

## Data assimilation of 3D fluid flow under severe dimensional reduction typically, $10^{7} \rightarrow O(10)$ degrees of freedom

## Application:

Real-time estimation and prediction
using strongly-limited computational resources \& few sensors
for monitoring or control

## CONTENT

I. State of the art
a. Intrusive reduced order model (ROM)
b. Data assimilation
II. Reduced location uncertainty models
a. Location uncertainty models (LUM)
b. Reduced LUM
III. Numerical results
a. Test cases
b. Data assimilation


## PART I

## STATE OF THE ART

a. Intrusive reduced order model (ROM)
b. Data assimilation

## INTRUSIVE REDUCED ORDER MODEL (ROM)

Combine physical models and learning approaches

- Principal Component Analysis (PCA) on a dataset to reduce the dimensionality:

- Approximation:

$$
v(x, t) \approx \sum_{i=0}^{n} b_{i}(t) \phi_{i}(x)
$$

## INTRUSIVE REDUCED ORDER MODEL (ROM)

Combine physical models and learning approaches

- Principal Component Analysis (PCA) on a dataset to reduce the dimensionality:

- Approximation:

$$
v(x, t) \approx \sum_{i=0}^{n} b_{i}(t) \phi_{i}(x)
$$

## INTRUSIVE REDUCED ORDER MODEL (ROM)

Combine physical models and learning approaches

- Principal Component Analysis (PCA) on a dataset to reduce the dimensionality:

- Approximation:

$$
\bar{v}(x, t) \approx \sum_{i=0}^{n} \underbrace{\text { Resonved }}_{i} \begin{array}{l}
\text { modes } \\
b_{i}(t)
\end{array}) \phi_{i}(x)
$$

## INTRUSIVE REDUCED ORDER MODEL (ROM)

Combine physical models and learning approaches

- Principal Component Analysis (PCA) on a dataset to reduce the dimensionality:

- Projection of the "physics" onto the spatial modes
(POD-Galerkin)

$$
\int_{\Omega} d x \phi_{i}(x) \cdot(\text { Physical equation (e.g. Navier-Stokes) })
$$

## INTRUSIVE REDUCED ORDER MODEL (ROM)

Combine physical models and learning approaches

- Principal Component Analysis (PCA) on a dataset to reduce the dimensionality:

- Approximation:

$$
v(x, t) \approx \sum_{i=0} b_{i}(t) \phi_{i}(x)
$$

- Projection of the "physics" onto the spatial modes (POD-Galerkin)

$$
\begin{aligned}
\int_{\Omega} d x \phi_{i} & (x) \cdot(\text { Physical equation (e.g. Navier-Stokes)) } \\
& \rightarrow \text { ROM for very fast simulation of temporal modes }
\end{aligned}
$$

## INTRUSIVE REDUCED ORDER MODEL (ROM)

Combine physical models and learning approaches

- Principal Component Analysis (PCA) on a dataset to reduce the dimensionality:

> Spatial modes $$
\left(\phi_{i}(\boldsymbol{x})\right)_{i}
$$

- Approximation:

- Projection of the "physics" onto the spatial modes (POD-Galerkin)

```
\mp@subsup{\int}{\Omega}{}dx\mp@subsup{\phi}{i}{}(x)\cdot(\mathrm{ (Physical equation (e.g. Navier-Stokes))}
```

$\rightarrow$ ROM for very fast simulation of temporal modes

## INTRUSIVE REDUCED ORDER MODEL (ROM)

Combine physical models and learning approaches

- Principal Component Analysis (PCA) on a dataset to reduce the dimensionality:

- Approximation:

$$
v(x, t) \approx \sum_{i=0}^{n} \begin{gathered}
\text { Resolved } \\
\text { modes }
\end{gathered} b_{i}(t) \phi_{i}(x)
$$

## Don't work in extrapolation for advection-dominated problem

- Projection of the "physics" onto the spatial modes
(POD-Galerkin)

```
\int}\mp@subsup{|}{\Omega}{}dx\mp@subsup{\phi}{i}{}(x)\cdot(\mathrm{ (enyomatequationt(e.g. Navier-Stokes))
\(\rightarrow\) ROM for very fast simulation of temporal modes
```


## INTRUSIVE REDUCED ORDER MODEL (ROM)

Combine physical models and learning approaches

- Principal Component Analysis (PCA) on a dataset to reduce the dimensionality:

- Approximation:

$$
v(x, t) \approx \sum_{i=0}^{n}\left[\begin{array}{c}
\text { Resolved } \\
\text { modes } \\
b_{i}(t)
\end{array}\right) \phi_{i}(x)
$$

- Projection of the "physics" onto the spatial modes (POD-Galerkin)

$$
\begin{array}{r}
\int_{\Omega} d x \phi_{i}(x) \cdot \text { (e.g. Navier-Stokes)) } \\
\rightarrow \text { ROM for very fast simulation of temporal modes }
\end{array}
$$

## INTRUSIVE REDUCED ORDER MODEL (ROM)

Combine physical models and learning approaches

- Principal Component Analysis (PCA) on a dataset to reduce the dimensionality:

$$
\begin{aligned}
& \text { Spatial modes } \\
& \qquad\left(\phi_{i}(x)\right)_{i}
\end{aligned}
$$

- Approximation:

$$
v(x, t) \approx \sum_{i=0}^{n} b_{i}(t) \phi_{i}(x)
$$

- Projection of the "physics" onto the spatial modes (POD-Galerkin)

$$
\begin{aligned}
\int_{\Omega} d x \phi_{i}(x) \cdot & \text { (Randomized Navier-Stokes) } \\
& \rightarrow \text { ROM for very fast simulation of temporal modes }
\end{aligned}
$$

## DATA ASSIMILATION

= Coupling simulations and measurements $y$

Numerical<br>Simulation<br>(ROM)<br>$\rightarrow$ erroneous

## On-line measurements <br> $\rightarrow$ incomplete <br> $\rightarrow$ possibly noisy

## DATA ASSIMILATION

= Coupling simulations and measurements $y$


## DATA ASSIMILATION

= Coupling simulations and measurements $y$


## DATA ASSIMILATION

= Coupling simulations and measurements $y$


## DATA ASSIMILATION

= Coupling simulations and measurements $y$


## DATA ASSIMILATION

= Coupling simulations and measurements $y$


## DATA ASSIMILATION

= Coupling simulations and measurements $y$


## DATA ASSIMILATION

= Coupling simulations and measurements $y$


## DATA ASSIMILATION

= Coupling simulations and measurements $y$


## DATA ASSIMILATION

= Coupling simulations and measurements $y$


## DATA ASSIMILATION

= Coupling simulations and measurements $y$



## LOCATION UNCERTAINTY MODELS (LUM)

$v=w+v^{\prime}$
Resolved fluid velocity: $w=\sum_{i=0}^{n} b_{i} \phi_{i}$

Unresolved fluid velocity:
$v^{\prime}=\sigma \dot{B}$

## LOCATION UNCERTAINTY MODELS (LUM)

$\qquad$
$v=w+v^{\prime}$
Resolved fluid velocity:
$w=\sum_{i=0}^{n} b_{i} \phi_{i}$
Unresolved fluid velocity:
$v^{\prime}=\sigma \dot{B}$


## LOCATION UNCERTAINTY MODELS (LUM)

$$
v=w+v^{\prime}
$$

Resolved fluid velocity:
$w=\sum_{i=0}^{n} b_{i} \phi_{i}$

$$
w=\sum_{i=0}^{n} b_{i} \phi_{i}
$$

Unresolved fluid velocity:
$v^{\prime}=\sigma \dot{B}$


Mikulevicius \&
References:
Rozovskii, 2004
Flandoli, 2011


Memin, 2014
Resseguier et al. 2017 a, b, c, d Cai et al. 2017
Chapron et al. 2018
Yang \& Memin 2019

SALT
Crisan et al., 2017 Gay-Balmaz \& Holm 2017 Cotter and al. 2018 a, b Cotter and al. 2019

## LOCATION UNCERTAINTY MODELS (LUM)

$$
v=w+v^{\prime}
$$

Resolved fluid velocity:
$w=\sum_{i=0}^{n} b_{i} \phi_{i}$

$$
w=\sum_{i=0}^{n} b_{i} \phi_{i}
$$

Unresolved fluid velocity:
$v^{\prime}=\sigma \dot{B}$


Memin, 2014
Resseguier et al. 2017 a, b, c, d Cai et al. 2017
Chapron et al. 2018
Yang \& Memin 2019

## SALT

Crisan et al., 2017 Gay-Balmaz \& Holm 2017 Cotter and al. 2018 a, b Cotter and al. 2019

Resolved fluid velocity:

Unresolved fluid velocity: $v^{\prime}=\sigma \dot{B}$ (Gaussian, white wrt $\left.t\right)$

## LOCATION UNCERTAINTY MODELS (LUM), Randomized Navier-Stokes

FCALIAN
Symmetric negative


From Ito-Wentzell formula (Kunita 1990) with Ito notations

## REDUCED LUM (RED LUM) <br> POD-Galerkin gives SDEs for resolved modes

Full order : $M \sim 10^{7}$
$v=w+v^{\prime}$

Resolved fluid velocity: $w(x, t)=\sum_{i=0}^{n} b_{i}(t) \phi_{i}(x)$

Unresolved fluid velocity: $v^{\prime}=\sigma B$ (Gaussian, white wrt $\left.t\right)$

$$
\int_{\Omega} \phi_{i}(x) \cdot\left(\partial_{t} w+C(w, w)+F(w)+C(\sigma \dot{B}, w)=F\right) d x
$$

$\qquad$

## REDUCED LUM (RED LUM) <br> POD-Galerkin gives SDEs for resolved modes

Full order : $M \sim 10^{7}$
Reduced order: $n \sim 10$
$v=w+v^{\prime}$

Resolved fluid velocity:
$w(x, t)=\sum_{i=0}^{n} b_{i}(t) \phi_{i}(x)$
Unresolved fluid velocity:
$v^{\prime}=\sigma B$ (Gaussian, white wrt $\left.t\right)$

$$
\int_{\Omega} \phi_{i}(x) \cdot\left(\partial_{t} w+C(w, w)+F(w)+C(\sigma \dot{B}, w)=F\right) d x
$$

_

## REDUCED LUM (RED LUM) <br> POD-Galerkin gives SDEs for resolved modes

Full order : $M \sim 10^{7}$
Reduced order: $n \sim 10$
$v=w+v^{\prime}$

Resolved fluid velocity: $w(x, t)=\sum_{i=0}^{n} b_{i}(t) \phi_{i}(x)$

Unresolved fluid velocity: $v^{\prime}=\sigma B$ (Gaussian, white wrt $t$ )


## REDUCED LUM (RED LUM) <br> POD-Galerkin gives SDEs for resolved modes

Full order : $M \sim 10^{7}$
Reduced order: $n \sim 10$
$v=w+v^{\prime}$
Resolved fluid velocity: $w(x, t)=\sum_{i=0}^{n} b_{i}(t) \phi_{i}(x)$

Unresolved fluid velocity: $v^{\prime}=\sigma B$ (Gaussian, white wrt $t$ )

$2^{\text {nd }}$ order polynomial

## REDUCED LUM (RED LUM) <br> POD-Galerkin gives SDEs for resolved modes

Full order : $M \sim 10^{7}$
Reduced order: $n \sim 10$
$v=w+v^{\prime}$
Resolved fluid velocity: $w(x, t)=\sum_{i=0}^{n} b_{i}(t) \phi_{i}(x)$

Unresolved fluid velocity: $v^{\prime}=\sigma B$ (Gaussian, white wrt $t$ )

$2^{\text {nd }}$ order polynomial

## REDUCED LUM (RED LUM) <br> POD-Galerkin gives SDEs for resolved modes

Full order : $M \sim 10^{7}$
Reduced order : $n \sim 10$
$v=w+v^{\prime}$
Resolved fluid velocity: $w(x, t)=\sum_{i=0}^{n} b_{i}(t) \phi_{i}(x)$

Unresolved fluid velocity: $v^{\prime}=\sigma B$ (Gaussian, white wrt $t$ )

$2^{\text {nd }}$ order polynomial

$$
K_{j q}[\xi]=-\int_{\Omega} \phi_{j} \cdot C\left(\xi, \phi_{q}\right)
$$

## REDUCED LUM (RED LUM) <br> POD-Galerkin gives SDEs for resolved modes

$v=w+v^{\prime}$
Resolved fluid velocity: $w(x, t)=\sum_{i=0}^{n} b_{i}(t) \phi_{i}(x)$

Unresolved fluid velocity:
$v^{\prime}=\frac{\sigma d B_{t}}{d t} \quad($ Gaussian, white wrt $t)$
Variance tensor:
$a(x, x)=\frac{\mathbb{E}\left\{\left(\sigma d B_{t}\right)\left(\sigma d B_{t}\right)^{T}\right\}}{d t}$

$$
\int_{\Omega} \phi_{i}(x) \cdot\left(\partial_{t} w+C(w, w)+F(w)+C(\sigma \dot{B}, w)=F\right) d x
$$

$$
\frac{d}{d t} b(t)=H(b(t))+K(\sigma \dot{B}) b(t)
$$

$$
K_{j q}[\xi]=-\int_{\Omega} \phi_{j} \cdot C\left(\xi, \phi_{q}\right)
$$

## REDUCED LUM (RED LUM) <br> POD-Galerkin gives SDEs for resolved modes

$v=w+v^{\prime}$
Resolved fluid velocity: $w(x, t)=\sum_{i=0}^{n} b_{i}(t) \phi_{i}(x)$

Unresolved fluid velocity:
$v^{\prime}=\frac{\sigma d B_{t}}{d t}$ (Gaussian, white wrt $t$ )
Variance tensor:

$$
a(x, x)=\frac{\mathbb{E}\left\{\left(\sigma d B_{t}\right)\left(\sigma d B_{t}\right)^{T}\right\}}{d t}
$$

$$
\int_{\Omega} \phi_{i}(x) \cdot\left(\partial_{t} w+C(w, w)+F(w)+C(\sigma \dot{B}, w)=F\right) d x
$$

$$
\frac{d}{d t} b(t)=H(b(t))+K(\sigma \dot{B}) b(t)
$$


$2^{\text {nd }}$ order polynomial
Coefficients given by :

- Randomized Navier-Stokes
- $\left(\phi_{j}\right)_{j}$
- $a(x) \approx \Delta t \overline{v^{\prime}\left(v^{\prime}\right)^{T}}$

$$
\bar{f}=\frac{1}{T} \int_{0}^{T} f
$$

$$
K_{j q}[\xi]=-\int_{\Omega} \phi_{j} \cdot C\left(\xi, \phi_{q}\right)
$$

## REDUCED LUM (RED LUM) <br> POD-Galerkin gives SDEs for resolved modes

$v=w+v^{\prime}$
Resolved fluid velocity: $w(x, t)=\sum_{i=0}^{n} b_{i}(t) \phi_{i}(x)$

Unresolved fluid velocity: $v^{\prime}=\frac{\sigma d B_{t}}{d t} \quad($ Gaussian, white wrt $t)$

Variance tensor:

$$
a(x, x)=\frac{\mathbb{E}\left\{\left(\sigma d B_{t}\right)\left(\sigma d B_{t}\right)^{T}\right\}}{d t}
$$

$$
\int_{\Omega} \phi_{i}(x) \cdot\left(\partial_{t} w+C(w, w)+F(w)+C(\sigma \dot{B}, w)=F\right) d x
$$

$$
\frac{d}{d t} b(t)=H(b(t))+K(\sigma \dot{B}) b(t)
$$


$2^{\text {nd }}$ order polynomial

Coefficients given by

- Randomized Navier-Stokes

- $\left(\phi_{j}\right)_{j}$
- $a(x) \approx \Delta t \overline{v^{\prime}\left(v^{\prime}\right)^{T}}$

$$
\bar{f}=\frac{1}{T} \int_{0}^{T} f
$$

$K_{j q}[\xi]=-\int_{\Omega} \phi_{j} \cdot C\left(\xi, \phi_{q}\right)$

## REDUCED LUM (RED LUM) <br> POD-Galerkin gives SDEs for resolved modes

$v=w+v^{\prime}$
Resolved fluid velocity: $w(x, t)=\sum_{i=0}^{n} b_{i}(t) \phi_{i}(x)$

Unresolved fluid velocity:
$v^{\prime}=\frac{\sigma d B_{t}}{d t}$ (Gaussian, white wrt $t$ )
Variance tensor:

$$
a(x, x)=\frac{\mathbb{E}\left\{\left(\sigma d B_{t}\right)\left(\sigma d B_{t}\right)^{T}\right\}}{d t}
$$

$$
\int_{\Omega} \phi_{i}(x) \cdot\left(\partial_{t} w+C(w, w)+F(w)+C(\sigma \dot{B}, w)=F\right) d x
$$

$$
\frac{d}{d t} b(t)=H(b(t))+K(\sigma \dot{B}) b(t)
$$


$2^{\text {nd }}$ order polynomial

Coefficients given by :

- Randomized Navier-Stokes


$$
\bar{f}=\frac{1}{T} \int_{0}^{T} f
$$

$$
K_{j q}[\xi]=-\int_{\Omega} \phi_{j} \cdot C\left(\xi, \phi_{q}\right)
$$

## REDUCED LUM (RED LUM) <br> POD-Galerkin gives SDEs for resolved modes

$v=w+v^{\prime}$

Resolved fluid velocity: $w(x, t)=\sum_{i=0}^{n} b_{i}(t) \phi_{i}(x)$

Unresolved fluid velocity:
$v^{\prime}=\frac{\sigma d B_{t}}{d t} \quad$ (Gaussian, white wrt $t$ )

Variance tensor:

$$
a(x, x)=\frac{\mathbb{E}\left\{\left(\sigma d B_{t}\right)\left(\sigma d B_{t}\right)^{T}\right\}}{d t}
$$

$$
\int_{\Omega} \phi_{i}(x) \cdot\left(\partial_{t} w+C(w, w)+F(w)+C(\sigma \dot{B}, w)=F\right) d x
$$

$$
\frac{d}{d t} b(t)=H(b(t))+K(\sigma \dot{B}) b(t)
$$


$2^{\text {nd }}$ order polynomial

Coefficients given by :

- Randomized Navier-Stokes


$$
\bar{f}=\frac{1}{T} \int_{0}^{T} f
$$

$K_{j q}[\xi]=-\int_{\Omega} \phi_{j} \cdot C\left(\xi, \phi_{q}\right)$

## REDUCED LUM (RED LUM) <br> POD-Galerkin gives SDEs for resolved modes

$v=w+v^{\prime}$

Resolved fluid velocity: $w(x, t)=\sum_{i=0}^{n} b_{i}(t) \phi_{i}(x)$

Unresolved fluid velocity: $v^{\prime}=\frac{\sigma d B_{t}}{d t} \quad$ (Gaussian, white wrt $t$ )

Variance tensor:

$$
a(x, x)=\frac{\mathbb{E}\left\{\left(\sigma d B_{t}\right)\left(\sigma d B_{t}\right)^{T}\right\}}{d t}
$$

$$
\int_{\Omega} \phi_{i}(x) \cdot\left(\partial_{t} w+C(w, w)+F(w)+C(\sigma \dot{B}, w)=F\right) d x
$$

$$
\frac{d}{d t} b(t)=H(b(t))+K(\sigma \dot{B}) b(t)
$$



Coefficients given by :

- Randomized Navier-Stokes


$$
\bar{f}=\frac{1}{T} \int_{0}^{T} f
$$

$K_{j q}[\xi]=-\int_{\Omega} \phi_{j} \cdot C\left(\xi, \phi_{q}\right)$

## REDUCED LUM (RED LUM) <br> POD-Galerkin gives SDEs for resolved modes

$v=w+v^{\prime}$

Resolved fluid velocity: $w(x, t)=\sum_{i=0}^{n} b_{i}(t) \phi_{i}(x)$

Unresolved fluid velocity: $v^{\prime}=\frac{\sigma d B_{t}}{d t} \quad$ (Gaussian, white wrt $t$ )

Variance tensor:

$$
a(x, x)=\frac{\mathbb{E}\left\{\left(\sigma d B_{t}\right)\left(\sigma d B_{t}\right)^{T}\right\}}{d t}
$$

$$
\int_{\Omega} \phi_{i}(x) \cdot\left(\partial_{t} w+C(w, w)+F(w)+C(\sigma \dot{B}, w)=F\right) d x
$$

$$
\frac{d}{d t} b(t)=H(b(t))+K(\sigma \overline{K B}) \quad b(t)
$$


Mu|tiplicative skew-symmetric noise
$2^{\text {nd }}$ order polynomial

Coefficients given by :

- Randomized Navier-Stokes


$$
\bar{f}=\frac{1}{T} \int_{0}^{T} f
$$

$K_{j q}[\xi]=-\int_{\Omega} \phi_{j} \cdot C\left(\xi, \phi_{q}\right)$

## REDUCED LUM (RED LUM) <br> POD-Galerkin gives SDEs for resolved modes

Full order : $M \sim 10^{7}$ Reduced order : $n \sim 10$
$v=w+v^{\prime}$
Resolved fluid velocity: $w(x, t)=\sum_{i=0}^{n} b_{i}(t) \phi_{i}(x)$

Unresolved fluid velocity:
$v^{\prime}=\frac{\sigma d B_{t}}{d t}$
Variance tensor:

$$
a(x, x)=\frac{\mathbb{E}\left\{\left(\sigma d B_{t}\right)\left(\sigma d B_{t}\right)^{T}\right\}}{d t}
$$

$$
\int_{\Omega} \phi_{i}(x) \cdot\left(\partial_{t} w+C(w, w)+F(w)+C(\sigma \dot{B}, w)=F\right) d x
$$

$$
\frac{d}{d t} b(t)=H(b(t))+K(\sigma \dot{B})^{(n+1) \times(n+1)} b(t)
$$

 Mu|tiplicative skew-symmetric noise
$2^{\text {nd }}$ order polynomial

Coefficients given by :

- Randomized Navier-Stokes


$$
\bar{f}=\frac{1}{T} \int_{0}^{T} f
$$

$$
K_{j q}[\xi]=-\int_{\Omega} \phi_{j} \cdot C\left(\xi, \phi_{q}\right)
$$

## REDUCED LUM (RED LUM) POD-Galerkin gives SDEs for resolved modes

Full order : $M \sim 10^{7}$ Reduced order : $n \sim 10$
$v=w+v^{\prime}$
Resolved fluid velocity: $w(x, t)=\sum_{i=0}^{n} b_{i}(t) \phi_{i}(x)$

Unresolved fluid velocity:
$v^{\prime}=\frac{\sigma d B_{t}}{d t}$
Variance tensor:

$$
a(x, x)=\frac{\mathbb{E}\left\{\left(\sigma d B_{t}\right)\left(\sigma d B_{t}\right)^{T}\right\}}{d t}
$$

$$
\int_{\Omega} \phi_{i}(x) \cdot\left(\partial_{t} w+C(w, w)+F(w)+C(\sigma \dot{B}, w)=F\right) d x
$$

$$
\frac{d}{d t} b(t)=H(b(t))+K(\sigma \dot{B})^{(n+1) \times(n+1)} b(t)
$$


$2^{\text {nd }}$ order polynomial

Coefficients given by :

- Randomized Navier-Stokes


$$
\bar{f}=\frac{1}{T} \int_{0}^{T} f
$$

$$
K_{j q}[\xi]=-\int_{\Omega} \phi_{j} \cdot C\left(\xi, \phi_{q}\right)
$$

## REDUCED LUM (RED LUM) <br> POD-Galerkin gives SDEs for resolved modes

Full order : $M \sim 10^{7}$
Reduced order: $n \sim 10$
$v=w+v^{\prime}$

Resolved fluid velocity: $w(x, t)=\sum_{i=0}^{n} b_{i}(t) \phi_{i}(x)$

Unresolved fluid velocity:
$v^{\prime}=\frac{\sigma d B_{t}}{d t}$
Variance tensor:

$$
a(x, x)=\frac{\mathbb{E}\left\{\left(\sigma d B_{t}\right)\left(\sigma d B_{t}\right)^{T}\right\}}{d t}
$$

$$
\int_{\Omega} \phi_{i}(x) \cdot\left(\partial_{t} w+C(w, w)+F(w)+C(\sigma \dot{B}, w)=F\right) d x
$$

$$
\frac{d}{d t} b(t)=H(b(t))+K(\sigma \dot{B})^{(n+1) \times(n+1)} b(t)
$$


$2^{\text {nd }}$ order polynomial $\quad \mathbb{E}\left(K_{j q}\left(\sigma d B_{t}\right) K_{i p}\left(\sigma d B_{t}\right)\right) / d t \approx \Delta t K_{j q}\left[\overline{\overline{b_{p}} \frac{\Delta b_{i}}{\Delta t} v^{\prime}}\right]$
Coefficients given by :

- Randomized Navier-Stokes


$$
\bar{f}=\frac{1}{T} \int_{0}^{T} f
$$

$$
K_{j q}[\xi]=-\int_{\Omega} \phi_{j} \cdot C\left(\xi, \phi_{q}\right)
$$

## REDUCED LUM (RED LUM) <br> POD-Galerkin gives SDEs for resolved modes

Full order : $M \sim 10^{7}$
Reduced order: $n \sim 10$
$v=w+v^{\prime}$

Resolved fluid velocity: $w(x, t)=\sum_{i=0}^{n} b_{i}(t) \phi_{i}(x)$

Unresolved fluid velocity:
$v^{\prime}=\frac{\sigma d B_{t}}{d t}$
Variance tensor:

$$
a(x, x)=\frac{\mathbb{E}\left\{\left(\sigma d B_{t}\right)\left(\sigma d B_{t}\right)^{T}\right\}}{d t}
$$

$$
\int_{\Omega} \phi_{i}(x) \cdot\left(\partial_{t} w+C(w, w)+F(w)+C(\sigma \dot{B}, w)=F\right) d x
$$

$$
\frac{d}{d t} b(t)=H(b(t))+K(\sigma \dot{B})^{(n+1) \times(n+1)} b(t)
$$


$2^{\text {nd }}$ order polynomial

Coefficients given by :

- Randomized Navier-Stokes
- $\left(\phi_{j}\right)_{j}$
- $a(x) \approx \Delta t \overline{v^{\prime}\left(v^{\prime}\right)^{T}}$


$$
\bar{f}=\frac{1}{T} \int_{0}^{T} f
$$

$$
K_{j q}[\xi]=-\int_{\Omega} \phi_{j} \cdot C\left(\xi, \phi_{q}\right)
$$

## REDUCED LUM (RED LUM) <br> POD-Galerkin gives SDEs for resolved modes

Full order : $M \sim 10^{7}$
Reduced order: $n \sim 10$
$v=w+v^{\prime}$

Resolved fluid velocity: $w(x, t)=\sum_{i=0}^{n} b_{i}(t) \phi_{i}(x)$

Unresolved fluid velocity:
$v^{\prime}=\frac{\sigma d B_{t}}{d t}$
Variance tensor:

$$
a(x, x)=\frac{\mathbb{E}\left\{\left(\sigma d B_{t}\right)\left(\sigma d B_{t}\right)^{T}\right\}}{d t}
$$

$$
\int_{\Omega} \phi_{i}(x) \cdot\left(\partial_{t} w+C(w, w)+F(w)+C(\sigma \dot{B}, w)=F\right) d x
$$

$$
\frac{d}{d t} b(t)=H(b(t))+K(\sigma \dot{B})^{(n+1) \times(n+1)} b(t)
$$


$2^{\text {nd }}$ order polynomial

Coefficients given by :

- Randomized Navier-Stokes
- $\left(\phi_{j}\right)_{j}$
- $a(x) \approx \Delta t \overline{v^{\prime}\left(v^{\prime}\right)^{T}}$


$$
\bar{f}=\frac{1}{T} \int_{0}^{T} f
$$

[^0]
## REDUCED LUM (RED LUM) <br> POD-Galerkin gives SDEs for resolved modes

Full order : $M \sim 10^{7}$
Reduced order : $n \sim 10$
$v=w+v^{\prime}$

Resolved fluid velocity: $w(x, t)=\sum_{i=0}^{n} b_{i}(t) \phi_{i}(x)$

Unresolved fluid velocity:
$v^{\prime}=\frac{\sigma d B_{t}}{d t}$
Variance tensor:

$$
a(x, x)=\frac{\mathbb{E}\left\{\left(\sigma d B_{t}\right)\left(\sigma d B_{t}\right)^{T}\right\}}{d t}
$$

$$
\int_{\Omega} \phi_{i}(x) \cdot\left(\partial_{t} w+C(w, w)+F(w)+C(\sigma \dot{B}, w)=F\right) d x
$$

$$
\frac{d}{d t} b(t)=H(b(t))+K(\sigma \dot{B})^{(n+1) \times(n+1)} b(t)
$$


$2^{\text {nd }}$ order polynomial

Coefficients given by:

- Randomized Navier-Stokes
- $\left(\phi_{j}\right)_{j}$
- $a(x) \approx \Delta t \overline{v^{\prime}\left(v^{\prime}\right)^{T}}$

$$
\bar{f}=\frac{1}{T} \int_{0}^{T} f
$$



## REDUCED LUM (RED LUM) <br> POD-Galerkin gives SDEs for resolved modes

Full order : $M \sim 10^{7}$
Reduced order : $n \sim 10$
$v=w+v^{\prime}$

Resolved fluid velocity: $w(x, t)=\sum_{i=0}^{n} b_{i}(t) \phi_{i}(x)$

Unresolved fluid velocity:
$v^{\prime}=\frac{\sigma d B_{t}}{d t}$
(Gaussian, white wrt $t$ )

Variance tensor:

$$
a(x, x)=\frac{\mathbb{E}\left\{\left(\sigma d B_{t}\right)\left(\sigma d B_{t}\right)^{T}\right\}}{d t}
$$

$$
\int_{\Omega} \phi_{i}(x) \cdot\left(\partial_{t} w+C(w, w)+F(w)+C(\sigma \dot{B}, w)=F\right) d x
$$

$$
\frac{d}{d t} b(t)=H(b(t))+K(\sigma \dot{B})^{(n+1) \times(n+1)} b(t)
$$


$2^{\text {nd }}$ order polynomial
Coefficients given by :

- Randomized Navier-Stokes
- $\left(\phi_{j}\right)_{j}$
- $a(x) \approx \Delta t \overline{v^{\prime}\left(v^{\prime}\right)^{T}}$

$$
\bar{f}=\frac{1}{T} \int_{0}^{T} f
$$



## REDUCED LUM (RED LUM) <br> POD-Galerkin gives SDEs for resolved modes

Full order: $M \sim 10^{7}$
Reduced order: $n \sim 10$
$v=w+v^{\prime}$
Resolved fluid velocity:

$$
w(x, t)=\sum_{i=0}^{n} b_{i}(t) \phi_{i}(x)
$$

Unresolved fluid velocity:
$v^{\prime}=\frac{\sigma d B_{t}}{d t}$
(Gaussian, white wrt $t$ )
Variance tensor:

$$
a(x, x)=\frac{\mathbb{E}\left\{\left(\sigma d B_{t}\right)\left(\sigma d B_{t}\right)^{T}\right\}}{d t}
$$

$$
\int_{\Omega} \phi_{i}(x) \cdot\left(\partial_{t} w+C(w, w)+F(w)+C(\sigma \dot{B}, w)=F\right) d x
$$

$$
(n+1) x(n+1)
$$

$$
n \times 1
$$

$$
\frac{d}{d t} b(t)=H(b(t))+K(\sigma \dot{B})^{M \times 1} b(t)
$$


$2^{\text {nd }}$ order polynomial

Coefficients given by :

- Randomized Navier-Stokes
- $\left(\phi_{j}\right)_{j}$
- $a(x) \approx \Delta t \overline{v^{\prime}\left(v^{\prime}\right)^{T}}$

$$
\bar{f}=\frac{1}{T} \int_{0}^{T} f
$$

Multiplicative skew-symmetric noise

## New estimator

- Consistency proven $(\Delta t \rightarrow 0)$
- Numerically efficient
- Physically-based
$\rightarrow$ Robustness in extrapolation Covariance to estimate

$\mathbb{E}\left(K_{j q}\left(\sigma d B_{t}\right) K_{i p}\left(\sigma d B_{t}\right)\right) / d t \approx \Delta t K_{j q}\left[\overline{\overline{b_{p}}} \overline{\overline{b_{p}^{2}}} \frac{\Delta b_{i}}{\Delta t} v^{\prime}\right]$
rese


## SUMMARY

## Stochastic ROM + Data assimilation



## On-line :

## Simulation \& data assimilation



Resseguier et al. (2022). J Comp.Phys . hal-03445455

## SUMMARY

## Stochastic ROM + Data assimilation



## SUMMARY

## Stochastic ROM + Data assimilation




## PART III

## NUMERICAL RESULTS

a. Test cases
b. Data
assimilation

## TEST CASES



## DATA ASSIMILATION

On-line estimation of the solution

DATA ASSIMILATION
On-line estimation of the solution

From $10^{7}$ to 8 degrees of freedom
Single measurement point (blurred \& noisy velocity)


## DATA ASSIMILATION

On-line estimation of the solution


## Reference

PCA-projection of the
"true" simulation
(DNS)

From $10^{7}$ to 4 degrees of freedom
Single measurement point (blurred \& noisy velocity)
(Optimal from 4degrees of freedom linear decomposition)

Our method : Data assimilation with POD-Galerkin of randomized
Navier-Stokes
(LUM)

## DATA ASSIMILATION

On-line estimation of the solution


Reference:
PCA-projection of the "true" simulation (DNS)
(Optimal from 4degrees of freedom linear decomposition)


Our method : Data assimilation with POD-Galerkin of randomized Navier-Stokes
(LUM)


## CONCLUSION

## CONCLUSION

- Intrusive ROM : for very fast and robust CFD ( $10^{7} \rightarrow 8$ degrees of freedom.)
- Closure problem handled by LUM
- Efficient estimator for the multiplicative noise

- Efficient generation of prior / Model error quantification
- Now implemented in ITHACA-FV
- Data assimilation (Bayesian inverse problem) :
to correct the fast simulation on-line by incomplete/noisy measurements
- First results
- Optimal unsteady flow estimation/prediction in the whole spatial domain (large-scale structures)
- Robust far outside the training set


## NEXT STEPS

- Real measurements
- Parametric ROM (unknown inflow)
- Increasing Reynolds
(ROM of (non-polynomial) turbulence models)


BONUS SLIDES

## CONTEXT

Observer for wind turbine application

## Application: Real-time estimation and prediction of 3D fluid flow

 using strongly-limited computational resources \& few sensors

## CONTEXT

Observer for wind turbine application

## Application: Real-time estimation and prediction of 3D fluid flow

 using strongly-limited computational resources \& few sensors

## CONTEXT

Observer for wind turbine application
Application: Real-time estimation and prediction of 3D fluid flow using strongly-limited computational resources \& few sensors


## CONTEXT

Observer for wind turbine application
Application: Real-time estimation and prediction of 3D fluid flow using strongly-limited computational resources \& few sensors


Few sensors

## CONTEXT

Observer for wind turbine application
Application: Real-time estimation and prediction of 3D fluid flow using strongly-limited computational resources \& few sensors


Few sensors

## CONTEXT

Observer for wind turbine application
Application: Real-time estimation and prediction of 3D fluid flow using strongly-limited computational resources \& few sensors

## Estimation and prediction:

- Air flow
- Lift, drag, inflow
- ...

- Blade pitch
- Fluidic


Wind luctuations


Few sensors

Which simple model? How to combine model \& measurements?

## CONTEXT

Observer for wind turbine application
Application: Real-time estimation and prediction of 3D fluid flow using strongly-limited computational resources \& few sensors

Estimation and prediction:

- Air flow
- Lift, drag, inflow
- ...


Few sensors

Which simple model? How to combine model \& measurements?

## Scientific problem :

Simulation \& data assimilation under severe dimensional reduction

## LOCATION UNCERTAINTY MODELS (LUM), <br> Randomized Navier-Stokes

$v=w+v^{\prime}$
Resolved fluid velocity: w

Unresolved fluid velocity: $v^{\prime}=\frac{\sigma d B_{t}}{d t} \quad$ Gaussian, white wrt $\left.t\right)$ (assuming $\nabla \cdot w=0$ and $\nabla \cdot v^{\prime}=0$ )

## Momentum conservation

## $\frac{\mathrm{d}}{\mathrm{dt}}\left(W\left(t, X_{t}\right)\right)=F_{\text {(Forces) }}$

Positions of fluid parcels $X_{t}$ :

$$
\frac{d}{d t} X_{t}=w\left(t, X_{t}\right)+\underbrace{\sigma\left(t, X_{t}\right) \frac{d B_{t}}{d t}}
$$

Gaussian
process
white in time

## LOCATION UNCERTAINTY MODELS (LUM), Randomized Navier-Stokes

$$
v=w+v^{\prime}
$$

Resolved fluid velocity:

Unresolved fluid velocity:
$v^{\prime}=\sigma \dot{B}$ (Gaussian, white wrt $\left.t\right)$

$$
\partial_{t} w+w^{*} \cdot \nabla w+\sigma \dot{B} \cdot \nabla w-\nabla \cdot\left(\frac{1}{2} a \nabla w\right)=F
$$

From Ito-Wentzell
formula (Kunita 1990)
with Ito notations
$\left(\operatorname{assuming} \nabla \cdot w=0\right.$ and $\left.\nabla \cdot v^{\prime}=0\right)$
Variance tensor:
$a(x, x)=\frac{\mathbb{E}\left\{\left(\sigma d B_{t}\right)\left(\sigma d B_{t}\right)^{T}\right\}}{d t}$

## LOCATION UNCERTAINTY MODELS (LUM), Randomized Navier-Stokes

$$
v=w+v^{\prime}
$$

Resolved fluid velocity: w

Unresolved fluid velocity: $v^{\prime}=\sigma \dot{B}$ (Gaussian, white wrt $\left.t\right)$
(assuming $\nabla \cdot w=0$ and $\nabla \cdot v^{\prime}=0$ )
Variance tensor:
$a(x, x)=\frac{\mathbb{E}\left\{\left(\sigma d B_{t}\right)\left(\sigma d B_{t}\right)^{T}\right\}}{d t}$

From Ito-Wentzell
formula (Kunita 1990)
with Ito notations

$$
\partial_{t} w+\begin{gathered}
\text { Advection } \\
w^{*} \cdot \nabla w+\sigma \dot{B} \cdot \nabla w-\nabla \cdot\left(\frac{1}{2} a \nabla w\right)=F \\
\end{gathered}
$$



## LOCATION UNCERTAINTY MODELS (LUM), Randomized Navier-Stokes

$v=w+v^{\prime}$
Resolved fluid velocity: w

Unresolved fluid velocity: $v^{\prime}=\sigma \dot{B}$ (Gaussian, white wrt $\left.t\right)$
(assuming $\nabla \cdot w=0$ and $\nabla \cdot v^{\prime}=0$ )

Variance tensor:
$a(x, x)=\frac{\mathbb{E}\left\{\left(\sigma d B_{t}\right)\left(\sigma d B_{t}\right)^{T}\right\}}{d t}$

From Ito-Wentzell
formula (Kunita 1990)
with Ito notations

$\square$

## LOCATION UNCERTAINTY MODELS (LUM), Randomized Navier-Stokes

$$
v=w+v^{\prime}
$$

Resolved fluid velocity: w

Unresolved fluid velocity: $v^{\prime}=\sigma \dot{B}$ (Gaussian, white wrt $\left.t\right)$
$\left(\operatorname{assuming} \nabla \cdot w=0\right.$ and $\left.\nabla \cdot v^{\prime}=0\right)$
Variance tensor:
$a(x, x)=\frac{\mathbb{E}\left\{\left(\sigma d B_{t}\right)\left(\sigma d B_{t}\right)^{T}\right\}}{d t}$

From Ito-Wentzell
formula (Kunita 1990) with Ito notations


## LOCATION UNCERTAINTY MODELS (LUM), Randomized Navier-Stokes

$$
v=w+v^{\prime}
$$

Resolved fluid velocity:

Unresolved fluid velocity:
$v^{\prime}=\sigma \dot{B}$ (Gaussian, white wrt $\left.t\right)$
(assuming $\nabla \cdot w=0$ and $\nabla \cdot v^{\prime}=0$ )
Variance tensor:
$a(x, x)=\frac{\mathbb{E}\left\{\left(\sigma d B_{t}\right)\left(\sigma d B_{t}\right)^{T}\right\}}{d t}$


## LOCATION UNCERTAINTY MODELS (LUM), Randomized Navier-Stokes

$$
v=w+v^{\prime}
$$

Resolved fluid velocity:

Unresolved fluid velocity: $v^{\prime}=\sigma \dot{B}$ (Gaussian, white wrt $\left.t\right)$
(assuming $\nabla \cdot w=0$ and $\nabla \cdot v^{\prime}=0$ )
Variance tensor:

$$
a(x, x)=\frac{\mathbb{E}\left\{\left(\sigma d B_{t}\right)\left(\sigma d B_{t}\right)^{T}\right\}}{d t}
$$



## LOCATION UNCERTAINTY MODELS (LUM), Randomized Navier-Stokes

$$
v=w+v^{\prime}
$$

Resolved fluid velocity:

Unresolved fluid velocity:
$v^{\prime}=\sigma \dot{B}$ (Gaussian, white wrt $\left.t\right)$
(assuming $\nabla \cdot w=0$ and $\nabla \cdot v^{\prime}=0$ )
Variance tensor:
$a(x, x)=\frac{\mathbb{E}\left\{\left(\sigma d B_{t}\right)\left(\sigma d B_{t}\right)^{T}\right\}}{d t}$


## LOCATION UNCERTAINTY MODELS (LUM), Randomized Navier-Stokes

$$
v=w+v^{\prime}
$$

Resolved fluid velocity:

Unresolved fluid velocity: $v^{\prime}=\sigma \dot{B}$ (Gaussian, white wrt $\left.t\right)$
(assuming $\nabla \cdot w=0$ and $\left.\nabla \cdot v^{\prime}=0\right)$
Variance tensor:
$a(x, x)=\frac{\mathbb{E}\left\{\left(\sigma d B_{t}\right)\left(\sigma d B_{t}\right)^{T}\right\}}{d t}$


## LOCATION UNCERTAINTY MODELS (LUM), Randomized Navier-Stokes

$$
v=w+v^{\prime}
$$

Resolved fluid velocity:

Unresolved fluid velocity: $v^{\prime}=\sigma \dot{B}$ (Gaussian, white wrt $\left.t\right)$
(assuming $\nabla \cdot w=0$ and $\left.\nabla \cdot v^{\prime}=0\right)$
Variance tensor:
$a(x, x)=\frac{\mathbb{E}\left\{\left(\sigma d B_{t}\right)\left(\sigma d B_{t}\right)^{T}\right\}}{d t}$


## LOCATION UNCERTAINTY MODELS (LUM), Randomized Navier-Stokes

$$
v=w+v^{\prime}
$$

Resolved fluid velocity:

Unresolved fluid velocity: $v^{\prime}=\sigma \dot{B}$ (Gaussian, white wrt $\left.t\right)$
(assuming $\nabla \cdot w=0$ and $\nabla \cdot v^{\prime}=0$ )
Variance tensor:
$a(x, x)=\frac{\mathbb{E}\left\{\left(\sigma d B_{t}\right)\left(\sigma d B_{t}\right)^{T}\right\}}{d t}$


## REDUCED LUM (RED LUM) <br> Multiplicative noise covariance

Full order ( $\sim$ nb spatial grid points): $M \sim 10^{7}$
Reduced order: $n \sim 10$
Number of time steps : $N \sim 10^{4}$
$v=w+v^{\prime}$
Resolved fluid velocity:
$w(x, t)=\sum_{i=0}^{n} b_{i}(t) \phi_{i}(x)$
Unresolved fluid velocity:
$v^{\prime}=\frac{\sigma d B_{t}}{d t}$
(Gaussian, white wrt $t$ )

Randomized Navier-Stokes
PCA modes
PCA residual $v$
from synthetic data

$$
\bar{f}=\frac{1}{T} \int_{0}^{T} f
$$

$$
d b(t)=H(b(t)) d t+\underset{(\mathrm{n}+1) \times(\mathrm{n}+1)}{K\left(\sigma d B_{t}\right)} b(t) \text { with } K_{j q}[\xi]=-\int_{\Omega} \phi_{j} \cdot C\left(\xi, \phi_{q}\right)
$$

## - Curse of dimensionality

- Since $\sigma d B_{t}$ is white in time,

$$
\Sigma_{j q, i p}=\mathbb{E}\left(K_{j q}\left(\sigma d B_{t}\right) K_{i p}\left(\sigma d B_{t}\right)\right) / d t \approx \Delta t \overline{K_{j q}\left(v^{\prime}\right) K_{i p}\left(v^{\prime}\right)}
$$

## New estimator

- Consistency proven $(\Delta t \rightarrow 0)$
- Numerically efficient
- Physically-based
$\rightarrow$ Robustness in extrapolation
- $\quad K$ is a matrix of integro-differential operators $\rightarrow$ cannot be evaluated on $v^{\prime}(x, t)$ at every time $t$
- Covariance of $\sigma d B_{t} \approx \Delta t^{2} \overline{\left(v^{\prime}(x, t)\right)\left(v^{\prime}(y, t)\right)^{T}}: M \times M \sim 10^{13}$ coefficients $\rightarrow$ intractable


## REDUCED LUM (RED LUM) <br> Multiplicative noise covariance

Full order ( $\sim$ nb spatial grid points): $M \sim 10^{7}$
Reduced order: $n \sim 10$
Number of time steps : $N \sim 10^{4}$

$$
v=w+v^{\prime}
$$

Resolved fluid velocity:
$w(x, t)=\sum_{i=0}^{n} b_{i}(t) \phi_{i}(x)$
Unresolved fluid velocity:
$v^{\prime}=\frac{\sigma d B_{t}}{d t}$
(Gaussian, white wrt $t$ )

Randomized Navier-Stokes
PCA modes
PCA residual $v$
from synthetic data

$$
\bar{f}=\frac{1}{T} \int_{0}^{T} f
$$

## New estimator

- Consistency proven $(\Delta t \rightarrow 0)$
- Numerically efficient
- Physically-based
$\rightarrow$ Robustness in extrapolation
- $\quad K$ is a matrix of integro-differential operators $\rightarrow$ cannot be evaluated on $v^{\prime}(x, t)$ at every time $t$
- Covariance of $\sigma d B_{t} \approx \Delta t^{2} \overline{\left(v^{\prime}(x, t)\right)\left(v^{\prime}(y, t)\right)^{T}}: M \times M \sim 10^{13}$ coefficients $\rightarrow$ intractable
 requires only $O\left(n^{2} M\right)$ correlation estimations and $O\left(n^{2}\right)$ evaluations of $K$


## REDUCED LUM (RED LUM) <br> Multiplicative noise covariance

Full order ( $\sim$ nb spatial grid points): $M \sim 10^{7}$
Reduced order: $n \sim 10$
Number of time steps : $N \sim 10^{4}$
$v=w+v^{\prime}$
Resolved fluid velocity:
$w(x, t)=\sum_{i=0}^{n} b_{i}(t) \phi_{i}(x)$
Unresolved fluid velocity: $v^{\prime}=\frac{\sigma d B_{t}}{d t}$
(Gaussian, white wrt $t$ )

Randomized Navier-Stokes
PCA modes
PCA residual $v^{\prime}$
from synthetic data

$$
d b(t)=H(b(t)) d t+\underset{(\mathrm{n}+1) \times(\mathrm{n}+1)}{K\left(\sigma d B_{t}\right)} b(t) \text { with } K_{j q}[\xi]=-\int_{\Omega} \phi_{j} \cdot C\left(\xi, \phi_{q}\right)
$$

## - Curse of dimensionality

- Since $\sigma d B_{t}$ is white in time,

$$
\Sigma_{j q, i p}=\mathbb{E}\left(K_{j q}\left(\sigma d B_{t}\right) K_{i p}\left(\sigma d B_{t}\right)\right) / d t \approx \Delta t \overline{K_{j q}\left(v^{\prime}\right) K_{i p}\left(v^{\prime}\right)}
$$

## New estimator

- Consistency proven $(\Delta t \rightarrow 0)$
- Numerically efficient
- Physically-based
$\rightarrow$ Robustness in extrapolation
- $K$ is a matrix of integro-differential operators $\rightarrow$ cannot be evaluated on $v^{\prime}(x, t)$ at every time t
- Covariance of $\sigma d B_{t} \approx \Delta t^{2} \overline{\left(v^{\prime}(x, t)\right)\left(v^{\prime}(y, t)\right)^{T}}: M \times M \sim 10^{13}$ coefficients $\rightarrow$ intractable
- Efficient estimator $\Sigma_{j q, i p} \approx \Delta t K_{j q}\left[\frac{\overline{b_{p}}}{\overline{b_{p}^{2}}} \frac{\Delta b_{i}}{\Delta t} v^{\prime}\right] \quad$ (hybrid fitting \& physics-based) requires only $O\left(n^{2} M\right)$ correlation estimations and $O\left(n^{2}\right)$ evaluations of $K$
- Consistency of our estimator (convergence in probability for $\Delta t \rightarrow 0$, using stochastic calculus and continuity of K ) $\left.\left.\Delta t K_{j q}\left[\overline{b_{p} \frac{\Delta b_{i}}{\Delta t} v^{\prime}}\right]=\Delta t \overline{b_{p} \frac{\Delta b_{i}}{\Delta t} K_{j q}\left[v^{\prime}\right]} \approx \frac{1}{T} \int_{0}^{T} b_{p} d<b_{i}, K_{j q}(\sigma B)\right\rangle=\frac{1}{T} \int_{0}^{T} b_{p} \sum_{\mathrm{r}=0}^{\mathrm{n}} b_{r} d<K_{i r}(\sigma B), K_{j q}(\sigma B)\right\rangle=\sum_{\mathrm{r}=0}^{\mathrm{n}} \Sigma_{j q, i r} \overline{b_{p} b_{r}}=\Sigma_{j q, i p} \overline{b_{p}^{2}}$ (orthogonality from PCA)

$$
\bar{f}=\frac{1}{T} \int_{0}^{T} f
$$

## REDUCED LUM (RED LUM) <br> Multiplicative noise covariance

Full order ( $\sim$ nb spatial grid points): $M \sim 10^{7}$
Reduced order: $n \sim 10$
Number of time steps : $N \sim 10^{4}$

$$
v=w+v^{\prime}
$$

Resolved fluid velocity:
$w(x, t)=\sum_{i=0}^{n} b_{i}(t) \phi_{i}(x)$
Unresolved fluid velocity: $v^{\prime}=\frac{\sigma d B_{t}}{d t}$
(Gaussian, white wrt $t$ )

Randomized Navier-Stokes
PCA modes
PCA residual $v^{\prime}$
from synthetic data

$$
d b(t)=H(b(t)) d t+\underset{(\mathrm{n}+1) \times(\mathrm{n}+1)}{K\left(\sigma d B_{t}\right)} b(t) \text { with } K_{j q}[\xi]=-\int_{\Omega} \phi_{j} \cdot C\left(\xi, \phi_{q}\right)
$$

## - Curse of dimensionality

- Since $\sigma d B_{t}$ is white in time,

$$
\Sigma_{j q, i p}=\mathbb{E}\left(K_{j q}\left(\sigma d B_{t}\right) K_{i p}\left(\sigma d B_{t}\right)\right) / d t \approx \Delta t \overline{K_{j q}\left(v^{\prime}\right) K_{i p}\left(v^{\prime}\right)}
$$

## New estimator

- Consistency proven $(\Delta t \rightarrow 0)$
- Numerically efficient
- Physically-based
$\rightarrow$ Robustness in extrapolation
- $\quad K$ is a matrix of integro-differential operators $\rightarrow$ cannot be evaluated on $v^{\prime}(x, t)$ at every time $t$
- Covariance of $\sigma d B_{t} \approx \Delta t^{2} \overline{\left(v^{\prime}(x, t)\right)\left(v^{\prime}(y, t)\right)^{T}}: M \times M \sim 10^{13}$ coefficients $\rightarrow$ intractable
- Efficient estimator $\Sigma_{j q, i p} \approx \Delta t K_{j q}\left[\overline{\overline{b_{p}}} \overline{\overline{b_{p}^{2}}} \frac{\Delta b_{i}}{\Delta t} v^{\prime}\right] \quad$ (hybrid fitting \& physics-based) requires only $O\left(n^{2} M\right)$ correlation estimations and $O\left(n^{2}\right)$ evaluations of $K$
$\rightarrow$ Consistency of our estimator (convergence in probability for $\Delta t \rightarrow 0$, using stochastic calculus and continuity of K ) $\Delta t K_{j q}\left[\overline{b_{p} \frac{\Delta b_{i}}{\Delta t} v^{\prime}}\right]=\Delta t \overline{b_{p} \frac{\Delta b_{i}}{\Delta t} K_{j q}\left[v^{\prime}\right]} \approx \frac{1}{T} \int_{0}^{T} b_{p} d<b_{i}, K_{j q}(\sigma B)>=\frac{1}{T} \int_{0}^{T} b_{p} \sum_{\mathrm{r}=0}^{\mathrm{n}} b_{r} d<K_{i r}(\sigma B), K_{j q}(\sigma B)>=\sum_{\mathrm{r}=0}^{\mathrm{n}} \sum_{j q, i r} \overline{b_{p} b_{r}}=\sum_{j q, i p} \overline{b_{p}^{2}}$ (orthogonality from PCA)
- Optimal time subsampling at $\Delta t$ needed to meet the white assumption

$$
\bar{f}=\frac{1}{T} \int_{0}^{T} f
$$

## REDUCED LUM (RED LUM) <br> Multiplicative noise covariance

Full order ( $\sim$ nb spatial grid points): $M \sim 10^{7}$
Reduced order: $n \sim 10$
Number of time steps : $N \sim 10^{4}$
$v=w+v^{\prime}$
Resolved fluid velocity:
$w(x, t)=\sum_{i=0}^{n} b_{i}(t) \phi_{i}(x)$
Unresolved fluid velocity: $v^{\prime}=\frac{\sigma d B_{t}}{d t}$
(Gaussian, white wrt $t$ )

Randomized Navier-Stokes
PCA modes
PCA residual $v^{\prime}$
from synthetic data

$$
\bar{f}=\frac{1}{T} \int_{0}^{T} f
$$

$$
d b(t)=H(b(t)) d t+\underset{(\mathrm{n}+1) \times(\mathrm{n}+1)}{K\left(\sigma d B_{t}\right)} b(t) \text { with } K_{j q}[\xi]=-\int_{\Omega} \phi_{j} \cdot C\left(\xi, \phi_{q}\right)
$$

## - Curse of dimensionality

- Since $\sigma d B_{t}$ is white in time,

$$
\Sigma_{j q, i p}=\mathbb{E}\left(K_{j q}\left(\sigma d B_{t}\right) K_{i p}\left(\sigma d B_{t}\right)\right) / d t \approx \Delta t \overline{K_{j q}\left(v^{\prime}\right) K_{i p}\left(v^{\prime}\right)}
$$

## New estimator

- Consistency proven $(\Delta t \rightarrow 0)$
- Numerically efficient
- Physically-based
$\rightarrow$ Robustness in extrapolation
- $\quad K$ is a matrix of integro-differential operators $\rightarrow$ cannot be evaluated on $v^{\prime}(x, t)$ at every time $t$
- Covariance of $\sigma d B_{t} \approx \Delta t^{2} \overline{\left(v^{\prime}(x, t)\right)\left(v^{\prime}(y, t)\right)^{T}}: M \times M \sim 10^{13}$ coefficients $\rightarrow$ intractable
- Efficient estimator $\Sigma_{j q, i p} \approx \Delta t K_{j q}\left[\overline{\overline{b_{p}}} \overline{\overline{b_{p}^{2}}} \frac{\Delta b_{i}}{\Delta t} v^{\prime}\right] \quad$ (hybrid fitting \& physics-based) requires only $O\left(n^{2} M\right)$ correlation estimations and $O\left(n^{2}\right)$ evaluations of $K$
- Consistency of our estimator (convergence in probability for $\Delta t \rightarrow 0$, using stochastic calculus and continuity of $K$ ) $\Delta t K_{j q}\left[\overline{b_{p} \frac{\Delta b_{i}}{\Delta t} v^{\prime}}\right]=\Delta t \overline{b_{p} \frac{\Delta b_{i}}{\Delta t} K_{j q}\left[v^{\prime}\right]} \approx \frac{1}{T} \int_{0}^{T} b_{p} d<b_{i}, K_{j q}(\sigma B)>=\frac{1}{T} \int_{0}^{T} b_{p} \sum_{\mathrm{r}=0}^{\mathrm{n}} b_{r} d<K_{i r}(\sigma B), K_{j q}(\sigma B)>=\sum_{\mathrm{r}=0}^{\mathrm{n}} \sum_{j q, i r} \overline{b_{p} b_{r}}=\sum_{j q, i p} \overline{b_{p}^{2}}$ (orthogonality from PCA)
- Optimal time subsampling at $\Delta t$ needed to meet the white assumption
- Additional reduction for efficient sampling :
diagonalization of $\Sigma \rightarrow K\left(\sigma d B_{t}\right) \approx \alpha\left(d \beta_{t}\right)$ with a n -dimensional (instead of $(\mathrm{n}+1)^{2}$-dimensional) Brownian motion $\beta$


# UNCERTAINTY QUANTIFICATION (PRIOR) <br> $b_{i}(t) \vee S$ reference 

From $10^{7}$ to 8 degrees of freedom
No data assimilation
Known initial conditions $b(t=0)$

Reference
(full-order simulation)
Temporal mode 1






Temporal mode 6




## UNCERTAINTY QUANTIFICATION (PRIOR)

Error on the reduced solution $w$
$v=w+v^{\prime}$

Resolved fluid velocity: $w=\sum_{i=0}^{n} b_{i} \phi_{i}$

Unresolved fluid velocity: $v^{\prime}$

Reynolds number $($ Re $)=100 / 2 D$ (full-order simulation has $10^{4}$ dof)



Time

$n=8$


From $10^{7}$ to 8 degrees of freedom
No data assimilation
Known initial conditions $b(t=0)$
 (full-order simulation has $10^{7}$ dof)


## UNCERTAINTY QUANTIFICATION (PRIOR)

Error on the reduced solution $w$
$v=w+v^{\prime}$

Resolved fluid velocity: $w=\sum_{i=0}^{n} b_{i} \phi_{i}$

Unresolved fluid velocity: $v^{\prime}$

From $10^{7}$ to 8 degrees of freedom
No data assimilation
Known initial conditions $b(t=0)$ Reynolds number (Re) $=100 / 2 \mathrm{D}$
(full-order simulation has $10^{4}$ dof)



The Reference remains always close to the Red. LUM ensemble



Reynolds number (Re) $=300$ 3D (full-order simulation has $10^{7}$ dof)


## DATA ASSIMILATION

Error on the solution estimation

$$
v=w+v^{\prime}
$$

Resolved fluid velocity: $w=\sum_{i=0}^{n} b_{i} \phi_{i}$

Unresolved fluid velocity:
$v^{\prime}$

## Easy case



Reynolds number $(\mathrm{Re})=100$ 2D ( $10^{4}$ dof)



State of the art


Difficult case


Reynolds number
$(\operatorname{Re})=300$
3D
( $10^{7}$ dof)


[^0]:    Resseguier et al. (2021). SIAM-ASA J Uncertain . hal- 03169957

