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Scientific problem : 
Simulation & data assimilation under severe dimensional reduction

typically, 107 → 𝑂(10) degrees of freedom 1
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CONCLUSION

 Reduced order model (ROM) : for very fast and robust CFD  (107 → 𝑂 10 degrees of freedom.)

▪ Combine data & physics (built off-line)

▪ Closure problem handled by LUM

 Data assimilation : to correct the fast simulation on-line by incomplete/noisy measurements

▪ Model error quantification handled by LUM

 Results 

▪ Optimal unsteady 3D flow estimation/prediction in the whole spatial domain (large-scale structures)

▪ Robust far outside the training set (time extrapolation / out of sample)

▪ Now implemented in OpenFOAM / ITHACA-FV
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 Increasing Reynolds (ROM of LES, DDES)
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Momentum conservation

𝐷𝑤

𝐷𝑡
= 𝐹 (Forces)

𝑣 = 𝑤 + 𝑣′

Resolved fluid velocity: 
𝑤

Unresolved fluid velocity: 

𝑣′ = 𝜎 ሶ𝐵 (Gaussian, white wrt 𝑡)

(assuming 𝛻 ⋅ 𝑤 = 0  and  𝛻 ⋅ 𝑣′ = 0)

Resseguier V. & al. (2017). Part I. Geophys. Astro. Fluid. hal-01391420



𝜕𝑡𝑤 + 𝑤∗ ⋅ 𝛻𝑤 + 𝜎 ሶ𝐵 ⋅ 𝛻𝑤 − 𝛻 ⋅
1

2
𝑎𝛻𝑤 = 𝐹

LOCATION UNCERTAINTY MODELS (LUM) ,

Randomized Navier-Stokes 

68

From Ito-Wentzell
formula (Kunita 1990)
with Ito notations

𝑣 = 𝑤 + 𝑣′

Resolved fluid velocity: 
𝑤

Unresolved fluid velocity: 
𝑣′ = 𝜎 ሶ𝐵 (Gaussian, white wrt 𝑡)

(assuming 𝛻 ⋅ 𝑤 = 0  and  𝛻 ⋅ 𝑣′ = 0)

Variance tensor:

𝑎 𝑥, 𝑥 =
𝔼 𝜎𝑑𝐵𝑡 𝜎𝑑𝐵𝑡

𝑇

𝑑𝑡

Resseguier V. & al. (2017). Part I. Geophys. Astro. Fluid. hal-01391420
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From Ito-Wentzell
formula (Kunita 1990)
with Ito notations
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From Ito-Wentzell
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From Ito-Wentzell
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From Ito-Wentzell
formula (Kunita 1990)
with Ito notations

𝑣 = 𝑤 + 𝑣′

Resolved fluid velocity: 
𝑤

Unresolved fluid velocity: 
𝑣′ = 𝜎 ሶ𝐵 (Gaussian, white wrt 𝑡)
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From Ito-Wentzell
formula (Kunita 1990)
with Ito notations

𝑣 = 𝑤 + 𝑣′

Resolved fluid velocity: 
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Unresolved fluid velocity: 
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From Ito-Wentzell
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with Ito notations
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From Ito-Wentzell
formula (Kunita 1990)
with Ito notations

Symmetric
negative

𝑣 = 𝑤 + 𝑣′

Resolved fluid velocity: 
𝑤

Unresolved fluid velocity: 

𝑣′ = 𝜎 ሶ𝐵 (Gaussian, white wrt 𝑡)

Usual
terms

Resseguier V. & al. (2017). Part I. Geophys. Astro. Fluid. hal-01391420



𝑣 = 𝑤 + 𝑣′

Resolved fluid velocity: 
𝑤(𝑥, 𝑡) = σ𝑖=0

𝑛 𝑏𝑖 𝑡 𝜙𝑖 𝑥

Unresolved fluid velocity: 

𝑣′ = 𝜎 ሶ𝐵 (Gaussian, white wrt 𝑡)

Variance tensor:

𝑎 𝑥, 𝑥 =
𝔼 𝜎𝑑𝐵𝑡 𝜎𝑑𝐵𝑡

𝑇

𝑑𝑡

REDUCED LUM (RED LUM)

POD-Galerkin gives SDEs for resolved modes

Resseguier et al. (2021). SIAM-ASA J Uncertain . hal- 03169957

න
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𝜙𝑖 𝑥 ⋅ 𝜕𝑡𝑤 + 𝐶 𝑤, 𝑤 + 𝐶 𝜎 ሶ𝐵, 𝑤 + 𝐹 𝑤 = 𝐹 𝑑𝑥

Full order : 𝑀 ∼ 107

Reduced order :   𝑛 ∼ 10
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Reference
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energy
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DATA ASSIMILATION (POSTERIOR)

Error on the solution estimation

Reynolds number (Re) = 100 / 2D
(full-order simulation has 104 dof)

Reynolds number (Re) = 300 3D
(full-order simulation has 107 dof)

Red. LUM
bias

Red. LUM
std

State of the art

State of the art𝑣 = 𝑤 + 𝑣′

Resolved fluid velocity: 
𝑤 = σ𝑖=0

𝑛 𝑏𝑖𝜙𝑖

Unresolved fluid velocity: 
𝑣′
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