

PCA modes

PCA residual v'

$$K_{jq}[\xi] = -\int_{\Omega} \phi_j \cdot C(\xi, \phi_q)$$

n x 1

POD-Galerkin gives SDEs for resolved modes

2nd order polynomial

Full order : $M \sim 10^7$

Reduced order: $n \sim 10$

$$v = w + v'$$

Resolved fluid velocity: $w(x,t) = \overline{\sum_{i=0}^{n} b_i(t) \phi_i(x)}$

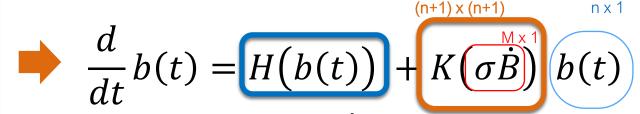
Unresolved fluid velocity:

$$v' = \frac{\sigma dB_t}{dt}$$
 (Gaussian, white wrt t)

Variance tensor:

$$a(x,x) = \frac{\mathbb{E}\{(\sigma dB_t)(\sigma dB_t)^T\}}{dt}$$

$$\int_{\Omega} \phi_i(x) \cdot (\partial_t w + C(w, w) + F(w) + C(\sigma \dot{B}, w) = F) dx$$



Multiplicative skew-symmetric noise

Covariance to estimate

n x 1

Coefficients given by:

- Randomized Navier-Stokes
- $(\phi_j)_i$

• $a(x) \approx \Delta t \ v' \ (v')^T$

Randomized Navier-Stokes

PCA modes

PCA residual v'

$$K_{jq}[\xi] = -\int_{\Omega} \phi_j \cdot C(\xi, \phi_q)$$

POD-Galerkin gives SDEs for resolved modes

2nd order polynomial

Full order : $M \sim 10^7$

Reduced order: $n \sim 10$

$$v = w + v'$$

Resolved fluid velocity: $w(x,t) = \overline{\sum_{i=0}^{n} b_i(t) \phi_i(x)}$

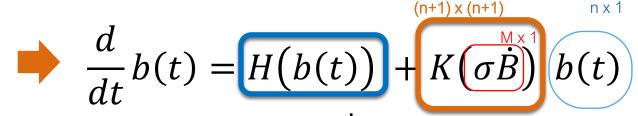
Unresolved fluid velocity:

$$v' = \frac{\sigma dB_t}{dt}$$
 (Gaussian, white wrt t)

Variance tensor:

$$a(x,x) = \frac{\mathbb{E}\{(\sigma dB_t)(\sigma dB_t)^T\}}{dt}$$

$$\int_{\Omega} \phi_i(x) \cdot (\partial_t w + C(w, w) + F(w) + C(\sigma \dot{B}, w) = F) dx$$



Multiplicative skew-symmetric noise

Covariance to estimate

 $\mathbb{E}\left(K_{jq}(\sigma dB_t) K_{ip}(\sigma dB_t)\right)/dt \approx \Delta t K_{jq} \left| \frac{\overline{b_p}}{\overline{b_n^2}} \frac{\Delta b_i}{\Delta t} v' \right|$

Coefficients given by:

- Randomized Navier-Stokes
- $(\phi_j)_i$
- $a(x) \approx \Delta t \ v' \ (v')^T$

Randomized Navier-Stokes **PCA** modes PCA residual v'

$$K_{jq}[\xi] = -\int_{\Omega} \phi_j \cdot C(\xi, \phi_q)$$

POD-Galerkin gives SDEs for resolved modes

Full order : $M \sim 10^7$

Reduced order: $n \sim 10$

$$v = w + v'$$

Resolved fluid velocity: $w(x,t) = \overline{\sum_{i=0}^{n} b_i(t) \phi_i(x)}$

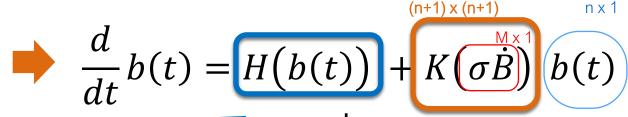
Unresolved fluid velocity:

$$v' = \frac{\sigma dB_t}{dt}$$
 (Gaussian, white wrt t)

Variance tensor:

$$a(x,x) = \frac{\mathbb{E}\{(\sigma dB_t)(\sigma dB_t)^T\}}{dt}$$

$$\int_{\Omega} \phi_i(x) \cdot (\partial_t w + C(w, w) + F(w) + C(\sigma \dot{B}, w) = F) dx$$



2nd order polynomial

 $\mathbb{E}\left(K_{jq}(\sigma dB_t) K_{ip}(\sigma dB_t)\right)/dt \approx \Delta t K_{jq} \left| \frac{\overline{b_p}}{\overline{b_n^2}} \frac{\Delta b_i}{\Delta t} v' \right|$

n x 1

Coefficients given by:

- Randomized Navier-Stokes
- $(\phi_j)_i$
- $a(x) \approx \Delta t \ v' \ (v')^T$

•
$$a(x) \approx \Delta t \ v' \ (v')^T$$

PCA modes

Randomized Navier-Stokes

PCA residual v'

$$K_{jq}[\xi] = -\int_{\Omega} \phi_j \cdot C(\xi, \phi_q)$$

POD-Galerkin gives SDEs for resolved modes

2nd order polynomial

Full order : $M \sim 10^7$

Reduced order: $n \sim 10$

$$v = w + v'$$

Resolved fluid velocity: $w(x,t) = \overline{\sum_{i=0}^{n} b_i(t) \phi_i(x)}$

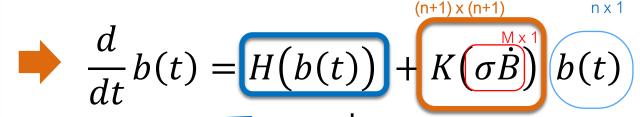
Unresolved fluid velocity:

$$v' = \frac{\sigma dB_t}{dt}$$
 (Gaussian, white wrt t)

Variance tensor:

$$a(x,x) = \frac{\mathbb{E}\{(\sigma dB_t)(\sigma dB_t)^T\}}{dt}$$

$$\int_{\Omega} \phi_i(x) \cdot (\partial_t w + C(w, w) + F(w) + C(\sigma \dot{B}, w) = F) dx$$



Multiplicative skew-symmetric noise

Covariance to estimate

 $\mathbb{E}\left(K_{jq}(\sigma dB_t) K_{ip}(\sigma dB_t)\right)/dt \approx \Delta t K_{jq} \left| \frac{\overline{b_p}}{\overline{b_p^2}} \frac{\Delta b_i}{\Delta t} v' \right|$

n x 1

Coefficients given by:

- Randomized Navier-Stokes
- $(\phi_j)_i$
- $a(x) \approx \Delta t \ v' \ (v')^T$

Randomized Navier-Stokes

PCA modes

PCA residual v'

$$K_{jq}[\xi] = -\int_{\Omega} \phi_j \cdot C(\xi, \phi_q)$$

POD-Galerkin gives SDEs for resolved modes

2nd order polynomial

Full order : $M \sim 10^7$

Reduced order: $n \sim 10$

$$v = w + v'$$

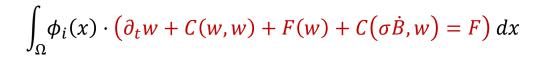
Resolved fluid velocity: $w(x,t) = \sum_{i=0}^{n} b_i(t)\phi_i(x)$

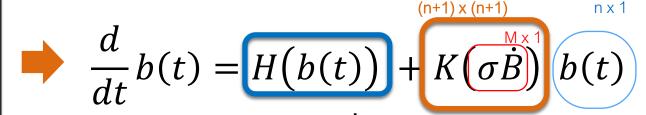
Unresolved fluid velocity:

$$v' = \frac{\sigma dB_t}{dt}$$
 (Gaussian, white wrt t)

Variance tensor:

$$a(x,x) = \frac{\mathbb{E}\{(\sigma dB_t)(\sigma dB_t)^T\}}{dt}$$





Multiplicative skew-symmetric noise

Covariance to estimate

 $\mathbb{E}\left(K_{jq}(\sigma dB_t) K_{ip}(\sigma dB_t)\right)/dt \approx \Delta t K_{jq} \left[\frac{\overline{b_p}}{\overline{b_p^2}} \frac{\Delta b_i}{\Delta t} v'\right]$

Coefficients given by:

- Randomized Navier-Stokes
- $(\phi_j)_j$
- $a(x) \approx \Delta t \overline{v'(v')^T}$

 $\overline{f} = \frac{1}{T} \int_{0}^{T} f$

Randomized Navier-Stokes

PCA modes

PCA residual v'

 $K_{jq}[\xi] = -\int_{\Omega} \phi_j \cdot C(\xi, \phi_q)$

POD-Galerkin gives SDEs for resolved modes

2nd order polynomial

Full order : $M \sim 10^7$

Reduced order: $n \sim 10$

$$v = w + v'$$

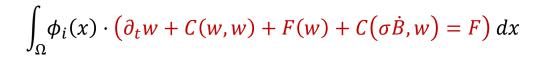
Resolved fluid velocity: $w(x,t) = \sum_{i=0}^{n} b_i(t)\phi_i(x)$

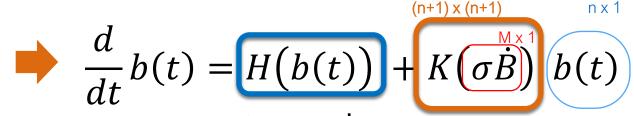
Unresolved fluid velocity:

$$v' = \frac{\sigma dB_t}{dt}$$
 (Gaussian, white wrt t)

Variance tensor:

$$a(x,x) = \frac{\mathbb{E}\{(\sigma dB_t)(\sigma dB_t)^T\}}{dt}$$





Multiplicative skew-symmetric noise

Covariance to estimate

 $\mathbb{E}\left(K_{jq}(\sigma dB_t) K_{ip}(\sigma dB_t)\right)/dt \approx \Delta t K_{jq} \left[\frac{\overline{b_p}}{\overline{b_p^2}} \frac{\Delta b_i}{\Delta t} v'\right]$

Coefficients given by:

- Randomized Navier-Stokes
- $(\phi_j)_j$
- $a(x) \approx \Delta t \ v' \ (v')^T$

$$\overline{f} = \frac{1}{T} \int_0^T f$$

Randomized Navier-Stokes

PCA modes

PCA residual v'

from synthetic data

 $K_{jq}[\xi] = -\int_{\Omega} \phi_j \cdot C(\xi, \phi_q)$

POD-Galerkin gives SDEs for resolved modes

2nd order polynomial

$$v = w + v'$$

Resolved fluid velocity:

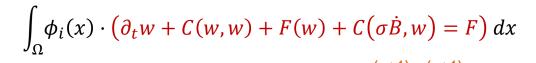
$$w(x,t) = \sum_{i=0}^{n} b_i(t)\phi_i(x)$$

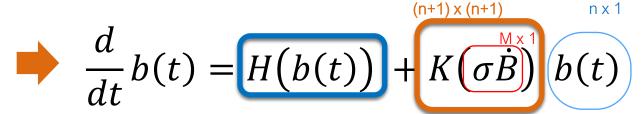
Unresolved fluid velocity:

$$v' = \frac{\sigma dB_t}{dt}$$
 (Gaussian, white wrt t)

Variance tensor:

$$a(x,x) = \frac{\mathbb{E}\{(\sigma dB_t)(\sigma dB_t)^T\}}{dt}$$





Multiplicative skew-symmetric noise

Covariance to estimate

 $\mathbb{E}\left(K_{jq}(\sigma dB_t) K_{ip}(\sigma dB_t)\right)/dt \approx \Delta t K_{jq} \left[\begin{array}{c} \frac{\overline{b_p}}{\overline{b_p^2}} \frac{\Delta b_i}{\Delta t} v' \end{array}\right]$

Coefficients given by:

- Randomized Navier-Stokes
- $(\phi_j)_j$
- $a(x) \approx \Delta t \overline{v'(v')^T}$

$$\overline{f} = \frac{1}{T} \int_0^T f$$

PCA modes

Randomized Navier-Stokes

PCA residual v'

from synthetic data

Resseguier et al. (2021). SIAM-ASA J Uncertain . hal- 03169957

Full order : $M \sim 10^7$

Reduced order: $n \sim 10$

New estimator

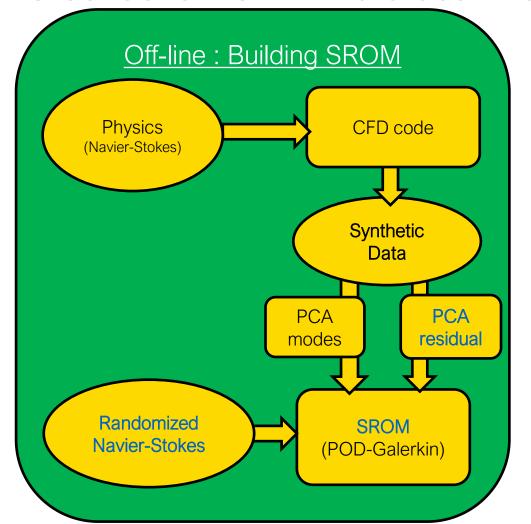
- Consistency proven $(\Delta t \rightarrow 0)$
- Numerically efficient
- Physically-based

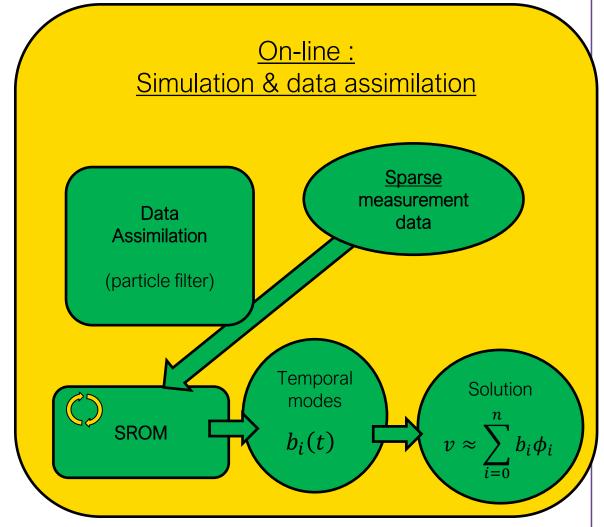
 $K_{jq}[\xi] = -\int_{\Omega} \phi_j \cdot C(\xi, \phi_q)$

→ Robustness in extrapolation

SUMMARY

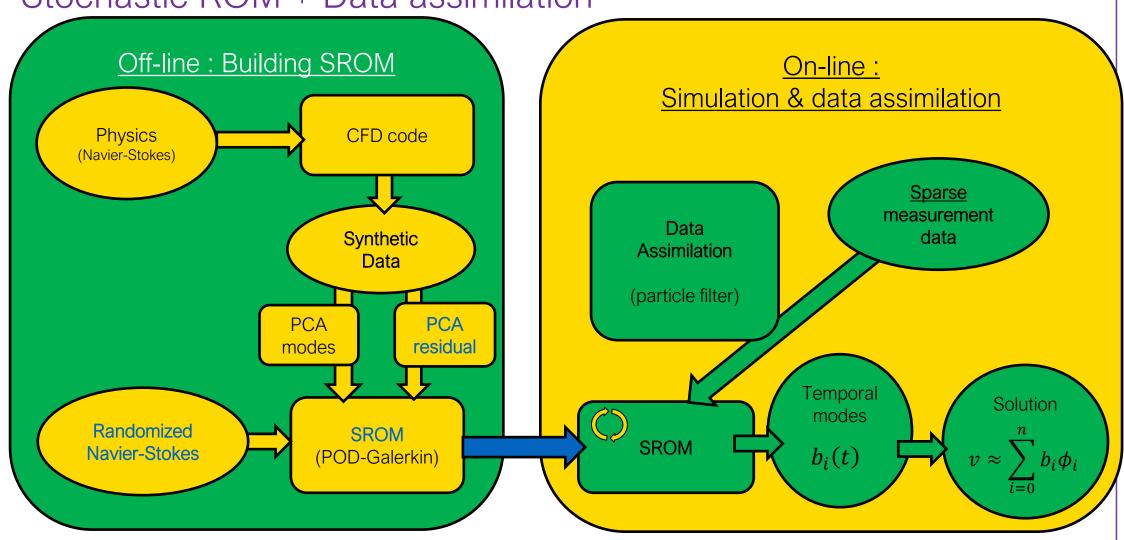
Stochastic ROM + Data assimilation





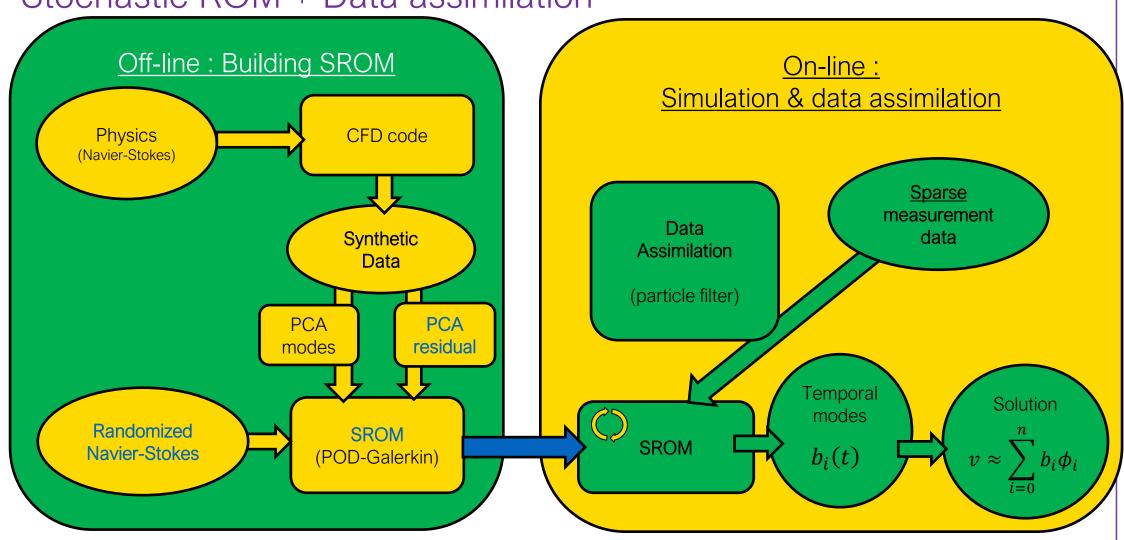
SUMMARY

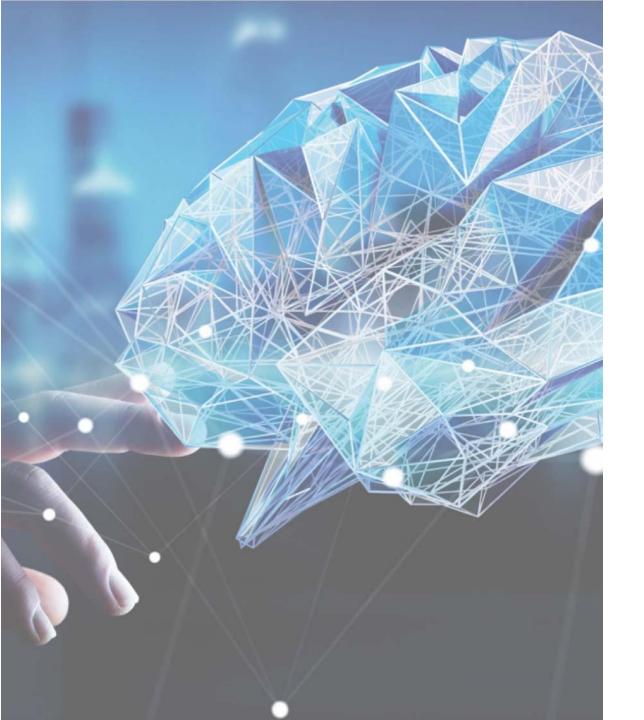
Stochastic ROM + Data assimilation



SUMMARY

Stochastic ROM + Data assimilation





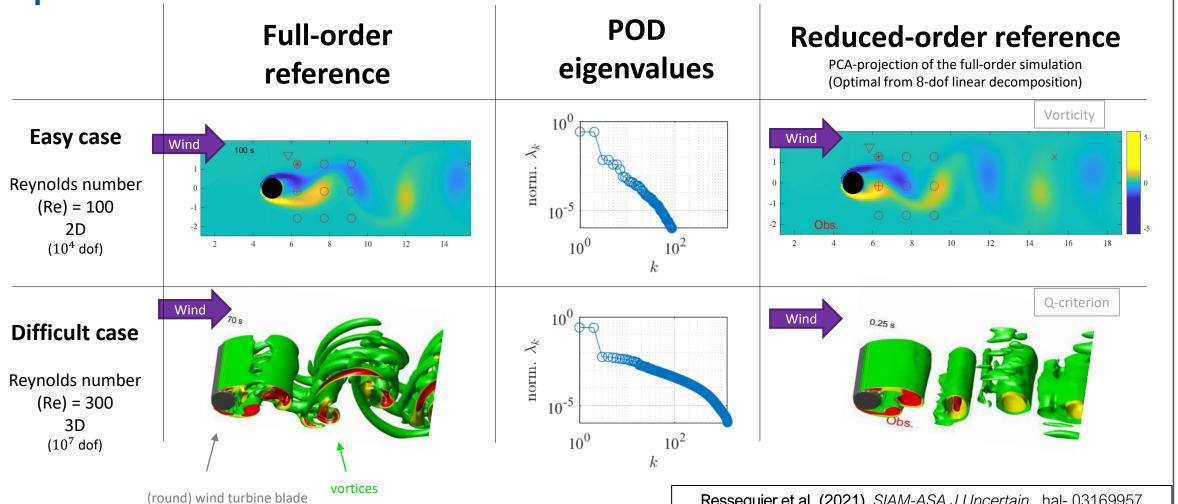
PART III

NUMERICAL RESULTS

- a. Test cases
- b. Data assimilation

From 10⁷ to 8 degrees of freedom

TEST CASES

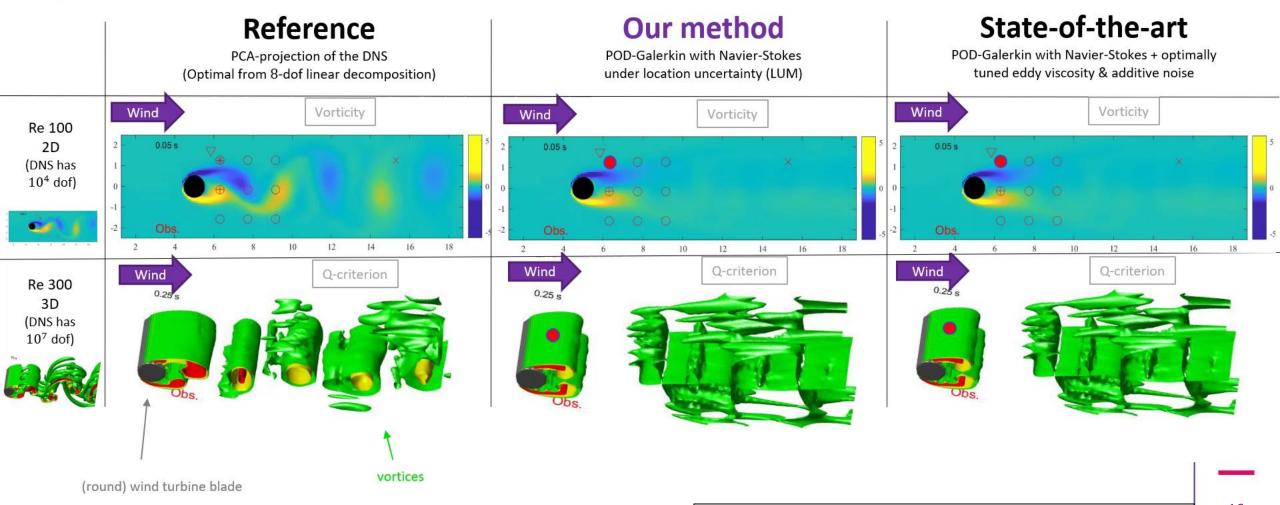


On-line estimation of the solution

On-line estimation of the solution

From 10⁷ to 8 degrees of freedom

Single measurement point (blurred & noisy velocity)

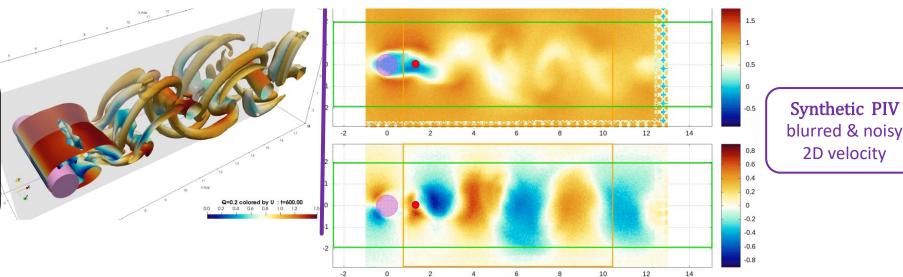


On-line estimation of the solution

From 10⁷ to 4 degrees of freedom Single measurement point (blurred & noisy velocity)

DNS

"true" simulation (Re 300, 10^7 degrees of freedom)



blurred & noisy 2D velocity

Reference:

PCA-projection of the "true" simulation (DNS) (Optimal from 4degrees of freedom linear decomposition)

Our method:

Data assimilation with POD-Galerkin of randomized Navier-Stokes (LUM) (4 degrees of freedom)

On-line estimation of the solution

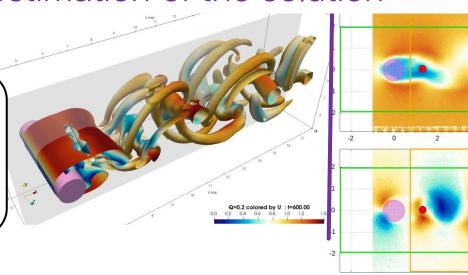
From 10⁷ to 4 degrees of freedom

Single measurement point (blurred & noisy velocity)

Open VFOAM®

DNS

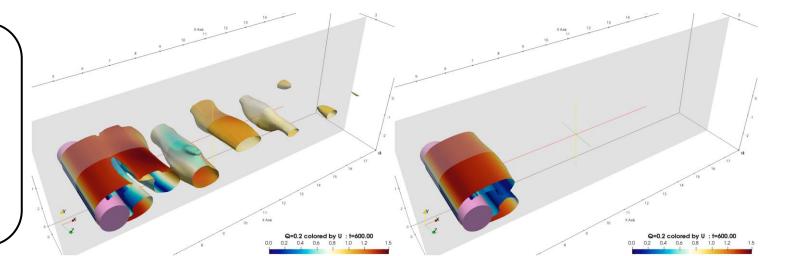
"true" simulation (Re 300, 10⁷ degrees of freedom)



Synthetic PIV blurred & noisy 2D velocity

Reference:

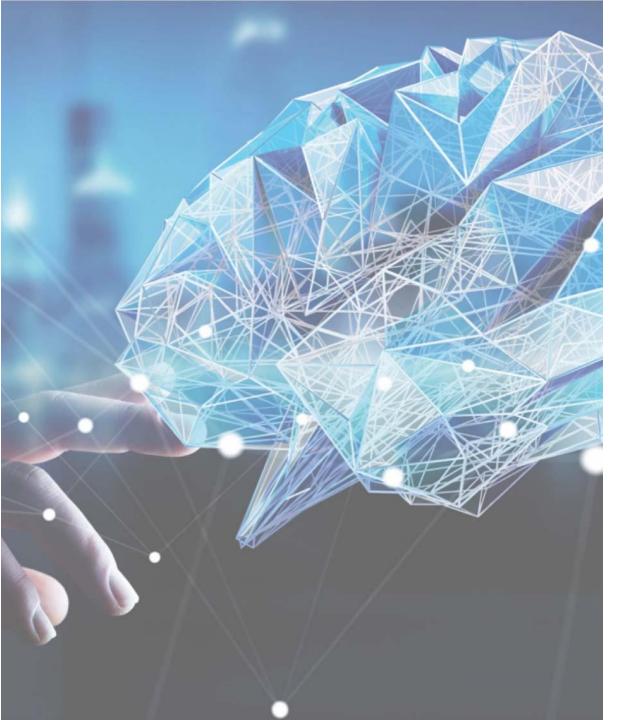
PCA-projection of the "true" simulation (DNS) (Optimal from 4-degrees of freedom linear decomposition)



Our method:

Data assimilation
with
POD-Galerkin of
randomized
Navier-Stokes
(LUM)
(4 degrees of freedom)

17



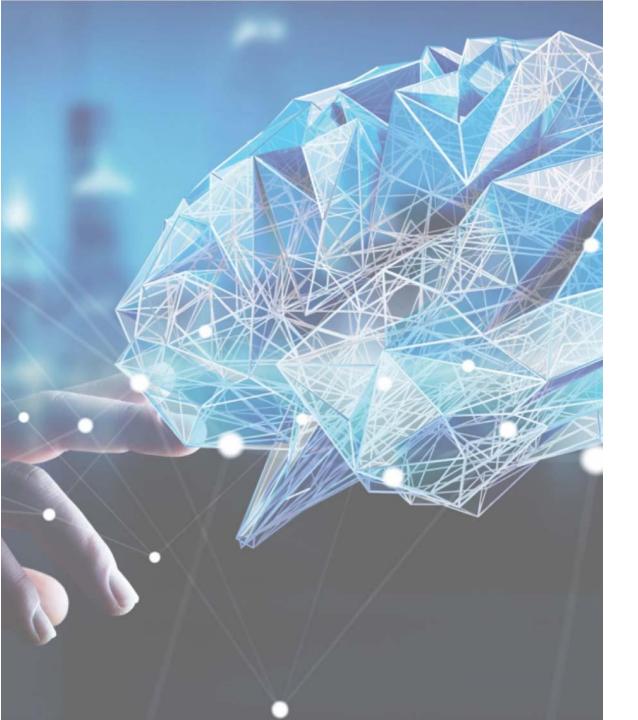
CONCLUSION

CONCLUSION

- ▶ Intrusive ROM: for very fast and robust CFD $(10^7 \rightarrow 8 \text{ degrees of freedom.})$
 - Closure problem handled by LUM
 - Efficient estimator for the multiplicative noise
 - Efficient generation of prior / Model error quantification
 - Now implemented in ITHACA-FV
- Data assimilation (Bayesian inverse problem): to correct the fast simulation on-line by incomplete/noisy measurements
- First results
 - Optimal <u>unsteady</u> flow estimation/prediction in the whole spatial domain (large-scale structures)
 - Robust far outside the training set

NEXT STEPS

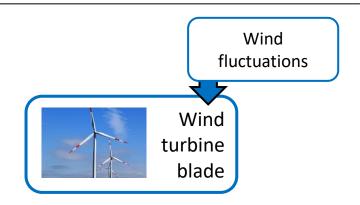
- Real measurements
- Parametric ROM (unknown inflow)



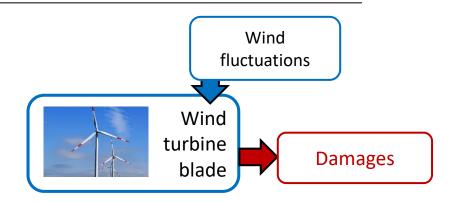
BONUS SLIDES

Observer for wind turbine application

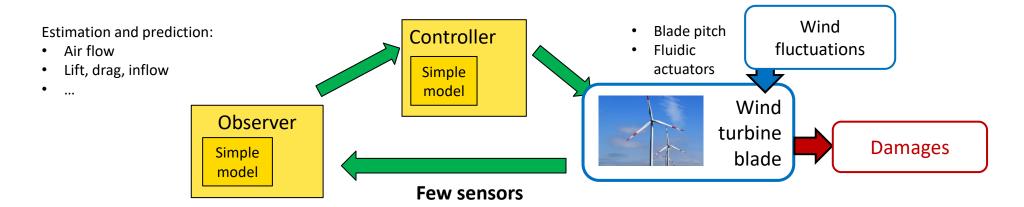
Observer for wind turbine application



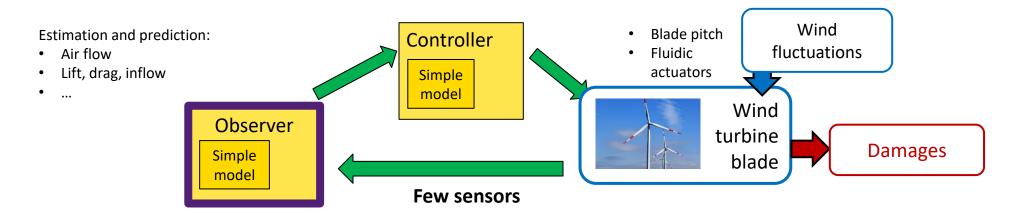
Observer for wind turbine application



Observer for wind turbine application

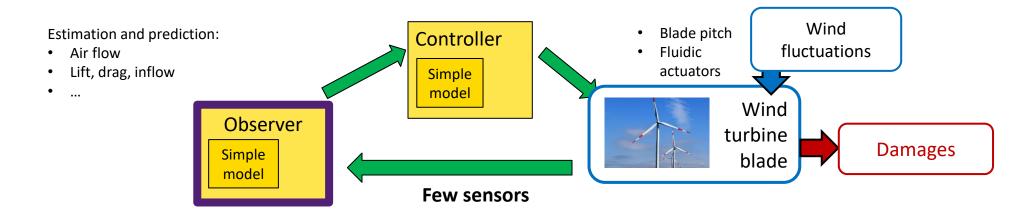


Observer for wind turbine application



Observer for wind turbine application

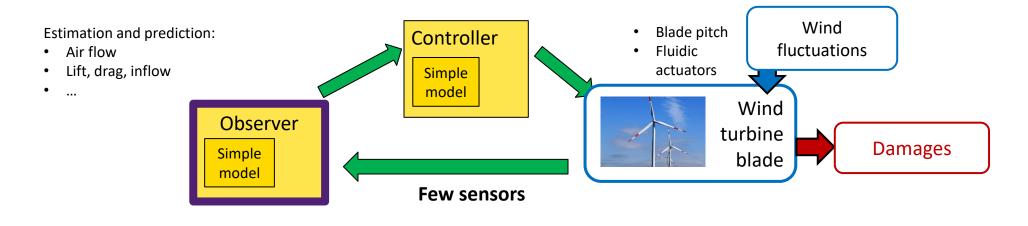
Application: Real-time estimation and prediction of 3D fluid flow using strongly-limited computational resources & few sensors



Which simple model? How to combine model & measurements?

Observer for wind turbine application

Application: Real-time estimation and prediction of 3D fluid flow using strongly-limited computational resources & few sensors



Which simple model? How to combine model & measurements?

Scientific problem:

Simulation & data assimilation under severe dimensional reduction typically, $10^7 \rightarrow \mathcal{O}(10)$ degrees of freedom

LOCATION UNCERTAINTY MODELS (LUM),

Randomized Navier-Stokes

$$v = w + v'$$

Resolved fluid velocity: w

Unresolved fluid velocity:

$$v' = \frac{\sigma dB_t}{dt}$$
 (Gaussian, white wrt t)

(assuming
$$\nabla \cdot w = 0$$
 and $\nabla \cdot v' = 0$)

Momentum conservation

$$\frac{\mathrm{d}}{\mathrm{d}t}(w(t,X_t)) = F \text{ (Forces)}$$

Positions of fluid parcels X_t :

$$\frac{d}{dt}X_t = w(t, X_t) + \sigma(t, X_t) \frac{dB_t}{dt}$$

Gaussian process white in time

LOCATION UNCERTAINTY MODELS (LUM),

Randomized Navier-Stokes

From Ito-Wentzell formula (Kunita 1990) with Ito notations

$$v = w + v'$$

Resolved fluid velocity:

Unresolved fluid velocity:

 $v' = \sigma \dot{B}$ (Gaussian, white wrt t)

(assuming $\nabla \cdot w = 0$ and $\nabla \cdot v' = 0$)

Variance tensor:

$$a(x,x) = \frac{\mathbb{E}\{(\sigma dB_t)(\sigma dB_t)^T\}}{dt}$$

$$\partial_t w + w^* \cdot \nabla w + \sigma \dot{B} \cdot \nabla w - \nabla \cdot \left(\frac{1}{2} a \nabla w\right) = F$$

Randomized Navier-Stokes

$$v = w + v'$$

Resolved fluid velocity:

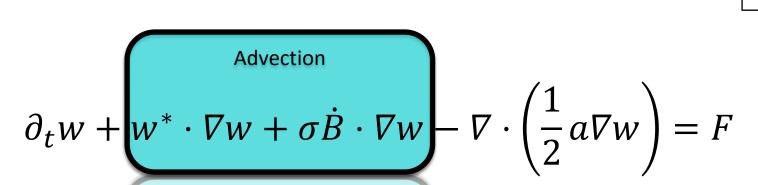
Unresolved fluid velocity:

 $v' = \sigma \dot{B}$ (Gaussian, white wrt t)

(assuming $\nabla \cdot w = 0$ and $\nabla \cdot v' = 0$)

Variance tensor:

$$a(x,x) = \frac{\mathbb{E}\{(\sigma dB_t)(\sigma dB_t)^T\}}{dt}$$



From Ito-Wentzell formula (Kunita 1990) with Ito notations

Randomized Navier-Stokes

$$v = w + v'$$

Resolved fluid velocity:

Unresolved fluid velocity:

$$v' = \sigma \dot{B}$$
 (Gaussian, white wrt t)

(assuming $\nabla \cdot w = 0$ and $\nabla \cdot v' = 0$)

Variance tensor:

$$a(x,x) = \frac{\mathbb{E}\{(\sigma dB_t)(\sigma dB_t)^T\}}{dt}$$

From Ito-Wentzell formula (Kunita 1990) with Ito notations

$$\partial_t w + w^* \cdot \nabla w + \sigma \dot{B} \cdot \nabla w - \nabla \cdot \left(\frac{1}{2} a \nabla w\right) = F$$

Randomized Navier-Stokes

$$v = w + v'$$

Resolved fluid velocity:

Unresolved fluid velocity:

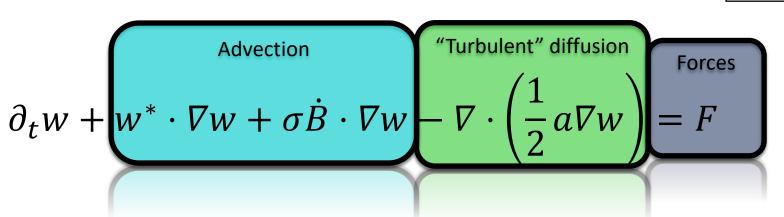
$$v' = \sigma \dot{B}$$
 (Gaussian, white wrt t)

(assuming $\nabla \cdot w = 0$ and $\nabla \cdot v' = 0$)

Variance tensor:

$$a(x,x) = \frac{\mathbb{E}\{(\sigma dB_t)(\sigma dB_t)^T\}}{dt}$$

From Ito-Wentzell formula (Kunita 1990) with Ito notations



From Ito-Wentzell

with Ito notations

formula (Kunita 1990)

LOCATION UNCERTAINTY MODELS (LUM),

Randomized Navier-Stokes

v = w + v'

Resolved fluid velocity:

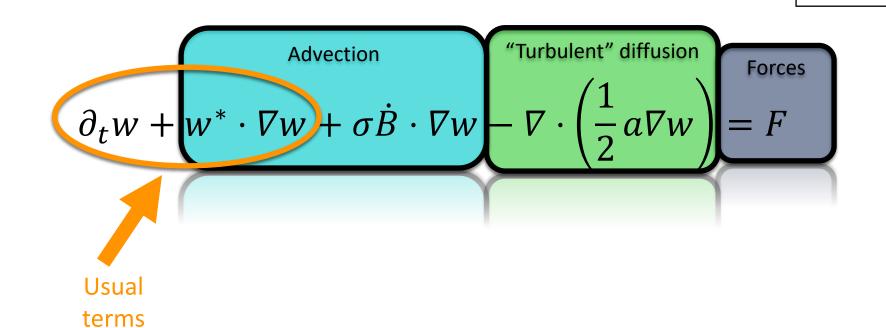
Unresolved fluid velocity:

 $v' = \sigma \dot{B}$ (Gaussian, white wrt t)

(assuming $\nabla \cdot w = 0$ and $\nabla \cdot v' = 0$)

Variance tensor:

$$a(x,x) = \frac{\mathbb{E}\{(\sigma dB_t)(\sigma dB_t)^T\}}{dt}$$



Randomized Navier-Stokes

From Ito-Wentzell formula (Kunita 1990) with Ito notations

$$v = w + v'$$

Resolved fluid velocity:

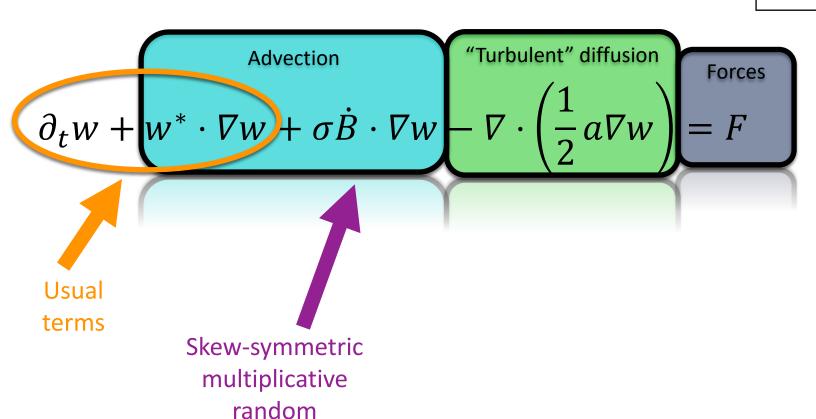
Unresolved fluid velocity:

 $v' = \sigma \dot{B}$ (Gaussian, white wrt t)

(assuming $\nabla \cdot w = 0$ and $\nabla \cdot v' = 0$)

Variance tensor:

$$a(x,x) = \frac{\mathbb{E}\{(\sigma dB_t)(\sigma dB_t)^T\}}{dt}$$



forcing

Randomized Navier-Stokes

From Ito-Wentzell formula (Kunita 1990) with Ito notations

$$v = w + v'$$

Resolved fluid velocity:

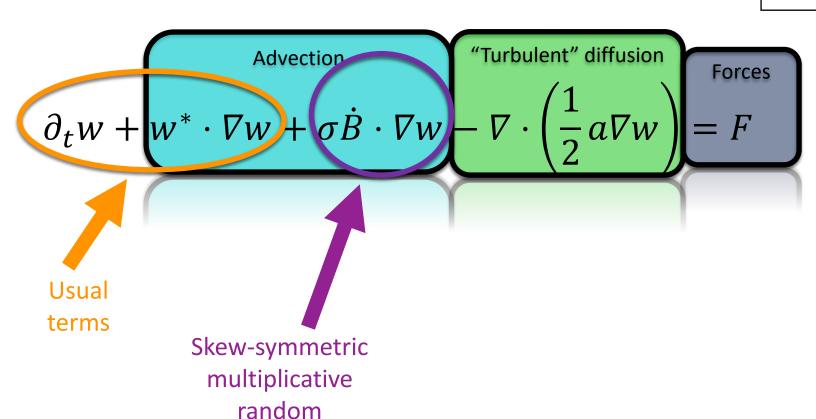
Unresolved fluid velocity:

 $v' = \sigma \dot{B}$ (Gaussian, white wrt t)

(assuming $\nabla \cdot w = 0$ and $\nabla \cdot v' = 0$)

Variance tensor:

$$a(x,x) = \frac{\mathbb{E}\{(\sigma dB_t)(\sigma dB_t)^T\}}{dt}$$



forcing

Randomized Navier-Stokes

Symmetric negative

From Ito-Wentzell formula (Kunita 1990) with Ito notations

Resolved fluid velocity:

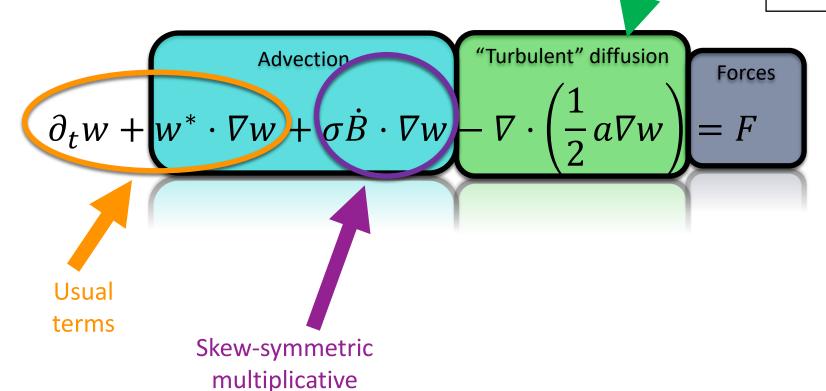
Unresolved fluid velocity:

$$v' = \sigma \dot{B}$$
 (Gaussian, white wrt t)

(assuming $\nabla \cdot w = 0$ and $\nabla \cdot v' = 0$)

Variance tensor:

$$a(x,x) = \frac{\mathbb{E}\{(\sigma dB_t)(\sigma dB_t)^T\}}{dt}$$



random

forcing

Randomized Navier-Stokes

Symmetric negative

From Ito-Wentzell formula (Kunita 1990) with Ito notations

Resolved fluid velocity:

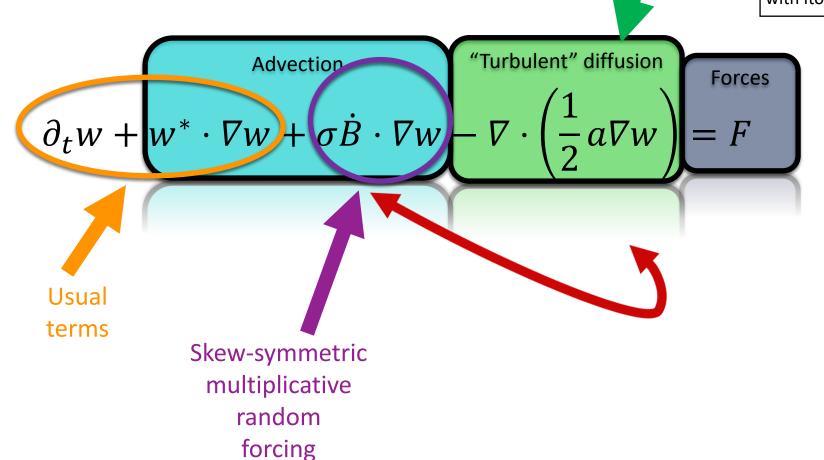
Unresolved fluid velocity:

 $v' = \sigma \dot{B}$ (Gaussian, white wrt t)

(assuming $\nabla \cdot w = 0$ and $\nabla \cdot v' = 0$)

Variance tensor:

$$a(x,x) = \frac{\mathbb{E}\{(\sigma dB_t)(\sigma dB_t)^T\}}{dt}$$



Randomized Navier-Stokes

Symmetric negative

From Ito-Wentzell formula (Kunita 1990) with Ito notations

Resolved fluid velocity:

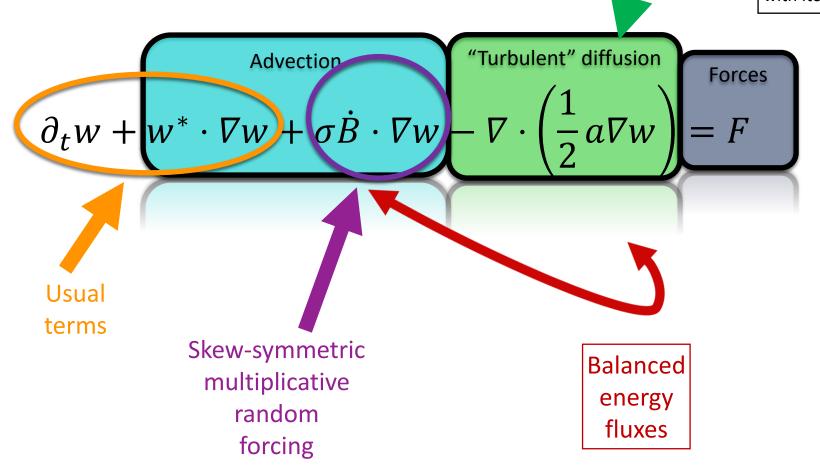
Unresolved fluid velocity:

$$v' = \sigma \dot{B}$$
 (Gaussian, white wrt t)

(assuming $\nabla \cdot w = 0$ and $\nabla \cdot v' = 0$)

Variance tensor:

$$a(x,x) = \frac{\mathbb{E}\{(\sigma dB_t)(\sigma dB_t)^T\}}{dt}$$



Multiplicative noise covariance

Full order (\sim nb spatial grid points): $M \sim 10^7$

Reduced order: $n \sim 10$

Number of time steps : $N \sim 10^4$

$$v = w + v'$$

Resolved fluid velocity: $w(x,t) = \sum_{i=0}^{n} b_i(t)\phi_i(x)$

Unresolved fluid velocity:

$$v' = \frac{\sigma dB_t}{dt}$$
 (Gaussian, white wrt t)

Randomized Navier-Stokes

PCA modes

PCA residual v'

from synthetic data

$$db(t) = H(b(t)) dt + K(\sigma dB_t) b(t) \text{ with } K_{jq}[\xi] = -\int_{\Omega} \phi_j \cdot C(\xi, \phi_q)$$

(n+1) x (n+1)

Curse of dimensionality

- Since σdB_t is white in time, $\Sigma_{jq,ip} = \mathbb{E}\left(K_{jq}(\sigma dB_t) \ K_{ip}(\sigma dB_t)\right)/dt \approx \Delta t \ \overline{K_{jq}(v') \ K_{ip}(v')}$
- K is a matrix of integro-differential operators \rightarrow cannot be evaluated on v'(x,t) at every time t
- Covariance of $\sigma dB_t \approx \Delta t^2 \overline{\left(v'(x,t)\right)\!\!\left(v'(y,t)\right)^T}: M \times M \sim 10^{13} \text{ coefficients} \rightarrow \text{intractable}$

- Consistency proven $(\Delta t \rightarrow 0)$
- Numerically efficient
- Physically-based
 - → Robustness in extrapolation

Multiplicative noise covariance

Full order (\sim nb spatial grid points): $M \sim 10^7$

Reduced order: $n \sim 10$

Number of time steps : $N \sim 10^4$

v = w + v'

Resolved fluid velocity: $w(x,t) = \sum_{i=0}^{n} b_i(t)\phi_i(x)$

Unresolved fluid velocity:

$$v' = \frac{\sigma dB_t}{dt}$$
 (Gaussian, white wrt t)

Randomized Navier-Stokes

PCA modes

PCA residual v'

from synthetic data

$$db(t) = H(b(t)) dt + K(\sigma dB_t) b(t) \text{ with } K_{jq}[\xi] = -\int_{\Omega} \phi_j \cdot C(\xi, \phi_q)$$

(n+1) x (n+1)

- Curse of dimensionality
 - Since σdB_t is white in time, $\Sigma_{jq,ip} = \mathbb{E}\left(K_{jq}(\sigma dB_t) K_{ip}(\sigma dB_t)\right)/dt \approx \Delta t \ \overline{K_{jq}(v') K_{ip}(v')}$
 - K is a matrix of integro-differential operators \rightarrow cannot be evaluated on v'(x,t) at every time t
 - Covariance of $\sigma dB_t \approx \Delta t^2 \, \overline{ \big(v'(x,t)\big) \big(v'(y,t)\big)^T} : M \times M \sim 10^{13} \, \text{coefficients} \to \text{intractable}$
 - **Efficient estimator** $\Sigma_{jq,ip} \approx \Delta t \frac{K_{jq}}{\overline{b_p^2}} \left[\frac{\overline{b_p}}{\Delta t} \frac{\Delta b_i}{\Delta t} v' \right]$ (hybrid fitting & physics-based) requires only $O(n^2M)$ correlation estimations and $O(n^2)$ evaluations of K

- Consistency proven $(\Delta t \rightarrow 0)$
- Numerically efficient
- Physically-based
 - → Robustness in extrapolation

Multiplicative noise covariance

Full order (\sim nb spatial grid points): $M \sim 10^7$

Reduced order: $n \sim 10$

Number of time steps : $N \sim 10^4$

Resolved fluid velocity: $w(x,t) = \sum_{i=0}^{n} b_i(t)\phi_i(x)$

Unresolved fluid velocity:

$$v' = \frac{\sigma dB_t}{dt}$$
 (Gaussian, white wrt t)

Randomized Navier-Stokes

PCA modes

PCA residual v'

from synthetic data

$$db(t) = H(b(t)) dt + K(\sigma dB_t) b(t) \text{ with } K_{jq}[\xi] = -\int_{\Omega} \phi_j \cdot C(\xi, \phi_q)$$

Curse of dimensionality

Since σdB_t is white in time, $\Sigma_{jq,ip} = \mathbb{E}\left(K_{jq}(\sigma dB_t) \ K_{ip}(\sigma dB_t)\right)/dt \approx \Delta t \ \overline{K_{jq}(v') \ K_{ip}(v')}$

 $(n+1) \times (n+1)$

- K is a matrix of integro-differential operators \rightarrow cannot be evaluated on v'(x,t) at every time t
- Covariance of $\sigma dB_t \approx \Delta t^2 \, \overline{ \big(v'(x,t)\big) \big(v'(y,t)\big)^T} : M \times M \sim 10^{13} \, \text{coefficients} \to \text{intractable}$
- **Efficient estimator** $\Sigma_{jq,ip} \approx \Delta t \frac{K_{jq}}{\left[\frac{\overline{b_p}}{\overline{b_p^2}} \frac{\Delta b_i}{\Delta t} v'\right]}$ (hybrid fitting & physics-based) requires only $O(n^2M)$ correlation estimations and $O(n^2)$ evaluations of K

Consistency of our estimator (convergence in probability for $\Delta t \to 0$, using stochastic calculus and continuity of K)

$$\Delta t \, \frac{K_{jq}}{\left[\overline{b_p \frac{\Delta b_i}{\Delta t} \, v'}\right]} = \Delta t \, \overline{b_p \frac{\Delta b_i}{\Delta t} K_{jq}[v']} \approx \frac{1}{T} \int_0^T b_p \, d < b_i, K_{jq}(\sigma B) > = \frac{1}{T} \int_0^T b_p \sum_{r=0}^n b_r d < K_{ir}(\sigma B), K_{jq}(\sigma B) > = \sum_{r=0}^n \sum_{jq,ir} \overline{b_p b_r} = \sum_{jq,ip} \overline{b_p^2} \quad \text{(orthogonality from PCA)}$$

$$\overline{f} = \frac{1}{T} \int_0^T f$$

- Consistency proven $(\Delta t \rightarrow 0)$
- Numerically efficient
- Physically-based
 - → Robustness in extrapolation

Multiplicative noise covariance

Full order (\sim nb spatial grid points): $M \sim 10^7$

Reduced order: $n \sim 10$

Number of time steps : $N \sim 10^4$

Resolved fluid velocity: $w(x,t) = \sum_{i=0}^{n} b_i(t)\phi_i(x)$

Unresolved fluid velocity:

$$v' = \frac{\sigma dB_t}{dt}$$
 (Gaussian, white wrt t)

Randomized Navier-Stokes

PCA modes

PCA residual v'

from synthetic data

$$db(t) = H(b(t)) dt + K(\sigma dB_t) b(t) \text{ with } K_{jq}[\xi] = -\int_{\Omega} \phi_j \cdot C(\xi, \phi_q)$$

(n+1) x (n+1)

- Curse of dimensionality
 - Since σdB_t is white in time, $\Sigma_{jq,ip} = \mathbb{E}\left(K_{jq}(\sigma dB_t) K_{ip}(\sigma dB_t)\right)/dt \approx \Delta t \ \overline{K_{jq}(v') K_{ip}(v')}$
 - K is a matrix of integro-differential operators \rightarrow cannot be evaluated on v'(x,t) at every time t
 - Covariance of $\sigma dB_t \approx \Delta t^2 \overline{\left(v'(x,t)\right)\!\!\left(v'(y,t)\right)^T}: M \times M \sim 10^{13} \text{ coefficients} \rightarrow \text{intractable}$
 - **Efficient estimator** $\Sigma_{jq,ip} \approx \Delta t \frac{K_{jq}}{\overline{b_p^2}} \left[\frac{\overline{b_p}}{\Delta t} \frac{\Delta b_i}{\Delta t} v' \right]$ (hybrid fitting & physics-based) requires only $O(n^2M)$ correlation estimations and $O(n^2)$ evaluations of K
- **Consistency of our estimator** (convergence in probability for $\Delta t \to 0$, using stochastic calculus and continuity of K)

$$\Delta t \ \underline{K_{jq}} \left[\ \overline{b_p \frac{\Delta b_i}{\Delta t} \ v'} \ \right] = \Delta t \ \overline{b_p \frac{\Delta b_i}{\Delta t} K_{jq}[v']} \approx \frac{1}{T} \int_0^T b_p \ d < b_i, K_{jq}(\sigma B) > \\ = \frac{1}{T} \int_0^T b_p \sum_{\mathbf{r}=0}^{\mathbf{n}} b_r d < K_{ir}(\sigma B), K_{jq}(\sigma B) > \\ = \sum_{\mathbf{r}=0}^{\mathbf{n}} \sum_{jq,ir} \overline{b_p b_r} = \sum_{jq,ip} \overline{b_p^2} \ \text{(orthogonality from PCA)}$$

 \triangleright Optimal time subsampling at Δt needed to meet the white assumption

$$\overline{f} = \frac{1}{T} \int_0^T f$$

- Consistency proven $(\Delta t \rightarrow 0)$
- Numerically efficient
- Physically-based
 - → Robustness in extrapolation

Multiplicative noise covariance

Full order (\sim nb spatial grid points): $M \sim 10^7$

Reduced order: $n \sim 10$

New estimator

Numerically efficient

Physically-based

Consistency proven $(\Delta t \rightarrow 0)$

→ Robustness in extrapolation

Number of time steps : $N \sim 10^4$

Resolved fluid velocity: $w(x,t) = \sum_{i=0}^{n} b_i(t)\phi_i(x)$

Unresolved fluid velocity:

$$v' = \frac{\sigma dB_t}{dt}$$
 (Gaussian, white wrt t)

Randomized Navier-Stokes

PCA modes

PCA residual v'

from synthetic data

$$db(t) = H(b(t)) dt + K(\sigma dB_t) b(t) \text{ with } K_{jq}[\xi] = -\int_{\Omega} \phi_j \cdot C(\xi, \phi_q)$$

- Curse of dimensionality
 - Since σdB_t is white in time, $\Sigma_{jq,ip} = \mathbb{E}\left(K_{jq}(\sigma dB_t) K_{ip}(\sigma dB_t)\right)/dt \approx \Delta t \ \overline{K_{jq}(v') K_{ip}(v')}$
 - K is a matrix of integro-differential operators \rightarrow cannot be evaluated on v'(x,t) at every time t
 - Covariance of $\sigma dB_t \approx \Delta t^2 \, \overline{ \big(v'(x,t) \big) \big(v'(y,t) \big)^T} : M \times M \sim 10^{13} \, \text{coefficients} \to \text{intractable}$
 - **Efficient estimator** $\Sigma_{jq,ip} \approx \Delta t \; K_{jq} \left[\frac{\overline{b_p}}{\overline{b_p^2}} \; \frac{\Delta b_i}{\Delta t} \; v' \right]$ (hybrid fitting & physics-based) requires only $O(n^2M)$ correlation estimations and $O(n^2)$ evaluations of K

Consistency of our estimator (convergence in probability for $\Delta t \to 0$, using stochastic calculus and continuity of K)

$$\Delta t \; \underline{K_{jq}} \left[\overline{b_p \frac{\Delta b_i}{\Delta t} \; v'} \; \right] = \Delta t \; \overline{b_p \frac{\Delta b_i}{\Delta t} K_{jq}[v']} \approx \frac{1}{T} \int_0^T b_p \; d < b_i, K_{jq}(\sigma B) > \\ = \frac{1}{T} \int_0^T b_p \sum_{\mathbf{r}=0}^{\mathbf{n}} b_r d < K_{ir}(\sigma B), K_{jq}(\sigma B) > \\ = \sum_{\mathbf{r}=0}^{\mathbf{n}} \sum_{jq,ir} \overline{b_p b_r} = \sum_{jq,ip} \overline{b_p^2} \; \text{(orthogonality from PCA)}$$

- \triangleright Optimal time subsampling at Δt needed to meet the white assumption
- Additional reduction for efficient sampling : diagonalization of $\Sigma \to K(\sigma dB_t) \approx \alpha(d\beta_t)$ with a n-dimensional (instead of (n+1)²-dimensional) Brownian motion β

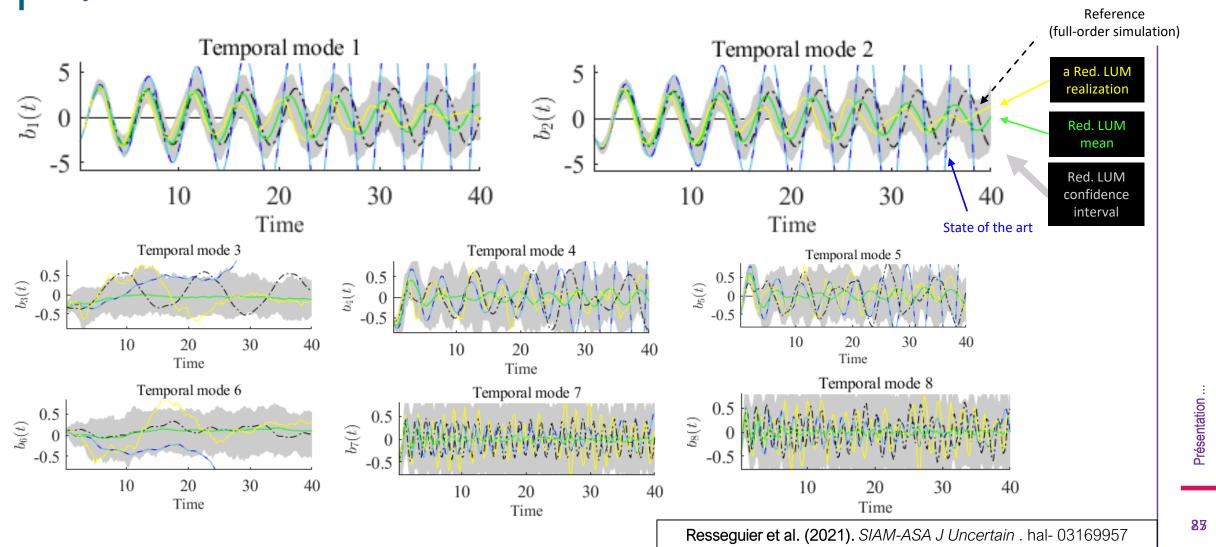
UNCERTAINTY QUANTIFICATION (PRIOR)

 $b_i(t)$ VS reference

From 10^7 to 8 degrees of freedom

No data assimilation

Known initial conditions b(t=0)



UNCERTAINTY QUANTIFICATION (PRIOR)

From 10^7 to 8 degrees of freedom No data assimilation Known initial conditions b(t=0)

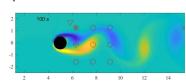
Error on the reduced solution w

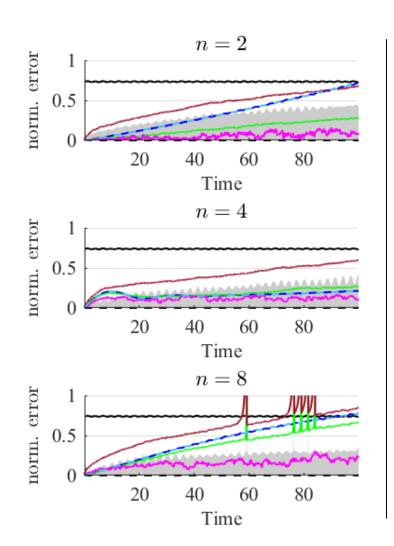
$$v = w + v'$$

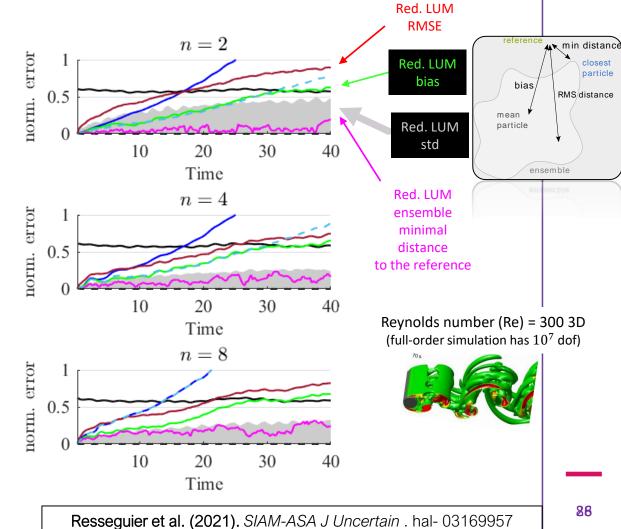
Resolved fluid velocity: $w = \sum_{i=0}^{n} b_i \phi_i$

Unresolved fluid velocity: v'

Reynolds number (Re) = 100 / 2D(full-order simulation has 10^4 dof)







UNCERTAINTY QUANTIFICATION (PRIOR)

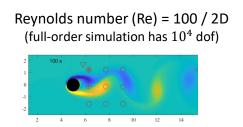
No data assimilation Known initial conditions b(t = 0)

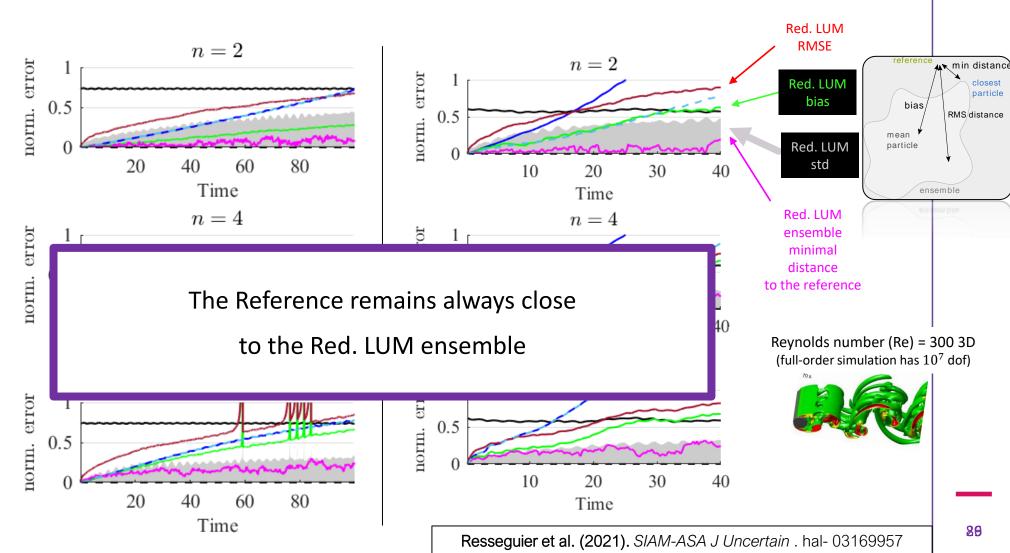
From 10⁷ to 8 degrees of freedom

Error on the reduced solution w

v = w + v'

Resolved fluid velocity: $w = \sum_{i=0}^{n} b_i \phi_i$





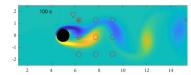
DATA ASSIMILATION

Error on the solution estimation

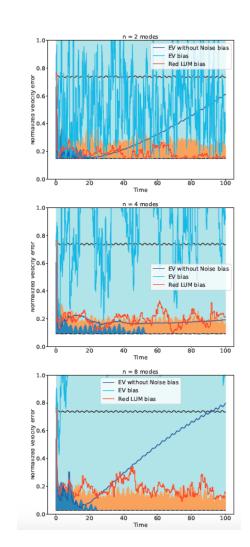
v = w + v'

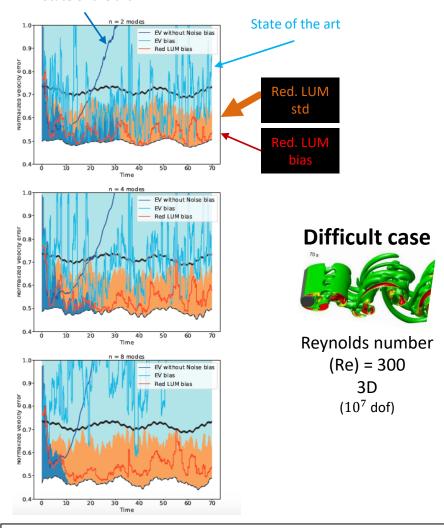
Resolved fluid velocity: $w = \sum_{i=0}^{n} b_i \phi_i$

Easy case



Reynolds number (Re) = 100 2D (10^4 dof)





State of the art