IMPROVING AIRFLOW MONITORING AND CONTROL SOLUTIONS IN WIND ENERGY & AGROECOLOGY SECTORS

V. Resseguier, L. Wallian, D. Heitz & G. Stabile

SCALIAN

SCALIAN

CONTENT

- I. Context & results: Observer for unsteady aerodynamism
- II. Methodology
 - a) Physics, data & reduced order model (ROM)
 - b) Simulation, measurements & data assimilation
 - c) Reduced order model under location uncertainty
- III. New implementation & results

PART I Context & results:

Observer for unsteady aerodynamism

CONTEXT Observer for unsteady aerodynamism

CONTEXT Observer for unsteady aerodynamism

CONTEXT Observer for unsteady aerodynamism

CONTEXT Observer for unsteady aerodynamism

Application: Real-time estimation and prediction of 3D fluid flow using strongly-limited computational resources & few sensors

Which simple model? How to combine model & measurements?

CONTEXT Observer for unsteady aerodynamism

Application: Real-time estimation and prediction of 3D fluid flow using strongly-limited computational resources & few sensors

Which simple model? How to combine model & measurements?

Scientific problem : Simulation & data assimilation under severe dimensional reduction typically, $10^7 \rightarrow O(10)$ degrees of freedom

RESULTS

PART II Methodology

- a) Physics, data & reduced order model (ROM)
- b) Simulation, measurements& data assimilation
- c) Reduced order model under location uncertainty

• <u>Principal Component Analysis (PCA)</u> on a *dataset* to reduce the dimensionality:

• <u>Approximation</u>: $v(x,t) \approx \sum_{i=0}^{n} b_i(t) \phi_i(x)$

= Coupling simulations and measurements y

On-line measurements

→ incomplete
→ possibly noisy

Velocity

= Coupling simulations and measurements y

→ incomplete
→ possibly noisy

= Coupling simulations and measurements y

36
DATA ASSIMILATION

= Coupling simulations and measurements y

37

DATA ASSIMILATION

= Coupling simulations and measurements y

38

DATA ASSIMILATION

= Coupling simulations and measurements y

39

LOCATION UNCERTAINTY MODELS (LUM)

LOCATION UNCERTAINTY MODELS (LUM)

11

Resseguier et al. (2022). J Comp. Phys . hal-03445455

PART III New implementation & results

DATA ASSIMILATION RESULTS

with **Incompact3d** (finite differences)

Resseguier et al. (2022). J Comp. Phys . hal-03445455

Stochastic ROM (SROM) + Data assimilation Generalizable ???

Stochastic ROM (SROM) + Data assimilation Generalizable ???

DATA ASSIMILATION RESULTS Generalizable ???

Test with

- OpenFOAM (finite volumes) train set
- Incompact3d (finite differences) test set

SCALIAN

From 10^7 to 4 degrees of freedom

Single measurement point (blurred & noisy velocity)

Our method : Data assimilation with POD-Galerkin of randomized Navier-Stokes (LUM) (4 degrees of freedom)

DATA ASSIMILATION RESULTS Generalizable ???

Test with

- OpenFOAM (finite volumes) train set
- Incompact3d (finite differences) test set

From 10^7 to 4 degrees of freedom Single measurement point (blurred & noisy velocity)

CONCLUSION

CONCLUSION

- Reduced order model (ROM) : for very fast and robust CFD $(10^7 \rightarrow O(10))$ degrees of freedom.)
 - Combine data & physics (built off-line)
 Now implemented in OpenFOAM / ITHACA-FV
 - Closure problem handled by LUM
- Data assimilation : to correct the fast simulation on-line by incomplete/noisy measurements
 - Model error quantification handled by LUM
- Results
 - Optimal **unsteady 3D flow** estimation/prediction in the whole spatial domain (large-scale structures)
 - Robust far outside the training set (time extrapolation / out of sample)

CONCLUSION

- Reduced order model (ROM) : for very fast and robust CFD $(10^7 \rightarrow O(10))$ degrees of freedom.)
 - Combine data & physics (built off-line)
 Now implemented in OpenFOAM / ITHACA-FV
 - Closure problem handled by LUM
- Data assimilation : to correct the fast simulation on-line by incomplete/noisy measurements
 - Model error quantification handled by LUM
- Results
 - Optimal **unsteady 3D flow** estimation/prediction in the whole spatial domain (large-scale structures)
 - Robust far outside the training set (time extrapolation / out of sample)

WORK IN PROGRESS:

- Increasing Reynolds (ROM of LES, DDES)
 - Hyperreduction (=interpolation with a POD basis) of turbulence model terms

BONUS SLIDES

LOCATION UNCERTAINTY MODELS (LUM), Randomized incompressible Navier-Stokes

v = w + v'

Resolved fluid velocity: *w*

Unresolved fluid velocity: $v' = \sigma \dot{B}$ (Gaussian, white wrt t)

(assuming $abla \cdot w = 0$ and $abla \cdot v' = 0$)

Momentum conservation $\frac{DW}{Dt} = F$ (Forces)

From Ito-Wentzell

with Ito notations

formula (Kunita 1990)

LOCATION UNCERTAINTY MODELS (LUM), Randomized Navier-Stokes

v = w + v'

Resolved fluid velocity: *w*

Unresolved fluid velocity: $v' = \sigma \dot{B}$ (Gaussian, white wrt t)

(assuming $\nabla \cdot w = 0$ and $\nabla \cdot v' = 0$)

$$\partial_t w + w^* \cdot \nabla w + \sigma \dot{B} \cdot \nabla w - \nabla \cdot \left(\frac{1}{2}a\nabla w\right) = F$$

LOCATION UNCERTAINTY MODELS (LUM), Randomized Navier-Stokes

From Ito-Wentzell formula (Kunita 1990) with Ito notations

v = w + v'

Resolved fluid velocity: *w*

Unresolved fluid velocity: $v' = \sigma \dot{B}$ (Gaussian, white wrt t)

(assuming $abla \cdot w = 0$ and $abla \cdot v' = 0$)

Advection

$$\partial_t w + w^* \cdot \nabla w + \sigma \dot{B} \cdot \nabla w - \nabla \cdot \left(\frac{1}{2}a\nabla w\right) = F$$

From Ito-Wentzell formula (Kunita 1990) with Ito notations

LOCATION UNCERTAINTY MODELS (LUM), Randomized Navier-Stokes

v = w + v'

Resolved fluid velocity: *w*

Unresolved fluid velocity: $v' = \sigma \dot{B}$ (Gaussian, white wrt t)

(assuming $abla \cdot w = 0$ and $abla \cdot v' = 0$)

$$\partial_t w + w^* \cdot \nabla w + \sigma \dot{B} \cdot \nabla w - \nabla \cdot \left(\frac{1}{2}a\nabla w\right) = F$$

From Ito-Wentzell formula (Kunita 1990) with Ito notations

LOCATION UNCERTAINTY MODELS (LUM), Randomized Navier-Stokes

v = w + v'

Resolved fluid velocity: *w*

Unresolved fluid velocity: $v' = \sigma \dot{B}$ (Gaussian, white wrt t)

(assuming $abla \cdot w = 0$ and $abla \cdot v' = 0$)

LOCATION UNCERTAINTY MODELS (LUM), Randomized Navier-Stokes

From Ito-Wentzell formula (Kunita 1990) with Ito notations

Resolved fluid velocity: *w*

v = w + v'

Unresolved fluid velocity:

$$v' = \sigma \dot{B}$$
 (Gaussian, white wrt t)
(assuming $\nabla \cdot w = 0$ and $\nabla \cdot v' = 0$

Variance tensor:
$$a(x, x) = \frac{\mathbb{E}\{(\sigma dB_t)(\sigma dB_t)^T\}}{dt}$$

From Ito-Wentzell formula (Kunita 1990) with Ito notations

Resolved fluid velocity: *w*

v = w + v'

Unresolved fluid velocity:
$$v' = \sigma \dot{B}$$
 (Gaussian, white wrt t)
(assuming $\nabla \cdot w = 0$ and $\nabla \cdot v' = 0$

Variance tensor: $a(x, x) = \frac{\mathbb{E}\{(\sigma dB_t)(\sigma dB_t)^T\}}{dt}$

LOCATION UNCERTAINTY MODELS (LUM),

Randomized Navier-Stokes

LOCATION UNCERTAINTY MODELS (LUM), Randomized Navier-Stokes

From Ito-Wentzell formula (Kunita 1990) with Ito notations

Resolved fluid velocity: *w*

v = w + v'

Unresolved fluid velocity:
$$v' = \sigma \dot{B}$$
 (Gaussian, white wrt t)

(assuming $\nabla \cdot w = 0$ and $\nabla \cdot v' = 0$)

Variance tensor: $a(x, x) = \frac{\mathbb{E}\{(\sigma dB_t)(\sigma dB_t)^T\}}{dt}$

REDUCED LUM (RED LUM) POD-Galerkin gives SDEs for resolved modes

Full order : $M \sim 10^7$ Reduced order : $n \sim 10$

v = w + v'

Resolved fluid velocity: $w(x,t) = \sum_{i=0}^{n} b_i(t)\phi_i(x)$

Unresolved fluid velocity: $v' = \sigma \dot{B}$ (Gaussian, white wrt t)

Variance tensor: $a(x, x) = \frac{\mathbb{E}\{(\sigma dB_t)(\sigma dB_t)^T\}}{dt}$

$$\int_{\Omega} \phi_i(x) \cdot \left(\partial_t w + C(w, w) + C(\sigma \dot{B}, w) + F(w) = F\right) dx$$

REDUCED LUM (RED LUM) POD-Galerkin gives SDEs for resolved modes

Full order : $M \sim 10^7$ Reduced order : $n \sim 10$

v = w + v'

Resolved fluid velocity: $w(x,t) = \sum_{i=0}^{n} b_i(t)\phi_i(x)$

Unresolved fluid velocity: $v' = \sigma \dot{B}$ (Gaussian, white wrt t)

Variance tensor: $a(x, x) = \frac{\mathbb{E}\{(\sigma dB_t)(\sigma dB_t)^T\}}{\mathbb{E}\{(\sigma dB_t)(\sigma dB_t)^T\}}$

$$\int_{\Omega} \phi_i(x) \cdot \left(\partial_t w + C(w, w) + C(\sigma \dot{B}, w) + F(w) = F\right) dx$$

$$\int db(t)$$

 $\frac{dv(t)}{dt} = c(b(t), b(t)) + K(\sigma \dot{B}) b(t) + f b(t) = \cdots$

REDUCED LUM (RED LUM) POD-Galerkin gives SDEs for resolved modes

Advection : 2nd order polynomial

Full order : $M \sim 10^7$ Reduced order : $n \sim 10$

New estimator

- Consistency proven $(\Delta t \rightarrow 0)$
- Numerically efficient
- Data-based & Physics-based
 - \rightarrow Robustness in extrapolation

$$\frac{db(t)}{dt} = c(b(t), b(t)) + K(\sigma \dot{B}) b(t) + f b(t) = \cdots$$

 $\int_{\Omega} \phi_i(x) \cdot \left(\partial_t w + C(w, w) + C(\sigma \dot{B}, w) + F(w) = F\right) dx$

Multiplicative skew-symmetric noise

 \rightarrow Covariance to estimate

$$K_{jq}[\xi] = -\int_{\Omega} \phi_j \cdot C(\xi, \phi_q)$$

Resseguier et al. (2021). SIAM-ASA J Uncertain . hal- 03169957

v = w + v'

Resolved fluid velocity:

 $w(x,t) = \sum_{i=0}^{n} b_i(t)\phi_i(x)$ Unresolved fluid velocity: $v' = \sigma \dot{B}$ (Gaussian, white wrt t)

Variance tensor:

```
a(x,x) = \frac{\mathbb{E}\{(\sigma dB_t)(\sigma dB_t)^T\}}{dt}
```


Advection : 2nd order polynomial

v = w + v'

Resolved fluid velocity:

 $w(x,t) = \overline{\sum_{i=0}^{n} b_i(t)\phi_i(x)}$

Unresolved fluid velocity:

 $v' = \sigma \dot{B}$ (Gaussian, white wrt t)

 $a(x,x) = \frac{\mathbb{E}\{(\sigma dB_t)(\sigma dB_t)^T\}}{dt}$

Variance tensor:

Full order : $M \sim 10^7$ Reduced order : $n \sim 10$

New estimator

- Consistency proven $(\Delta t \rightarrow 0)$
- Numerically efficient
- Data-based & Physics-based
 - \rightarrow Robustness in extrapolation

 $\frac{db(t)}{dt} = c(b(t), b(t)) + K(\sigma \dot{B}) b(t) + f b(t) = \cdots$

 $\int_{\Omega} \phi_i(x) \cdot \left(\partial_t w + C(w, w) + C(\sigma \dot{B}, w) + F(w) = F\right) dx$

Multiplicative skew-symmetric noise

 \rightarrow Covariance to estimate

 $K_{jq}[\xi] = -\int_{\Omega} \phi_j \cdot C(\xi, \phi_q)$

"Turbulent" diffusion

with $a(x) \approx \Delta t \ \overline{v'(v')^T}$

n = 4 resolved degrees of freedom No data assimilation

Known initial conditions b(t = 0)

UNCERTAINTY QUANTIFICATION (PRIOR)

UNCERTAINTY QUANTIFICATION (PRIOR)

UNCERTAINTY QUANTIFICATION (PRIOR)

Time

Resseguier et al. (2021). SIAM-ASA J Uncertain . hal- 03169957

Time

UNCERTAINTY QUANTIFICATION (PRIOR)

UNCERTAINTY QUANTIFICATION (PRIOR)

Resseguier et al. (2021). SIAM-ASA J Uncertain . hal- 03169957

Présentation ...

UNCERTAINTY QUANTIFICATION (PRIOR)

Resseguier et al. (2021). SIAM-ASA J Uncertain . hal- 03169957

Présentation ...

UNCERTAINTY QUANTIFICATION (PRIOR)

UNCERTAINTY QUANTIFICATION (PRIOR)

v'

v'

DATA ASSIMILATION (POSTERIOR) Error on the solution estimation

v = w + v'

Resolved fluid velocity: $w = \sum_{i=0}^{n} b_i \phi_i$

Unresolved fluid velocity: v'

Reynolds number (Re) = 100 / 2D(full-order simulation has 10^4 dof)

Reynolds number (Re) = 300 3D(full-order simulation has 10^7 dof)

Resseguier et al. (2022). J Comp. Phys . hal-03445455