FAST DATA ASSIMILATION OF SPARSE MEASUREMENTS FOR TIME EXTRAPOLATION OF MAIN FLOW PATTERNS

V. Resseguier, L. Wallian & D. Heitz

SCALIAN INRAO

CONTENT

- I. Context & results:Observer for unsteady aerodynamism
- II. Methodology
 - a) Physics, data & reduced order model (ROM)
 - b) Simulation, measurements & data assimilation
 - c) Reduced order model under location uncertainty
- III. New implementation & results

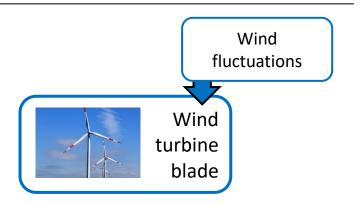
PART I

Context & results:

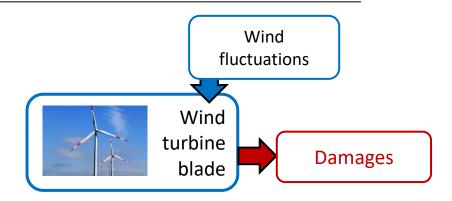
Observer for unsteady aerodynamism

Observer for unsteady aerodynamism

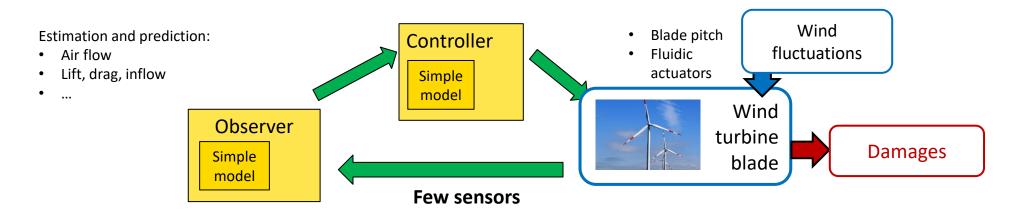
Observer for unsteady aerodynamism



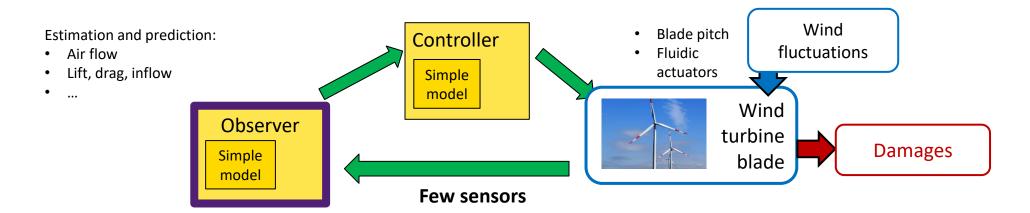
Observer for unsteady aerodynamism



Observer for unsteady aerodynamism

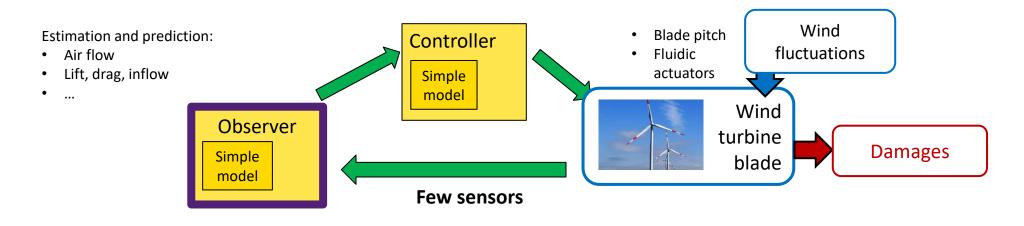


Observer for unsteady aerodynamism



Observer for unsteady aerodynamism

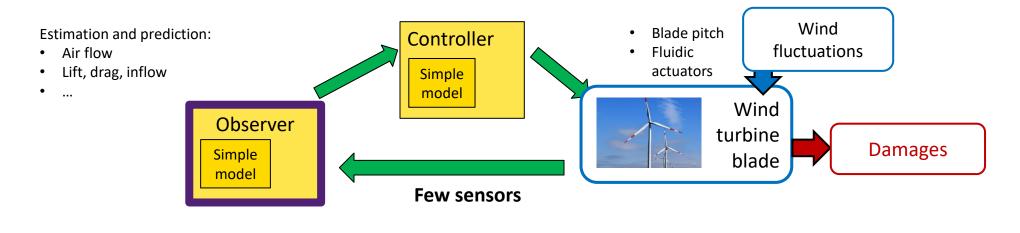
Application: Real-time estimation and prediction of 3D fluid flow using strongly-limited computational resources & few sensors



Which simple model? How to combine model & measurements?

Observer for unsteady aerodynamism

Application: Real-time estimation and prediction of 3D fluid flow using strongly-limited computational resources & few sensors



Which simple model? How to combine model & measurements?

Scientific problem:

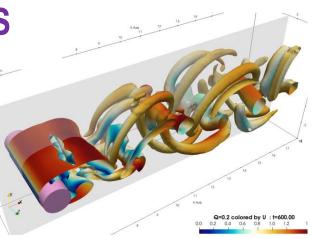
Simulation & data assimilation under severe dimensional reduction typically, $10^7 \rightarrow \mathcal{O}(10)$ degrees of freedom

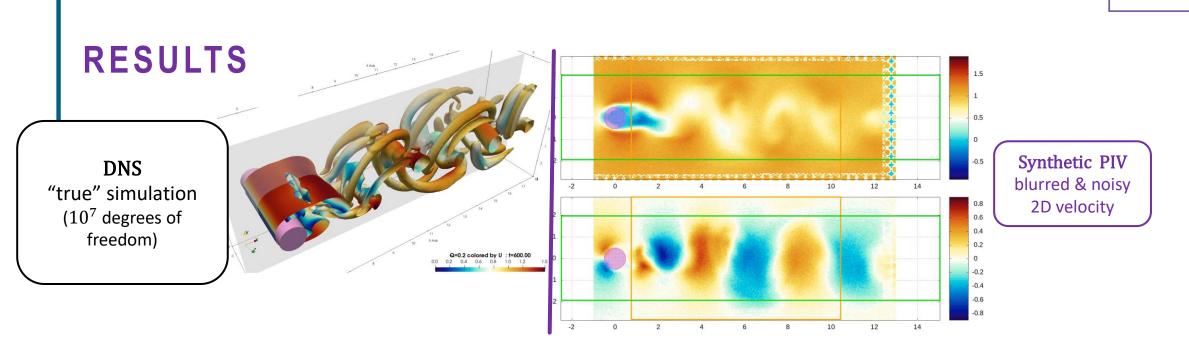
RESULTS

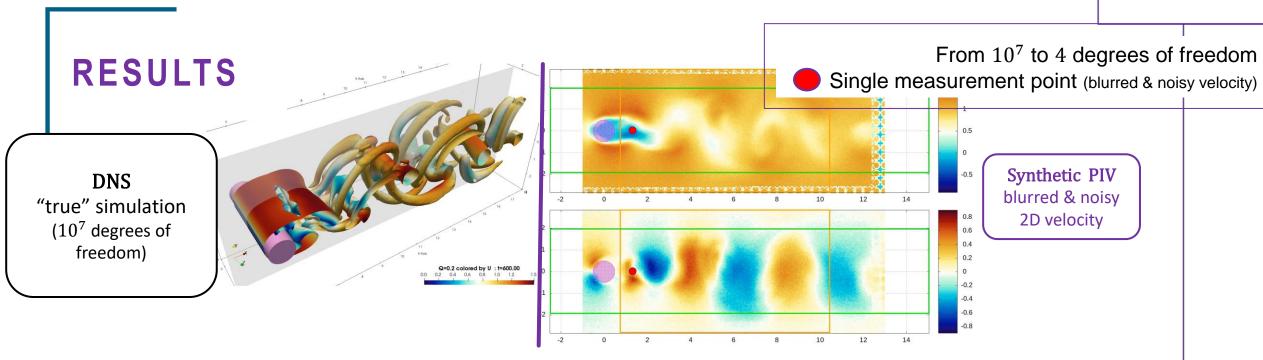
DNS

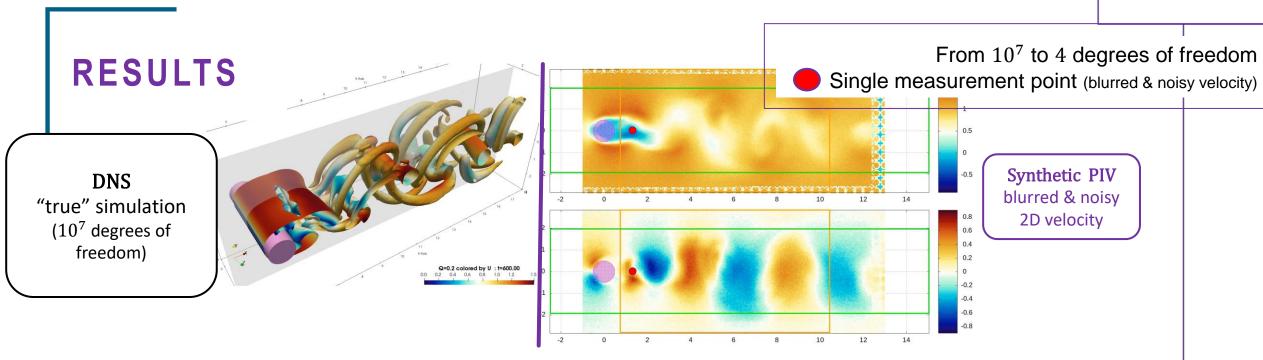
"true" simulation $(10^7 \text{ degrees of freedom})$

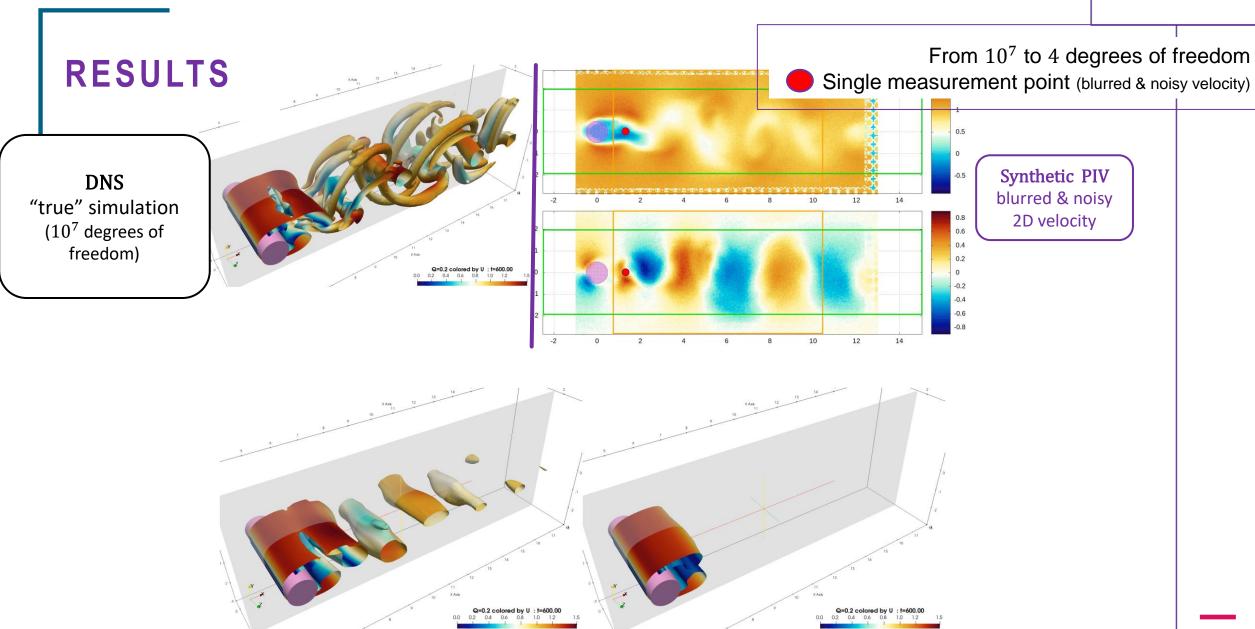
DNS "true" simulation $(10^7 \text{ degrees of freedom})$

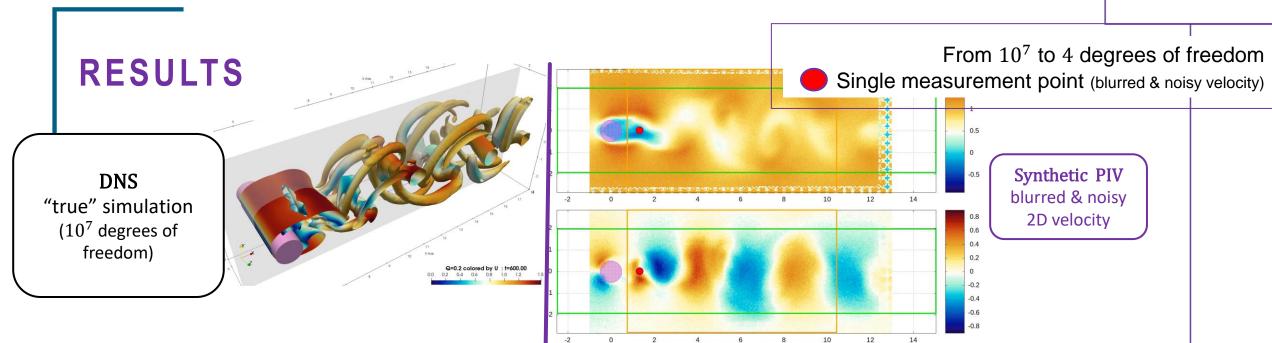






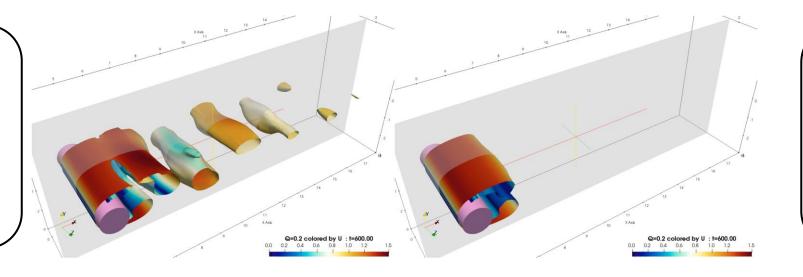






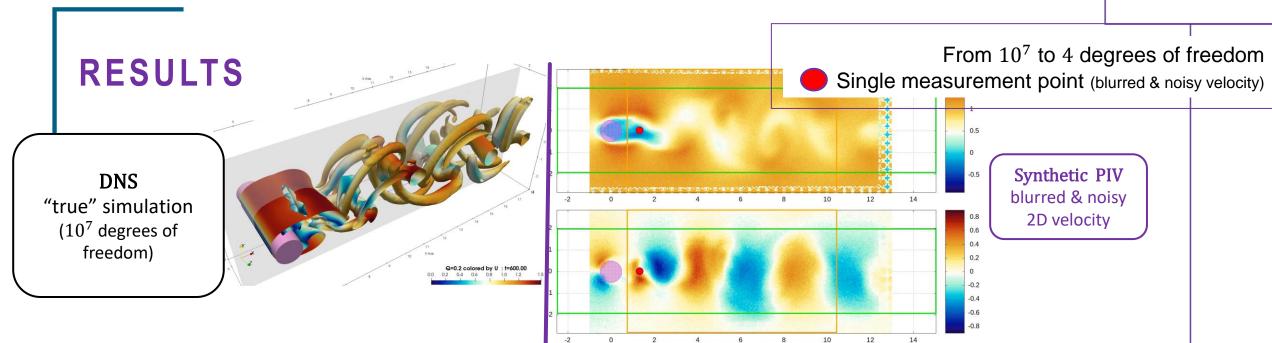
Reference:

PCA-projection of the "true" simulation (DNS) (Optimal from 4-degrees of freedom linear decomposition)



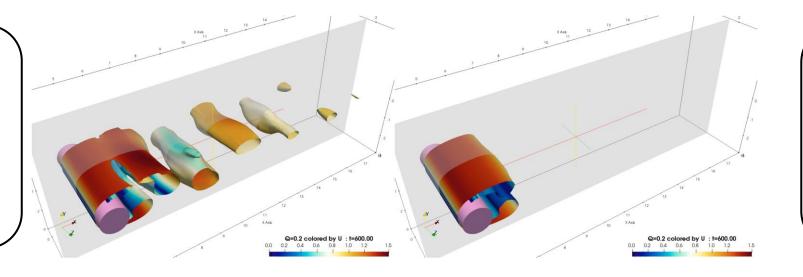
Our method:

Data assimilation
with
POD-Galerkin of
randomized
Navier-Stokes
(LUM)
(4 degrees of freedom)



Reference:

PCA-projection of the "true" simulation (DNS) (Optimal from 4-degrees of freedom linear decomposition)



Our method:

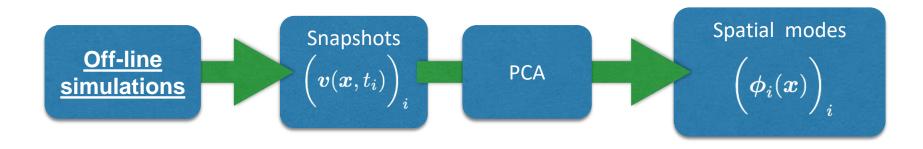
Data assimilation
with
POD-Galerkin of
randomized
Navier-Stokes
(LUM)
(4 degrees of freedom)

PART II Methodology

- a) Physics, data& reduced order model (ROM)
- Simulation, measurements& data assimilation
- c) Reduced order model under location uncertainty

Combine physical models and learning approaches

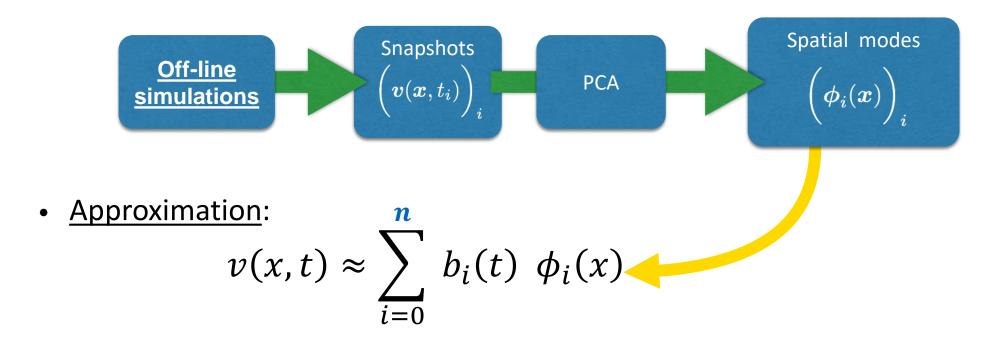
• Principal Component Analysis (PCA) on a dataset to reduce the dimensionality:



• Approximation: $v(x,t) \approx \sum_{i=0}^{n} b_i(t) \phi_i(x)$

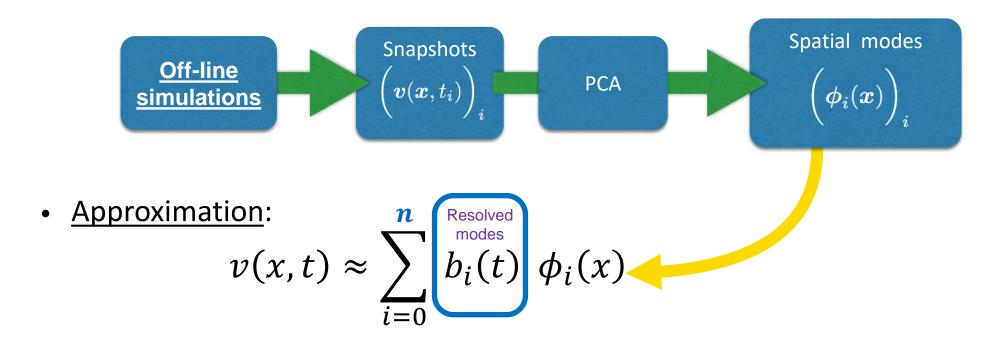
Combine physical models and learning approaches

• Principal Component Analysis (PCA) on a dataset to reduce the dimensionality:



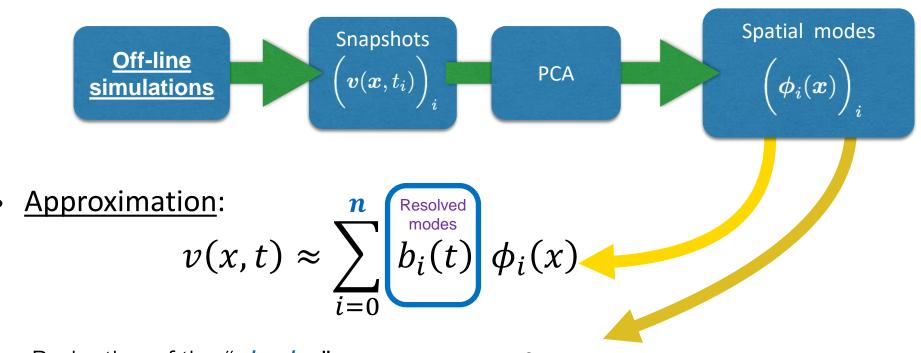
Combine physical models and learning approaches

Principal Component Analysis (PCA) on a dataset to reduce the dimensionality:



Combine physical models and learning approaches

• Principal Component Analysis (PCA) on a dataset to reduce the dimensionality:

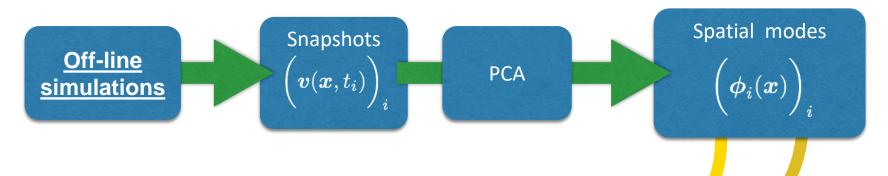


 Projection of the "physics" onto the spatial modes (POD-Galerkin)

$$\int_{\Omega} dx \, \phi_i(x) \cdot (Physical equation (e.g. Navier-Stokes))$$

Combine physical models and learning approaches

• Principal Component Analysis (PCA) on a dataset to reduce the dimensionality:



Approximation:

$$v(x,t) \approx \sum_{i=0}^{n} b_i(t) \phi_i(x)$$

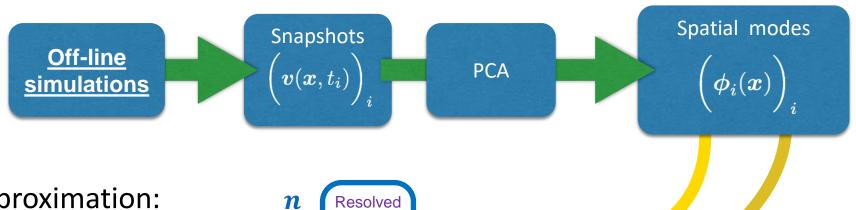
 Projection of the "physics" onto the spatial modes (POD-Galerkin)

$$\int_{\Omega} dx \, \phi_i(x) \cdot (Physical \ equation \ (e.g. \ Navier-Stokes))$$

$$\rightarrow ROM \ for \ very \ fast \ simulation \ of \ temporal \ modes$$

Combine physical models and learning approaches

<u>Principal Component Analysis (PCA)</u> on a *dataset* to reduce the dimensionality:



Approximation:

$$v(x,t) \approx \sum_{i=0}^{\text{modes}} b_i(t) \phi_i(x)$$

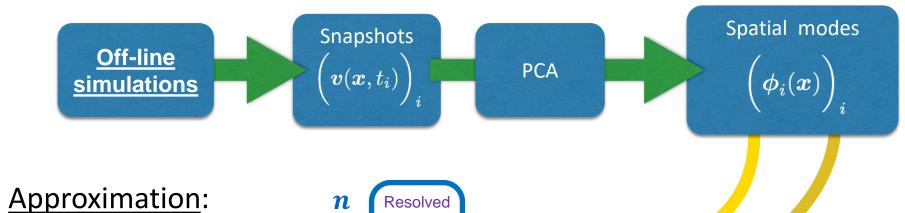
Don't work in extrapolation for advection-dominated problem

Projection of the "physics" onto the spatial modes (POD-Galerkin)

 $dx \phi_i(x) \cdot (Physical equation (e.g. Navier-Stokes))$ → ROM for very fast simulation of temporal modes

Combine physical models and learning approaches

Principal Component Analysis (PCA) on a dataset to reduce the dimensionality:



 $\frac{\gamma(x,t)}{2} \approx$

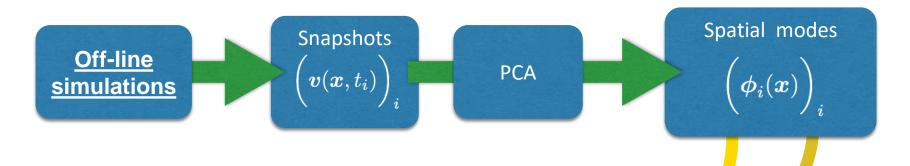
$$v(x,t) \approx \sum_{i=0}^{\text{modes}} b_i(t) \phi_i(x)$$

 Projection of the "physics" onto the spatial modes (POD-Galerkin) Don't work in extrapolation for advection-dominated problem

 $\int_{\Omega} dx \, \phi_i(x) \cdot \frac{\text{Physical equation}}{\text{Physical equation}} \text{(e.g. Navier-Stokes))}$ $\Rightarrow \text{ROM for very fast simulation of temporal modes}$

Combine physical models and learning approaches

• Principal Component Analysis (PCA) on a dataset to reduce the dimensionality:



Approximation:

$$v(x,t) \approx \sum_{i=0}^{n} b_i(t) \phi_i(x)$$

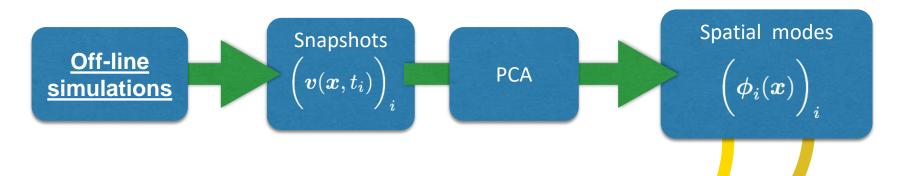
 Projection of the "physics" onto the spatial modes (POD-Galerkin)

$$\int_{\Omega} dx \, \phi_i(x) \cdot \frac{\text{Physical equation}}{\text{Physical equation}} \text{(e.g. Navier-Stokes))}$$

$$\Rightarrow \text{ROM for very fast simulation of temporal modes}$$

Combine physical models and learning approaches

• Principal Component Analysis (PCA) on a dataset to reduce the dimensionality:



Approximation:

$$v(x,t) \approx \sum_{i=0}^{n} b_i(t) \phi_i(x)$$

SPOILER

 Projection of the "physics" onto the spatial modes (POD-Galerkin)

$$\int_{\Omega} dx \, \phi_i(x) \cdot \text{ (Randomized Navier-Stokes)}$$

$$\Rightarrow \text{ ROM for very fast simulation of temporal modes}$$

= Coupling simulations and measurements y

Numerical Simulation (ROM)

→ erroneous

On-line measurements

- → incomplete
- → possibly noisy

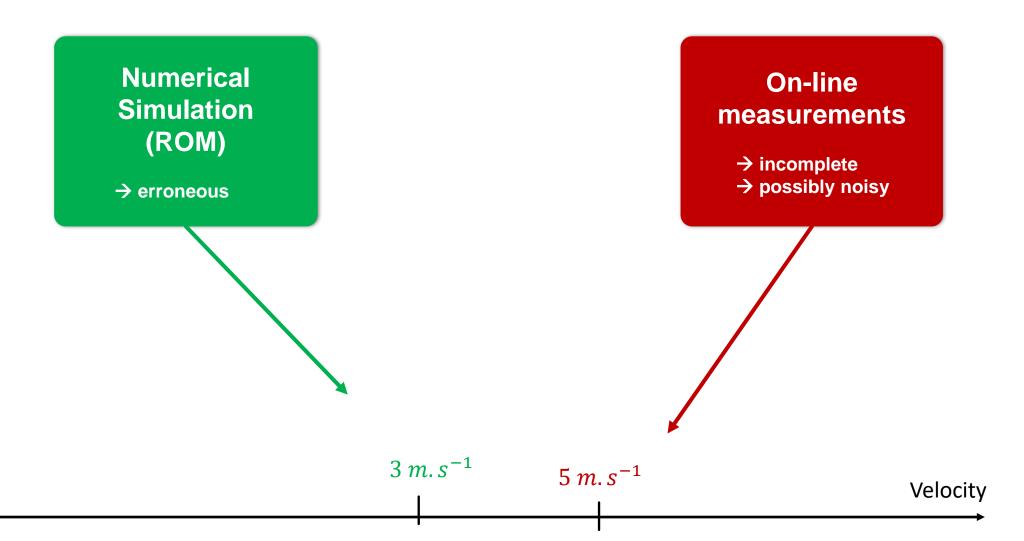
= Coupling simulations and measurements y

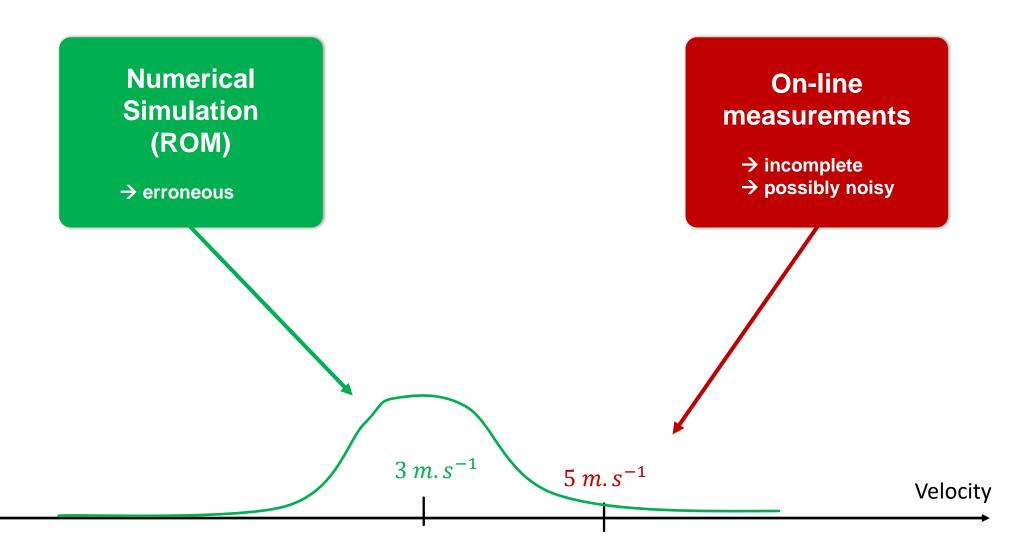
Numerical Simulation (ROM)
→ erroneous

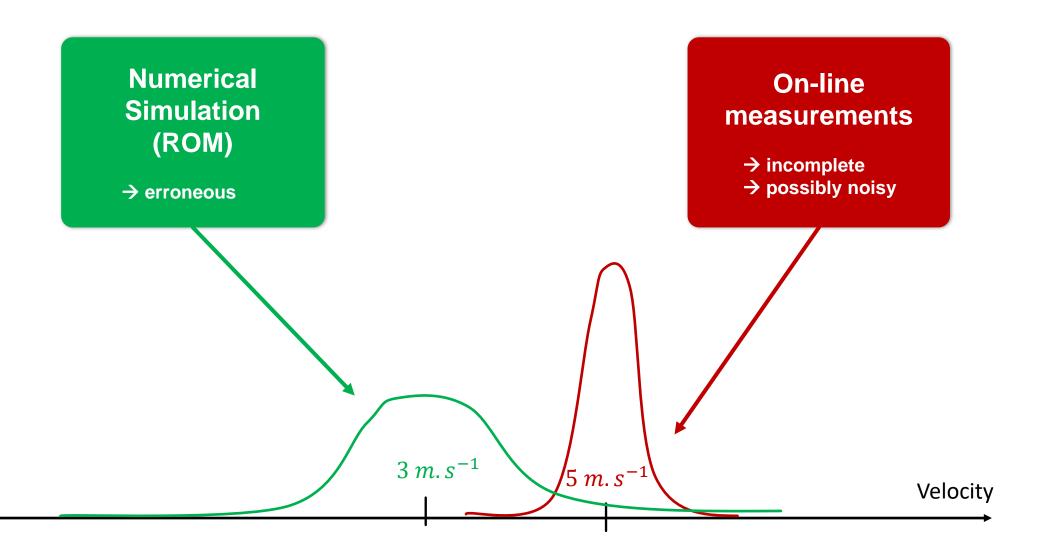
On-line measurements

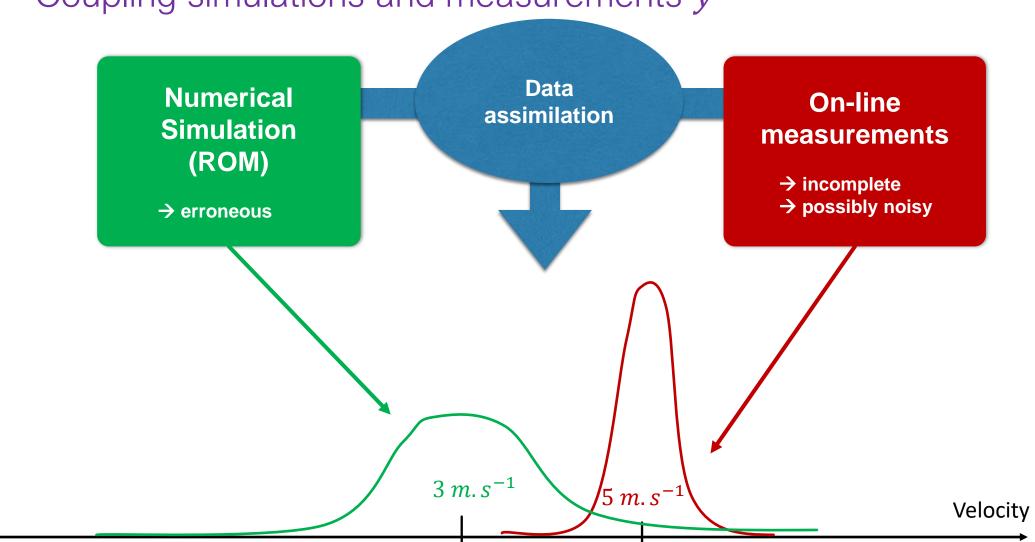
- → incomplete
- → possibly noisy

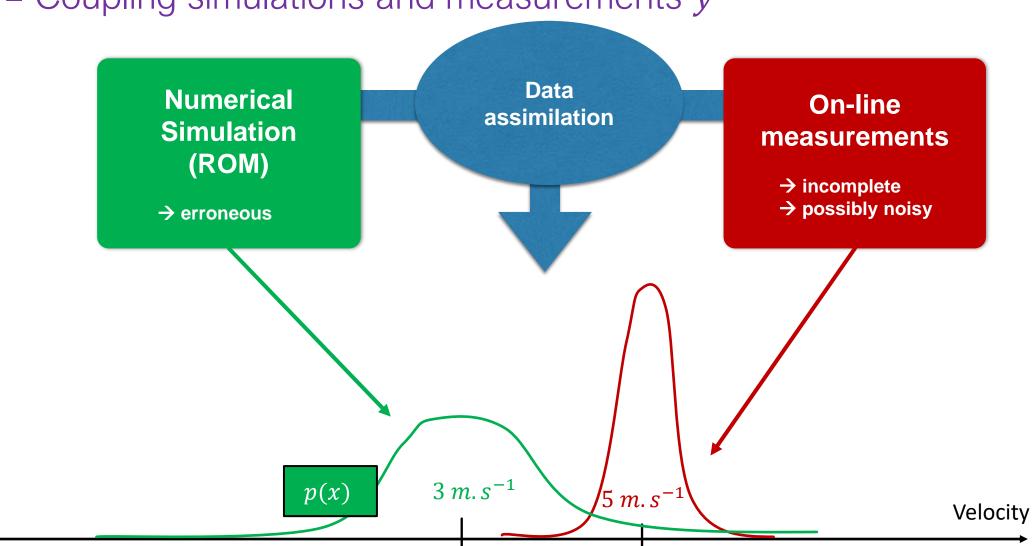
 $3 \, m. \, s^{-1}$

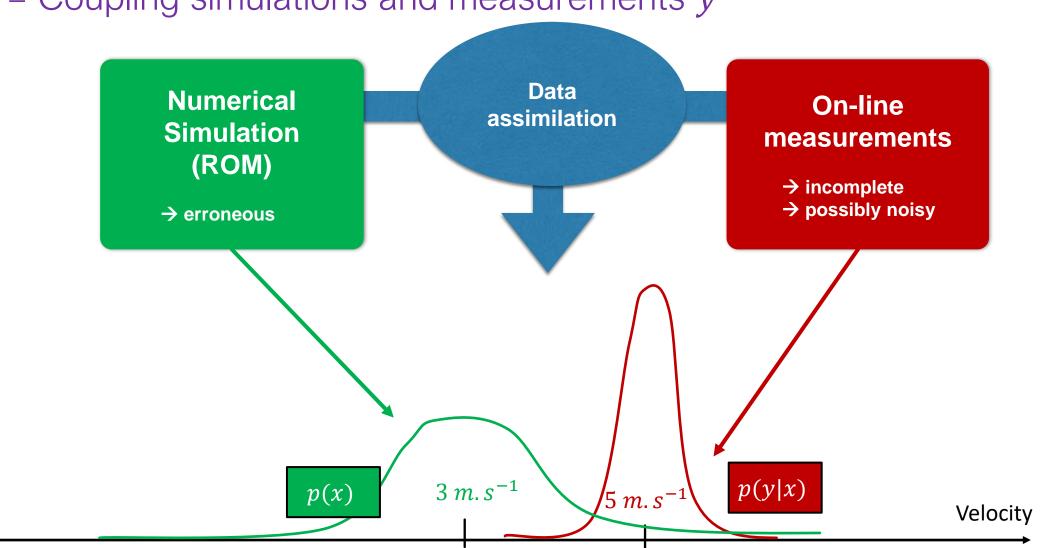






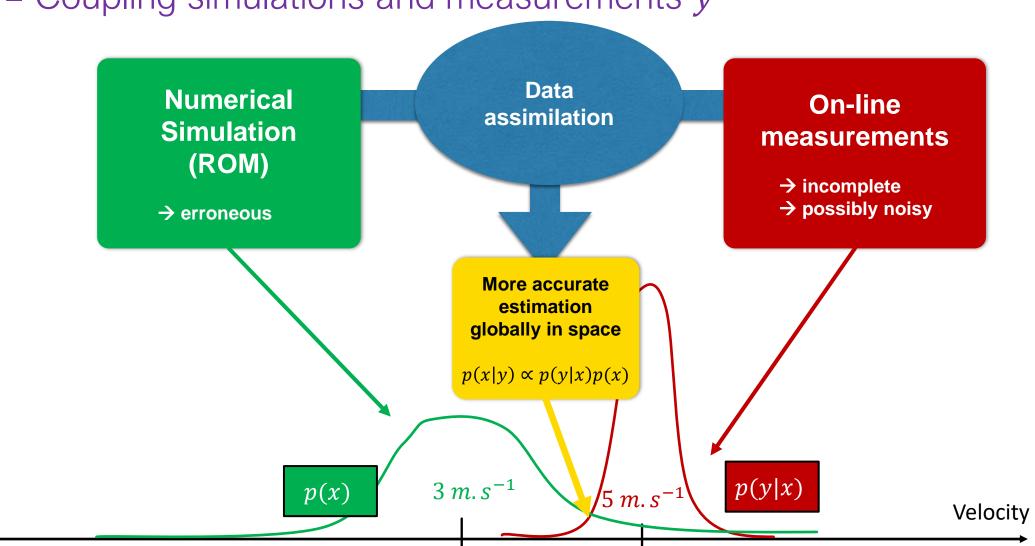






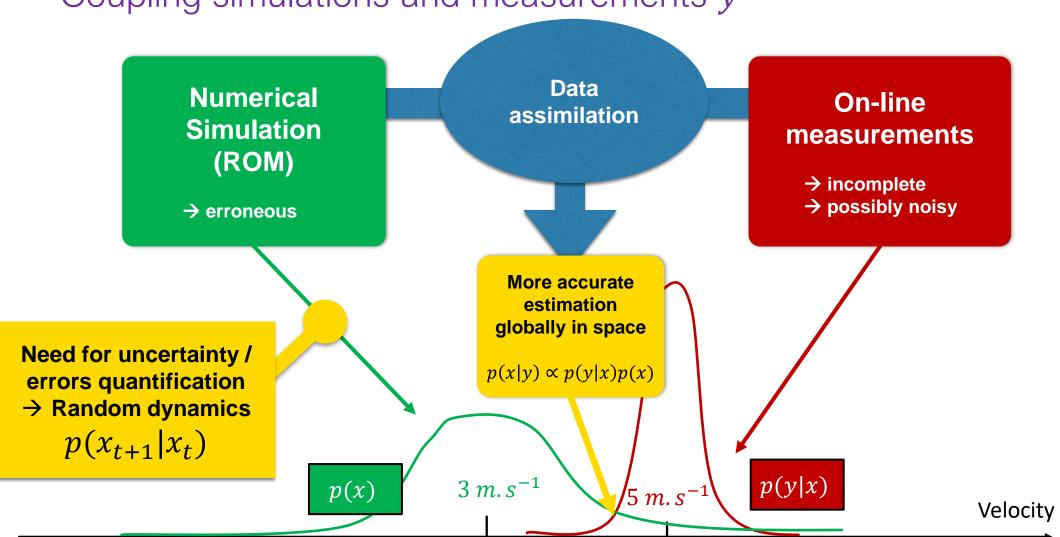
DATA ASSIMILATION

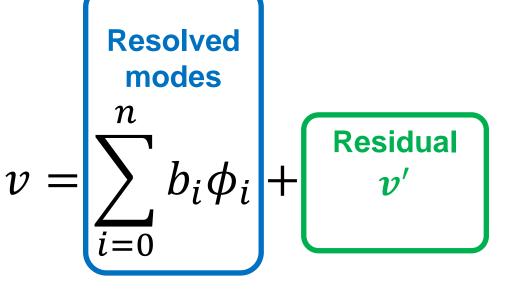
= Coupling simulations and measurements y

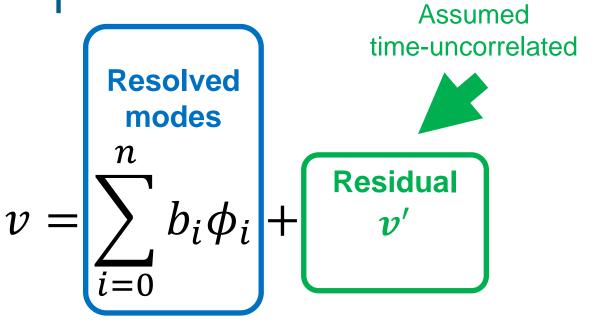


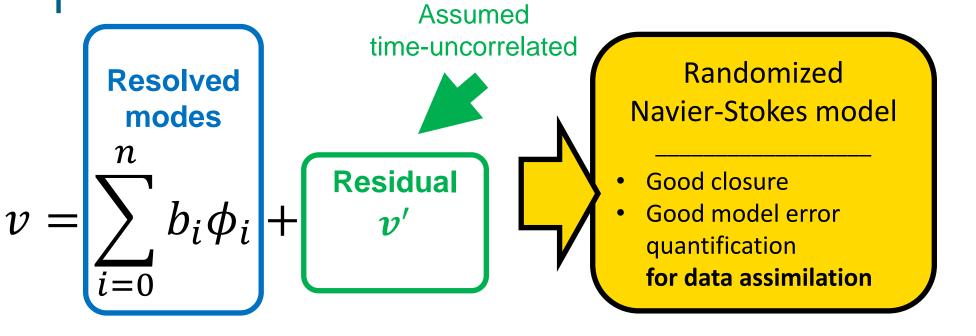
DATA ASSIMILATION

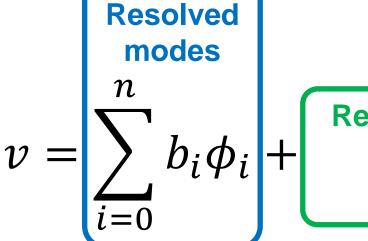
= Coupling simulations and measurements y



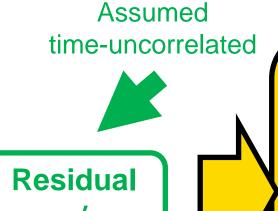








References:



Randomized
Navier-Stokes model

- Good closure
- Good model error quantification
 for data assimilation

Mem

Mikulevicius & Rozovskii, 2004

Flandoli, 2011

LUM

Memin, 2014

Resseguier et al. 2017 a, b, c,

d Cai et al. 2017

Chapron et al. 2018 Yang & Memin 2019

...

Holm, 2015 Holm and Tyranowski, 2016 Arnaudon et al. 2017 Crisan et al., 2017 Gay-Balmaz & Holm 2017 Cotter and al. 2018 a, b Cotter and al. 2019

...

SALT

Cotter and al. 2017 Resseguier et al. 2020, 2021a, Zhen et al., 2023

Resolved modes

n

 $b_i \phi_i$

i=0

+

Assumed time-uncorrelated

Residual

Randomized
Navier-Stokes model

- Good closure
- Good model error quantification
 for data assimilation

Randomized ROM

LUM

Memin, 2014

Resseguier et al. 2017 a, b, c,

d Cai et al. 2017

Chapron et al. 2018 Yang & Memin 2019

...

Holm, 2015 Holm and

Tyranowski, 2016

Arnaudon et al. 2017

Crisan et al., 2017

Gay-Balmaz & Holm 2017

Cotter and al. 2018 a, b

Cotter and al. 2019

...

SALT

Cotter and al. 2017 Resseguier et al. 2020, 2021a, Zhen et al., 2023

Mikulevicius & References : Rozovskii, 200

Rozovskii, 2004 Flandoli, 2011

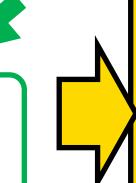
Assumed

Resolved modes

n

time-uncorrelated

Residual



Randomized **Navier-Stokes model**

- Good closure
- Good model error quantification for data assimilation

Resseguier et al. (2021). SIAM-ASA J Uncertain. hal- 03169957

Randomized ROM

LUM

Memin, 2014

Resseguier et al. 2017 a, b, c,

d Cai et al. 2017

Chapron et al. 2018 Yang & Memin 2019

Holm, 2015 Holm and Tyranowski, 2016 Arnaudon et al. 2017 Crisan et al., 2017

Gay-Balmaz & Holm 2017 Cotter and al. 2018 a, b

Cotter and al. 2019

SALT

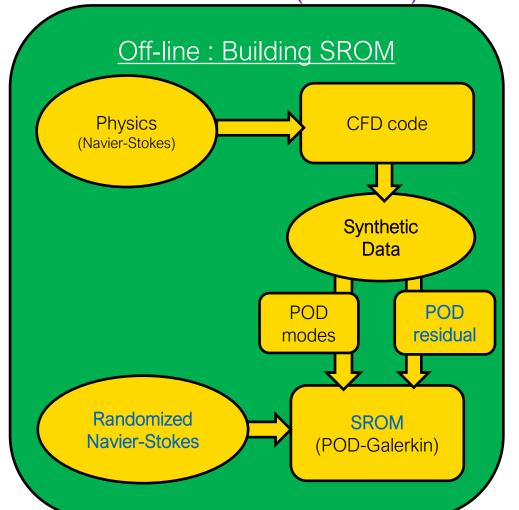
Cotter and al. 2017 Resseguier et al. 2020, 2021a, Zhen et al., 2023

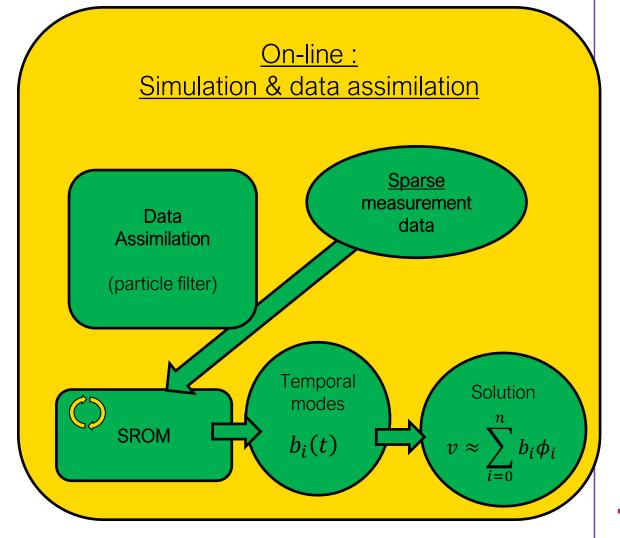
Mikulevicius & References: Rozovskii, 2004

Flandoli, 2011

SUMMARY

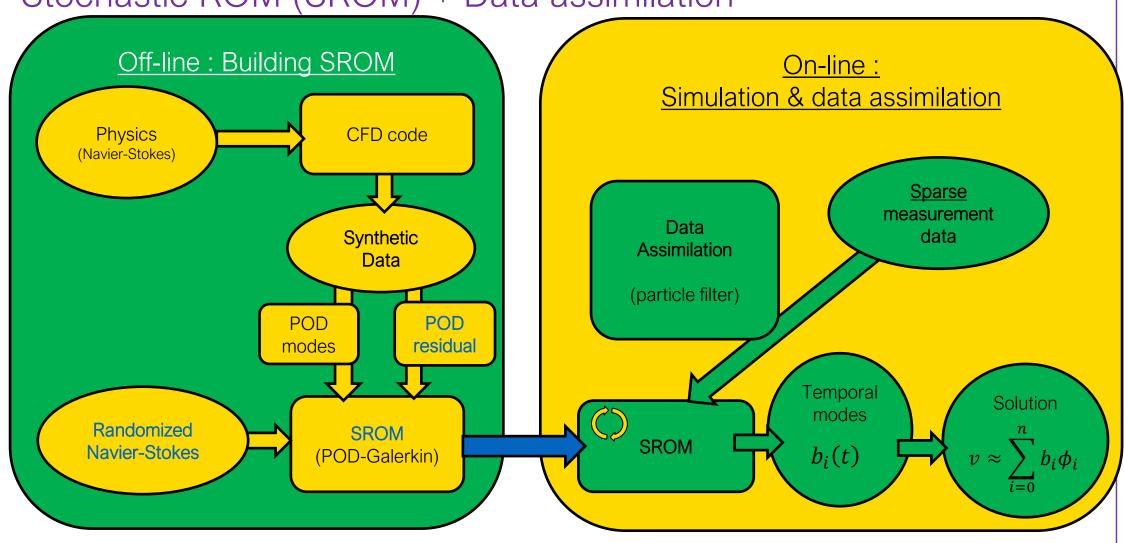
Stochastic ROM (SROM) + Data assimilation





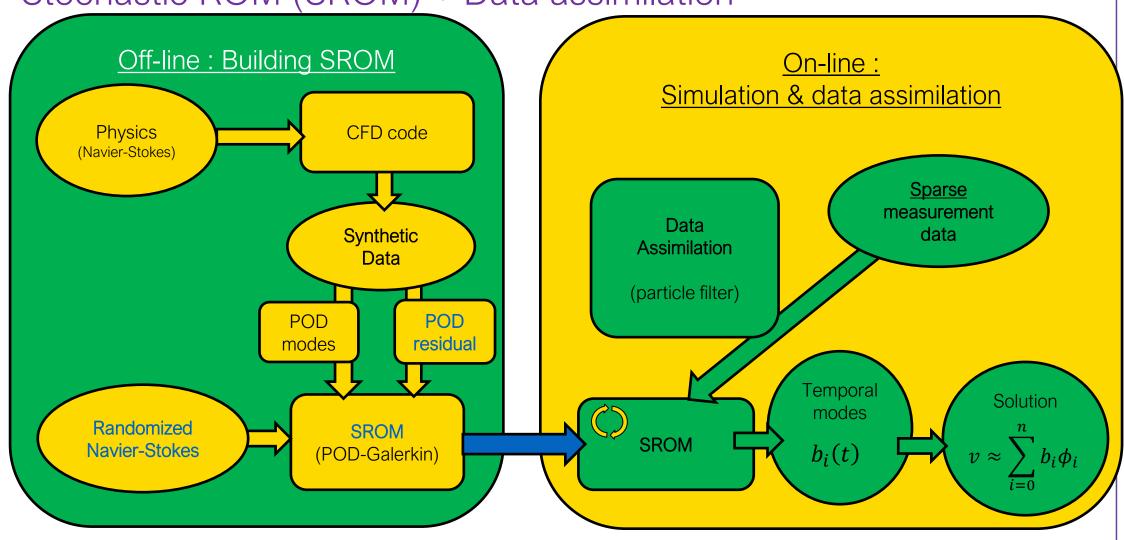
SUMMARY

Stochastic ROM (SROM) + Data assimilation



SUMMARY

Stochastic ROM (SROM) + Data assimilation

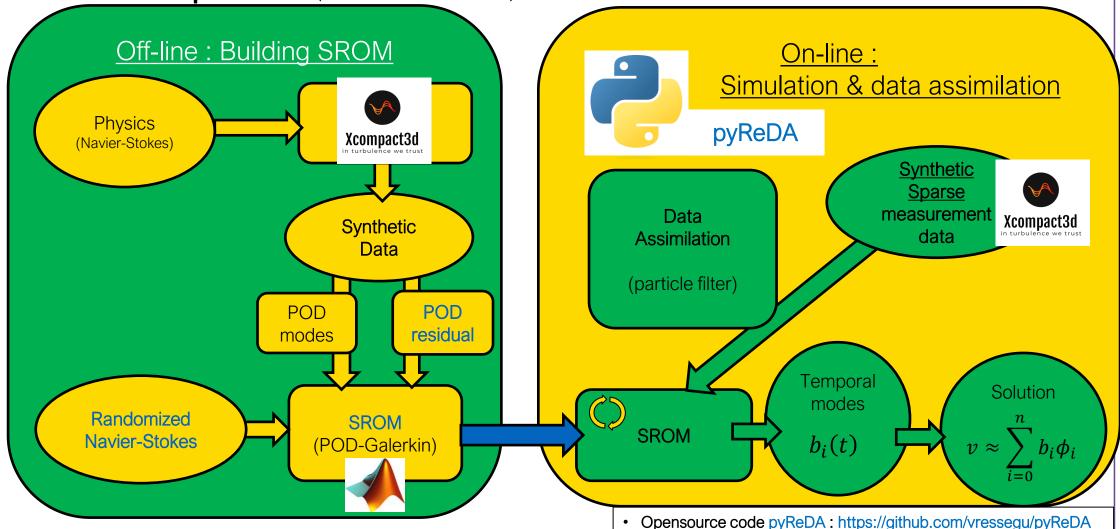


PART III

New implementation & results

• Resseguier et al. (2022). *J Comp.Phys* . hal-03445455

with Incompact3d (finite differences)



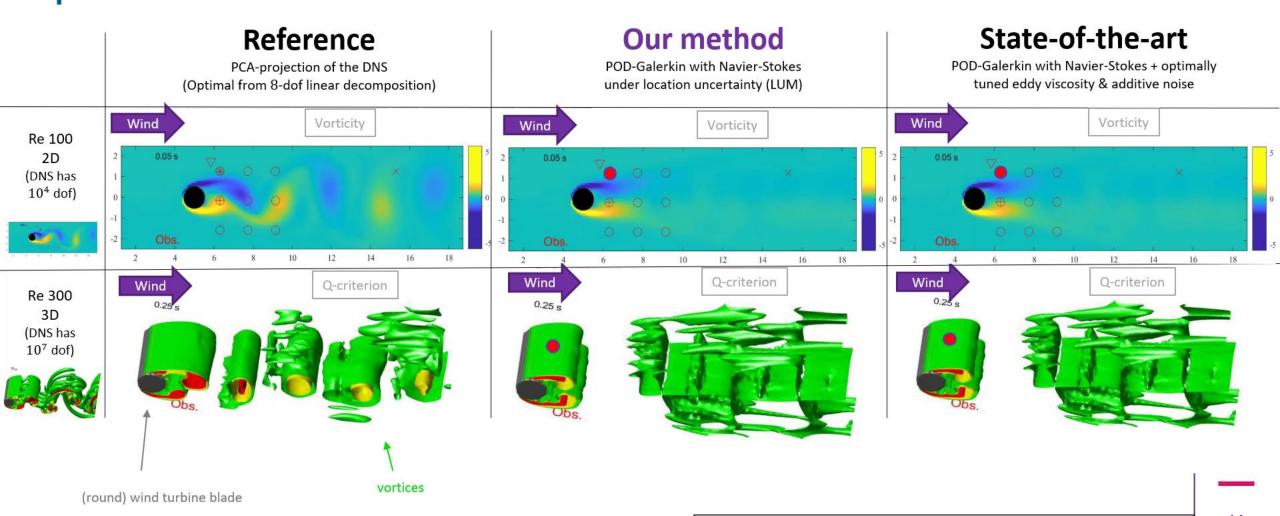
DATA ASSIMILATION RESULTS

with **Incompact3d** (finite differences)

DATA ASSIMILATION RESULTS

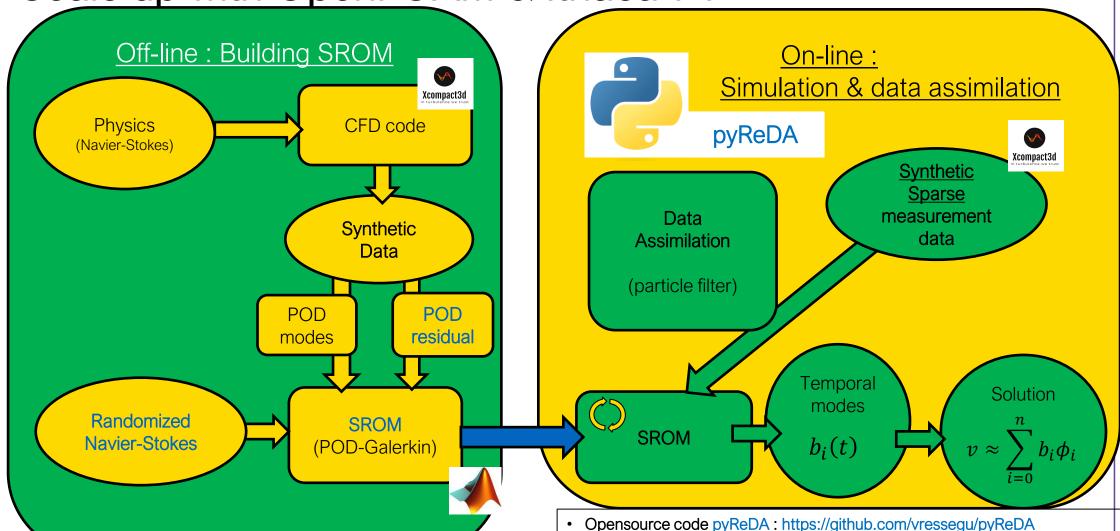
with **Incompact3d** (finite differences)

From 10⁷ to 8 degrees of freedom Single measurement point (blurred & noisy velocity)

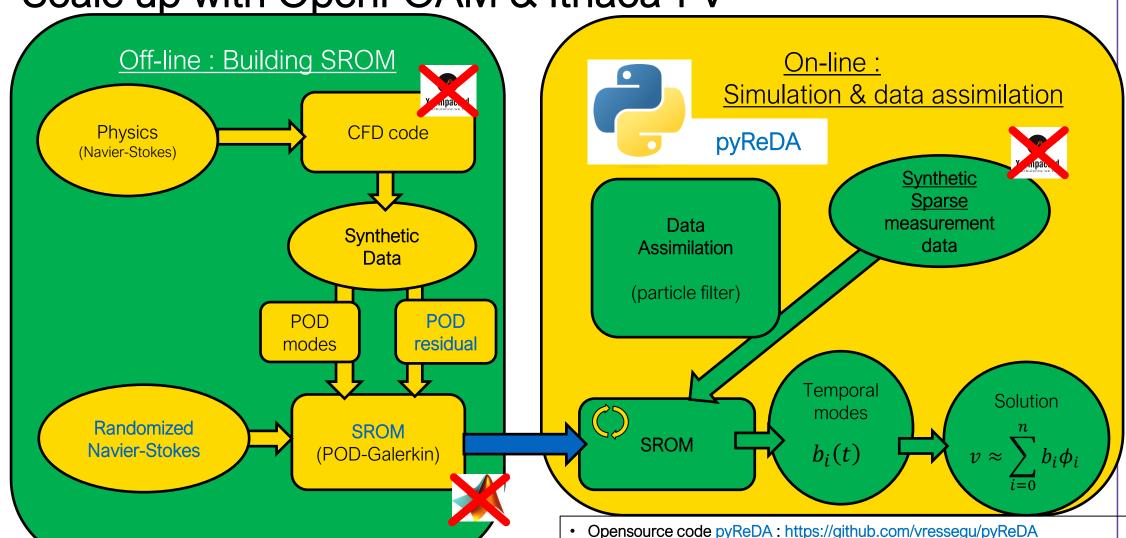


Open VFOAM®

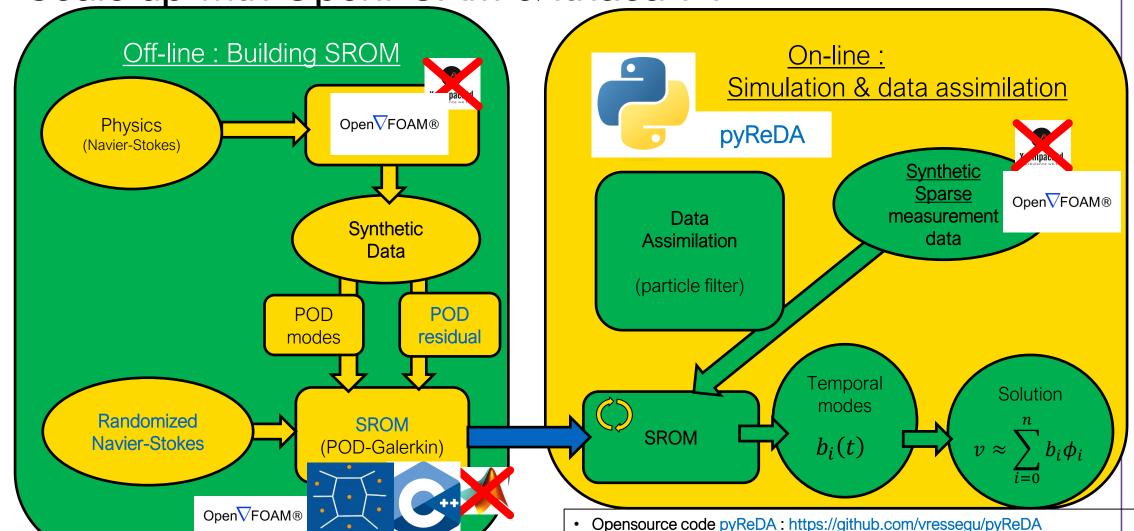
Scale up with OpenFOAM & Ithaca-FV



Open √FOAM® Scale up with OpenFOAM & Ithaca-FV



Scale up with OpenFOAM & Ithaca-FV



54

Opensource code ITHACA-FV Stabile & Rozza (2018) https://arxiv.org/pdf/17/10.11580

DATA ASSIMILATION RESULTS

with OpenFOAM & Ithaca-FV

From 10⁷ to 4 degrees of freedom

Single measurement point (blurred & noisy velocity)

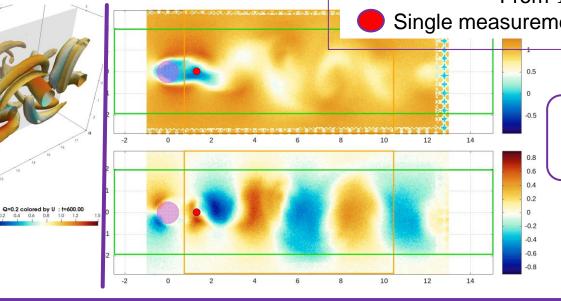
Synthetic PIV

blurred & noisy

2D velocity

DNS

"true" simulation $(10^7 \text{ degrees of freedom})$



Our method:

Data assimilation
with
POD-Galerkin of
randomized
Navier-Stokes
(LUM)
(4 degrees of freedom)

Reference:

PCA-projection of the "true" simulation (DNS) (Optimal from 4-degrees of freedom linear decomposition)

B SCALIAN

DATA ASSIMILATION RESULTS

with OpenFOAM & Ithaca-FV

Flashback!

From 10⁷ to 4 degrees of freedom Single measurement point (blurred & noisy velocity)

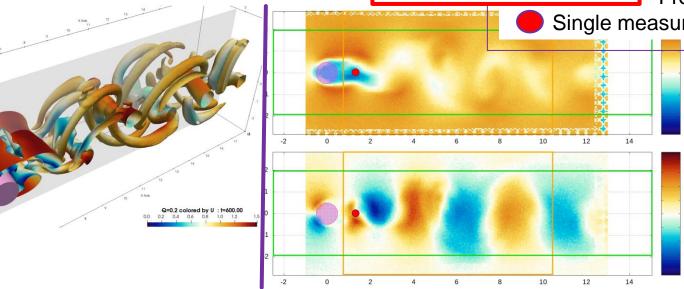
Synthetic PIV

blurred & noisy

2D velocity

DNS

"true" simulation $(10^7 \text{ degrees of freedom})$



Our method:

Data assimilation
with
POD-Galerkin of
randomized
Navier-Stokes
(LUM)
(4 degrees of freedom)

Reference:

PCA-projection of the "true" simulation (DNS)
(Optimal from 4-degrees of freedom linear decomposition)

B SCALIAN

Flashback!

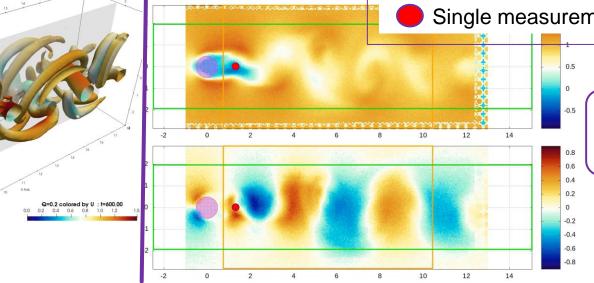
with OpenFOAM & Ithaca-FV

DATA ASSIMILATION RESULTS

From 10⁷ to 4 degrees of freedom Single measurement point (blurred & noisy velocity)

DNS

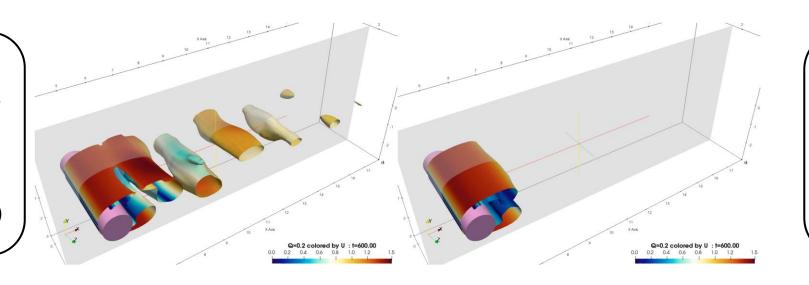
"true" simulation $(10^7 \text{ degrees of freedom})$



Synthetic PIV blurred & noisy 2D velocity

Reference:

PCA-projection of the "true" simulation (DNS) (Optimal from 4-degrees of freedom linear decomposition)

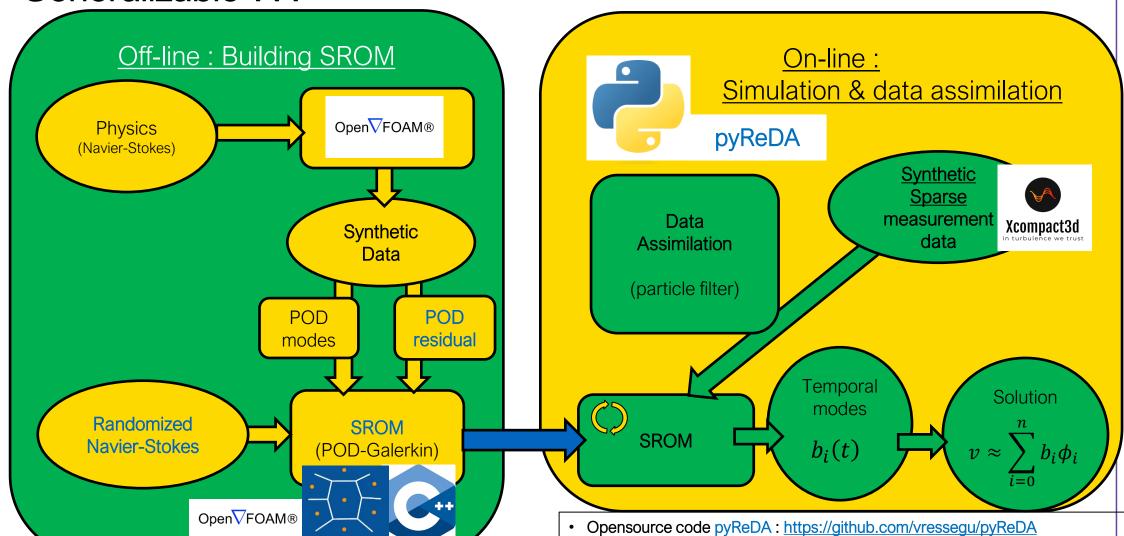


Our method:

Data assimilation
with
POD-Galerkin of
randomized
Navier-Stokes
(LUM)
(4 degrees of freedom)

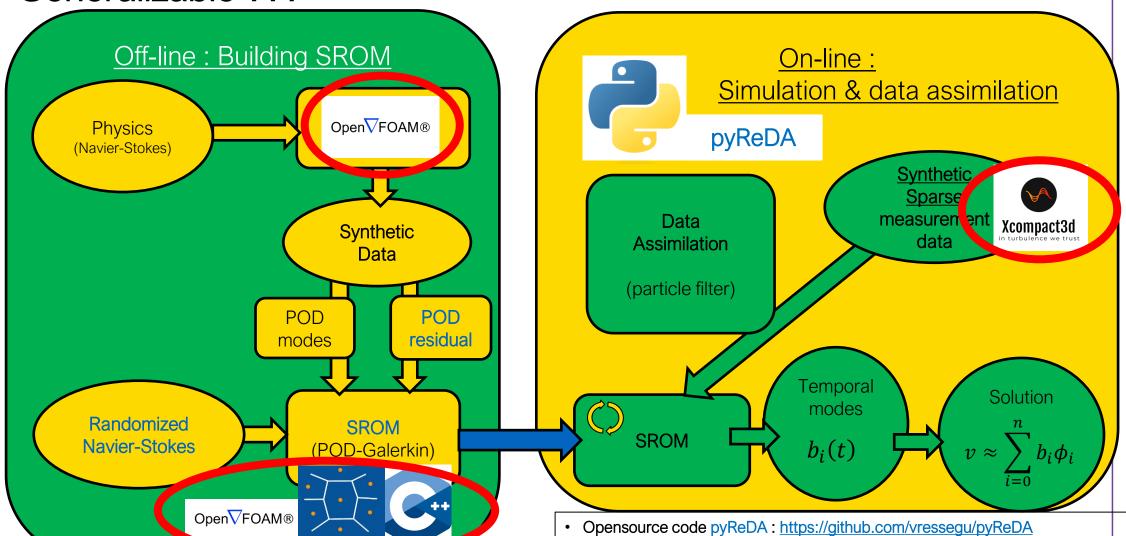
ITHACA - FV

Generalizable ???



ITHACA - FV

Generalizable ???



DATA ASSIMILATION RESULTS

Generalizable ???

Test with

- OpenFOAM (finite volumes) train set
- Incompact3d (finite differences) test set

Reference:

PCA-projection of the "true" simulation (DNS) (Optimal from 4-degrees of freedom linear decomposition)

Our method:

From 10⁷ to 4 degrees of freedom

Single measurement point (blurred & noisy velocity)

Data assimilation
with
POD-Galerkin of
randomized
Navier-Stokes
(LUM)
(4 degrees of freedom)

DATA ASSIMILATION RESULTS

Generalizable ???

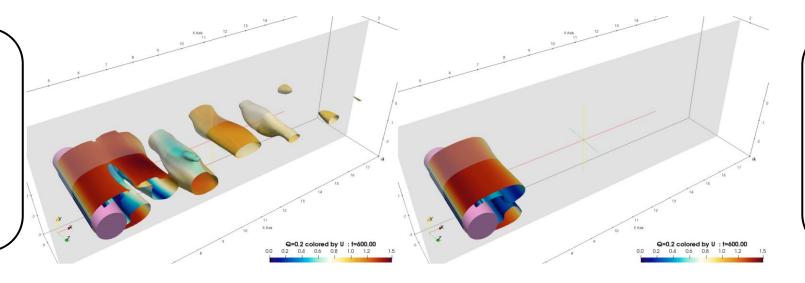
Test with

- OpenFOAM (finite volumes) train set
- Incompact3d (finite differences) test set

From 10⁷ to 4 degrees of freedom Single measurement point (blurred & noisy velocity)

Reference:

PCA-projection of the "true" simulation (DNS)
(Optimal from 4-degrees of freedom linear decomposition)



Our method:

Data assimilation
with
POD-Galerkin of
randomized
Navier-Stokes
(LUM)
(4 degrees of freedom)

CONCLUSION

CONCLUSION

- ▶ Reduced order model (ROM): for very fast and robust CFD ($10^7 \rightarrow O(10)$ degrees of freedom.)
 - Combine data & physics (built off-line)
 Now implemented in OpenFOAM / ITHACA-FV
 - Closure problem handled by LUM
- ▶ Data assimilation : to correct the fast simulation on-line by incomplete/noisy measurements
 - Model error quantification handled by LUM
- Results
 - Optimal unsteady 3D flow estimation/prediction in the whole spatial domain (large-scale structures)
 - Robust far outside the training set (time extrapolation / out of sample)

CONCLUSION

- ▶ Reduced order model (ROM): for very fast and robust CFD ($10^7 \rightarrow O(10)$ degrees of freedom.)
 - Combine data & physics (built off-line)
 Now implemented in OpenFOAM / ITHACA-FV
 - Closure problem handled by LUM
- ▶ Data assimilation : to correct the fast simulation on-line by incomplete/noisy measurements
 - Model error quantification handled by LUM
- Results
 - Optimal unsteady 3D flow estimation/prediction in the whole spatial domain (large-scale structures)
 - Robust far outside the training set (time extrapolation / out of sample)

WORK IN PROGRESS:

- Increasing Reynolds (ROM of LES, DDES)
 - Hyperreduction (=interpolation with a POD basis) of turbulence model terms

BONUS SLIDES

Randomized incompressible Navier-Stokes

$$v = w + v'$$

Resolved fluid velocity: w

Unresolved fluid velocity:

 $v' = \sigma \dot{B}$ (Gaussian, white wrt t)

(assuming $\nabla \cdot w = 0$ and $\nabla \cdot v' = 0$)

Momentum conservation

$$\frac{Dw}{Dt} = F$$
 (Forces)

Randomized Navier-Stokes

From Ito-Wentzell formula (Kunita 1990) with Ito notations

$$v = w + v'$$

Resolved fluid velocity:

Unresolved fluid velocity:

 $v' = \sigma \dot{B}$ (Gaussian, white wrt t)

(assuming $\nabla \cdot w = 0$ and $\nabla \cdot v' = 0$)

Variance tensor:

$$a(x,x) = \frac{\mathbb{E}\{(\sigma dB_t)(\sigma dB_t)^T\}}{dt}$$

$$\partial_t w + w^* \cdot \nabla w + \sigma \dot{B} \cdot \nabla w - \nabla \cdot \left(\frac{1}{2} a \nabla w\right) = F$$

From Ito-Wentzell

LOCATION UNCERTAINTY MODELS (LUM),

Randomized Navier-Stokes

$$v = w + v'$$

Resolved fluid velocity:

Unresolved fluid velocity:

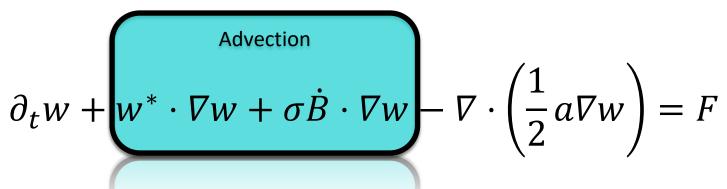
 $v' = \sigma \dot{B}$ (Gaussian, white wrt t)

(assuming $\nabla \cdot \overline{w} = 0$ and $\nabla \cdot v' = 0$)

Variance tensor:

$$a(x,x) = \frac{\mathbb{E}\{(\sigma dB_t)(\sigma dB_t)^T\}}{dt}$$

formula (Kunita 1990) with Ito notations



Randomized Navier-Stokes

$$v = w + v'$$

Resolved fluid velocity:

Unresolved fluid velocity:

$$v' = \sigma \dot{B}$$
 (Gaussian, white wrt t)

(assuming $\nabla \cdot w = 0$ and $\nabla \cdot v' = 0$)

Variance tensor:

$$a(x,x) = \frac{\mathbb{E}\{(\sigma dB_t)(\sigma dB_t)^T\}}{dt}$$

From Ito-Wentzell formula (Kunita 1990) with Ito notations

$$\partial_t w + w^* \cdot \nabla w + \sigma \dot{B} \cdot \nabla w - \nabla \cdot \left(\frac{1}{2} a \nabla w\right) = F$$

From Ito-Wentzell

LOCATION UNCERTAINTY MODELS (LUM),

Randomized Navier-Stokes

$$v = w + v'$$

Resolved fluid velocity:

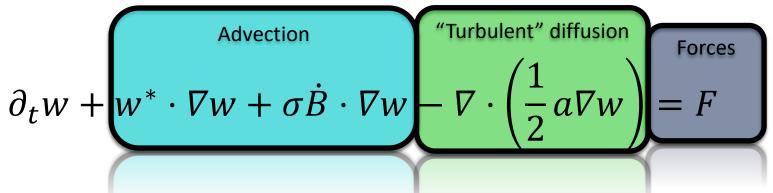
Unresolved fluid velocity:

$$v' = \sigma \dot{B}$$
 (Gaussian, white wrt t)

(assuming $\nabla \cdot w = 0$ and $\nabla \cdot v' = 0$)

Variance tensor:

$$a(x,x) = \frac{\mathbb{E}\{(\sigma dB_t)(\sigma dB_t)^T\}}{dt}$$



Randomized Navier-Stokes

From Ito-Wentzell formula (Kunita 1990) with Ito notations

$$v = w + v'$$

Resolved fluid velocity:

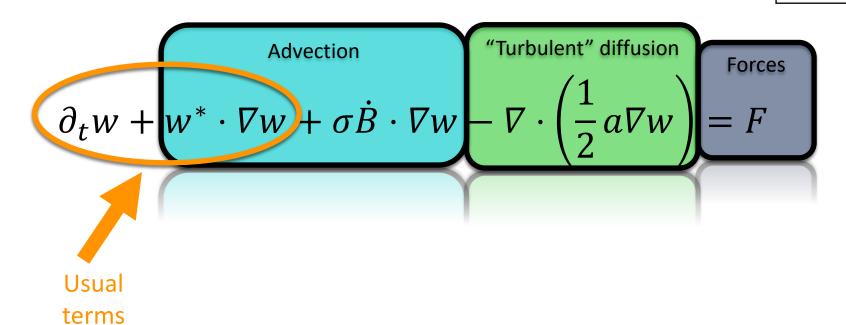
Unresolved fluid velocity:

 $v' = \sigma \dot{B}$ (Gaussian, white wrt t)

(assuming $\nabla \cdot w = 0$ and $\nabla \cdot v' = 0$)

Variance tensor:

$$a(x,x) = \frac{\mathbb{E}\{(\sigma dB_t)(\sigma dB_t)^T\}}{dt}$$



Randomized Navier-Stokes

From Ito-Wentzell formula (Kunita 1990) with Ito notations

$$v = w + v'$$

Resolved fluid velocity:

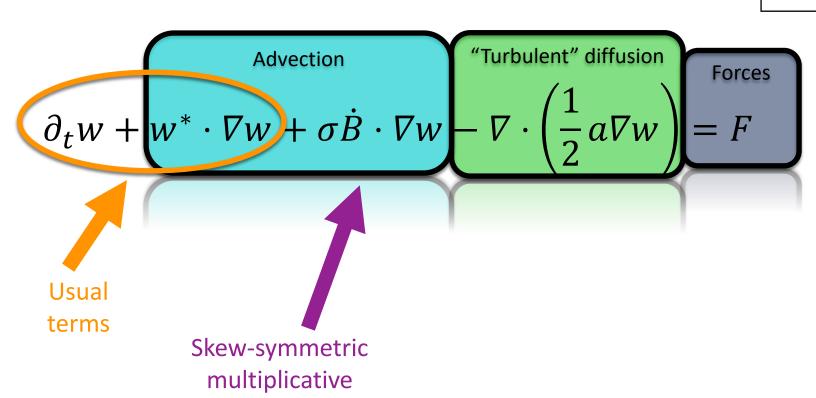
Unresolved fluid velocity:

 $v' = \sigma \dot{B}$ (Gaussian, white wrt t)

(assuming $\nabla \cdot w = 0$ and $\nabla \cdot v' = 0$)

Variance tensor:

$$a(x,x) = \frac{\mathbb{E}\{(\sigma dB_t)(\sigma dB_t)^T\}}{dt}$$



random

forcing

From Ito-Wentzell

formula (Kunita 1990)

LOCATION UNCERTAINTY MODELS (LUM),

Randomized Navier-Stokes

v = w + v'

Resolved fluid velocity:

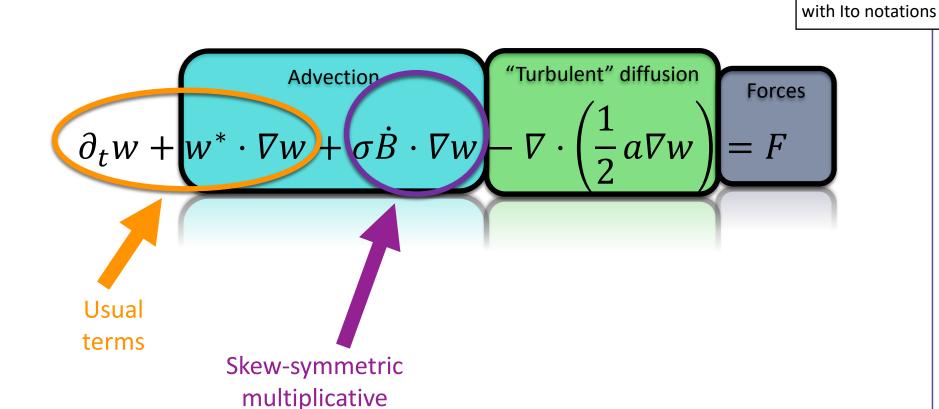
Unresolved fluid velocity:

 $v'=\sigma\dot{B}$ (Gaussian, white wrt t)

(assuming $\nabla \cdot w = 0$ and $\nabla \cdot v' = 0$)

Variance tensor:

$$a(x,x) = \frac{\mathbb{E}\{(\sigma dB_t)(\sigma dB_t)^T\}}{dt}$$



random

forcing

Randomized Navier-Stokes

Symmetric negative

From Ito-Wentzell formula (Kunita 1990) with Ito notations

Resolved fluid velocity:

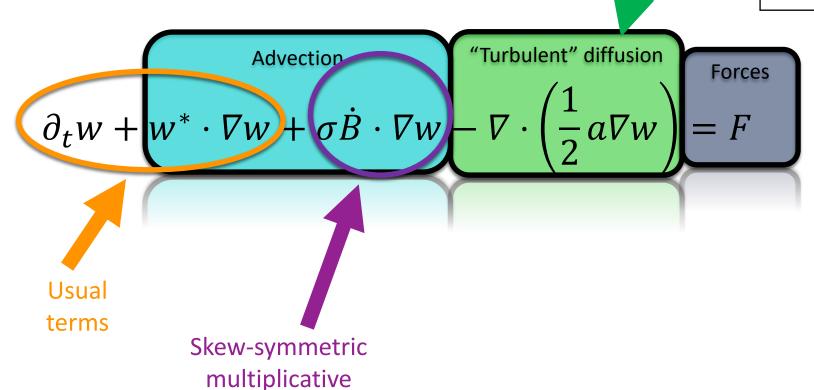
Unresolved fluid velocity:

$$v' = \sigma \dot{B}$$
 (Gaussian, white wrt t)

(assuming $\nabla \cdot w = 0$ and $\nabla \cdot v' = 0$)

Variance tensor:

$$a(x,x) = \frac{\mathbb{E}\{(\sigma dB_t)(\sigma dB_t)^T\}}{dt}$$



random

forcing

Randomized Navier-Stokes

Symmetric negative

From Ito-Wentzell formula (Kunita 1990) with Ito notations

Resolved fluid velocity:

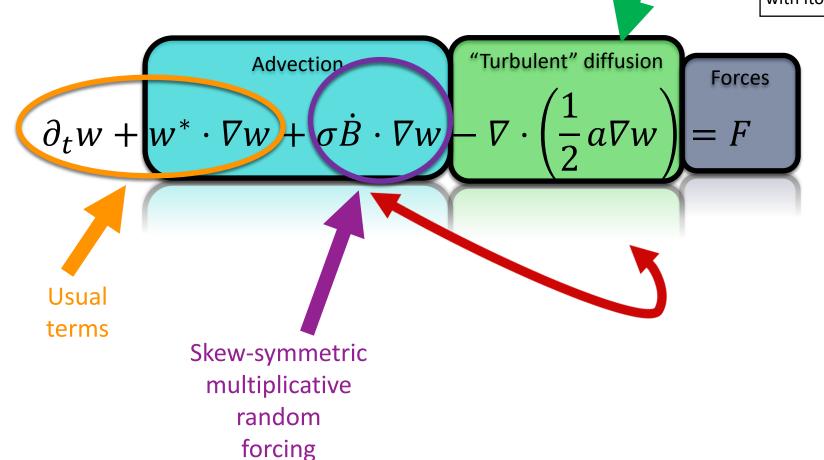
Unresolved fluid velocity:

$$v' = \sigma \dot{B}$$
 (Gaussian, white wrt t)

(assuming $\nabla \cdot w = 0$ and $\nabla \cdot v' = 0$)

Variance tensor:

$$a(x,x) = \frac{\mathbb{E}\{(\sigma dB_t)(\sigma dB_t)^T\}}{dt}$$



Randomized Navier-Stokes

Symmetric negative

From Ito-Wentzell formula (Kunita 1990) with Ito notations

Resolved fluid velocity:

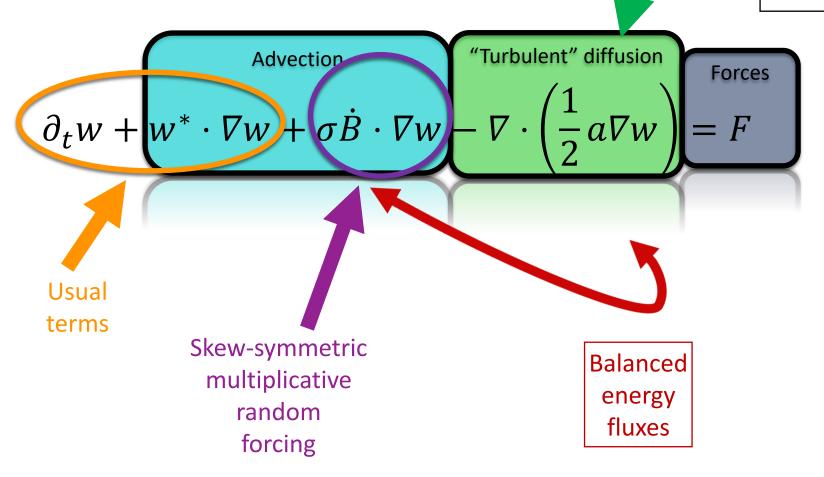
Unresolved fluid velocity:

$$v' = \sigma \dot{B}$$
 (Gaussian, white wrt t)

(assuming $\nabla \cdot w = 0$ and $\nabla \cdot v' = 0$)

Variance tensor:

$$a(x,x) = \frac{\mathbb{E}\{(\sigma dB_t)(\sigma dB_t)^T\}}{dt}$$

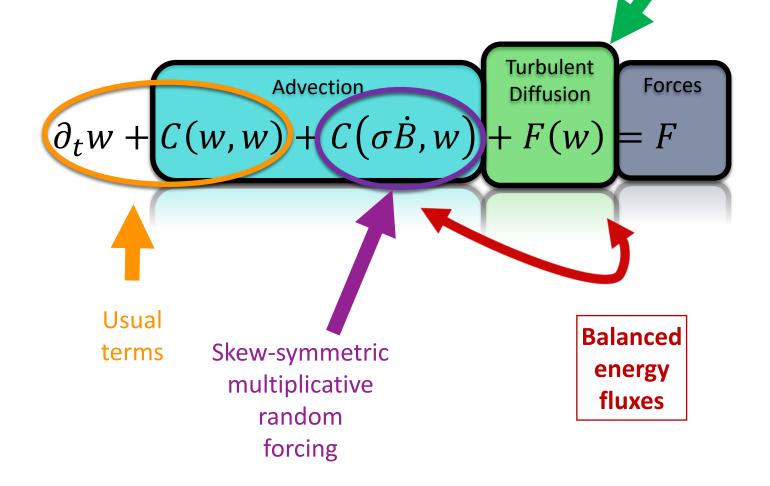


Randomized Navier-Stokes

v = w + v'

Resolved fluid velocity:

Unresolved fluid velocity: $v' = \sigma \dot{B}$ (Gaussian, white wrt t)



From Ito-Wentzell formula (Kunita 1990) with Ito notations

Symmetric

negative

POD-Galerkin gives SDEs for resolved modes

Full order : $M \sim 10^7$ Reduced order : $n \sim 10$

$$v = w + v'$$

Resolved fluid velocity: $w(x,t) = \sum_{i=0}^{n} b_i(t)\phi_i(x)$

Unresolved fluid velocity: $v' = \sigma \dot{B}$ (Gaussian, white wrt t)

Variance tensor:

$$a(x,x) = \frac{\mathbb{E}\{(\sigma dB_t)(\sigma dB_t)^T\}}{dt}$$

$$\int_{\Omega} \phi_i(x) \cdot (\partial_t w + C(w, w) + C(\sigma \dot{B}, w) + F(w) = F) dx$$

POD-Galerkin gives SDEs for resolved modes

Full order : $M \sim 10^7$

Reduced order: $n \sim 10$

$$v = w + v'$$

Resolved fluid velocity: $w(x,t) = \sum_{i=0}^{n} b_i(t)\phi_i(x)$

Unresolved fluid velocity: $v' = \sigma \dot{B}$ (Gaussian, white wrt t)

Variance tensor:

$$a(x,x) = \frac{\mathbb{E}\{(\sigma dB_t)(\sigma dB_t)^T\}}{dt}$$

$$\int_{\Omega} \phi_i(x) \cdot (\partial_t w + C(w, w) + C(\sigma \dot{B}, w) + F(w) = F) dx$$

$$\frac{db(t)}{dt} = c(b(t), b(t)) + K(\sigma \dot{B})b(t) + fb(t) = \cdots$$

POD-Galerkin gives SDEs for resolved modes

Full order : $M \sim 10^7$

Reduced order: $n \sim 10$

$$v = w + v'$$

Resolved fluid velocity: $w(x,t) = \sum_{i=0}^{n} b_i(t)\phi_i(x)$

Unresolved fluid velocity: $v' = \sigma \dot{B}$ (Gaussian, white wrt t)

Variance tensor:

$$a(x,x) = \frac{\mathbb{E}\{(\sigma dB_t)(\sigma dB_t)^T\}}{dt}$$

$$\int_{\Omega} \phi_i(x) \cdot (\partial_t w + C(w, w) + C(\sigma \dot{B}, w) + F(w) = F) dx$$

$$\frac{db(t)}{dt} = c(b(t), b(t)) + K(\sigma \dot{B}) b(t) + f b(t) = \cdots$$

Advection: 2nd order polynomial

POD-Galerkin gives SDEs for resolved modes

Full order : $M \sim 10^7$ Reduced order : $n \sim 10$

$$v = w + v'$$

Resolved fluid velocity: $w(x,t) = \sum_{i=0}^{n} b_i(t)\phi_i(x)$

Unresolved fluid velocity: $v' = \sigma \dot{B}$ (Gaussian, white wrt t)

Variance tensor:

$$a(x,x) = \frac{\mathbb{E}\{(\sigma dB_t)(\sigma dB_t)^T\}}{dt}$$

$$\int_{\Omega} \phi_i(x) \cdot (\partial_t w + C(w, w) + C(\sigma \dot{B}, w) + F(w) = F) dx$$

$$\frac{db(t)}{dt} = c(b(t), b(t)) + K(\sigma \dot{B}) b(t) + f b(t) = \cdots$$
Multiplicative skew-symmetric noise

Advection: 2nd order polynomial

POD-Galerkin gives SDEs for resolved modes

Full order : $M \sim 10^7$

Reduced order: $n \sim 10$

$$v = w + v'$$

Resolved fluid velocity: $w(x,t) = \sum_{i=0}^{n} b_i(t)\phi_i(x)$

Unresolved fluid velocity: $v' = \sigma \dot{B}$ (Gaussian, white wrt t)

Variance tensor:

$$a(x,x) = \frac{\mathbb{E}\{(\sigma dB_t)(\sigma dB_t)^T\}}{dt}$$

$$\int_{\Omega} \phi_i(x) \cdot (\partial_t w + C(w, w) + C(\sigma \dot{B}, w) + F(w) = F) dx$$

$$\frac{db(t)}{dt} = c(b(t), b(t)) + K(\sigma \dot{B}) b(t) + f b(t) = \cdots$$
Multiplicative

skew-symmetric noise

Advection: 2nd order polynomial

$$K_{jq}[\xi] = -\int_{\Omega} \phi_j \cdot C(\xi, \phi_q)$$

POD-Galerkin gives SDEs for resolved modes

Full order : $M \sim 10^7$

Reduced order: $n \sim 10$

$$v = w + v'$$

Resolved fluid velocity: $w(x,t) = \sum_{i=0}^{n} b_i(t)\phi_i(x)$

Unresolved fluid velocity: $v' = \sigma \dot{B}$ (Gaussian, white wrt t)

Variance tensor:

$$a(x,x) = \frac{\mathbb{E}\{(\sigma dB_t)(\sigma dB_t)^T\}}{dt}$$

$$\int_{\Omega} \phi_i(x) \cdot (\partial_t w + C(w, w) + C(\sigma \dot{B}, w) + F(w) = F) dx$$

$$\frac{db(t)}{dt} = c(b(t), b(t)) + K(\sigma \dot{B}) b(t) + f b(t) = \cdots$$

Multiplicative skew-symmetric noise

→ Covariance to estimate

$$K_{jq}[\xi] = -\int_{\Omega} \phi_j \cdot C(\xi, \phi_q)$$

POD-Galerkin gives SDEs for resolved modes

Full order : $M \sim 10^7$

Reduced order: $n \sim 10$

$$v = w + v'$$

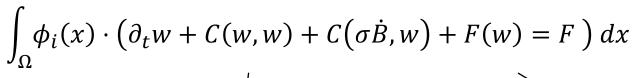
Resolved fluid velocity: $w(x,t) = \sum_{i=0}^{n} b_i(t)\phi_i(x)$

Unresolved fluid velocity:

 $v' = \sigma \dot{B}$ (Gaussian, white wrt t)

Variance tensor:

$$a(x,x) = \frac{\mathbb{E}\{(\sigma dB_t)(\sigma dB_t)^T\}}{dt}$$



New estimator

- Consistency proven $(\Delta t \to 0)$
- Numerically efficient
- Data-based & Physics-based
 - → Robustness in extrapolation

$$\frac{db(t)}{dt} = c(b(t), b(t)) + K(\sigma \dot{B}) b(t) + f b(t) = \cdots$$

Multiplicative skew-symmetric noise

→ Covariance to estimate

$$K_{jq}[\xi] = -\int_{\Omega} \phi_j \cdot \mathcal{C}(\xi, \phi_q)$$

Resseguier et al. (2021). SIAM-ASA J Uncertain . hal- 03169957

Advection: 2nd order polynomial

POD-Galerkin gives SDEs for resolved modes

Full order : $M \sim 10^7$

Reduced order: $n \sim 10$

$$v = w + v'$$

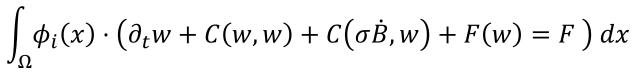
Resolved fluid velocity: $w(x,t) = \overline{\sum_{i=0}^{n} b_i(t) \phi_i(x)}$

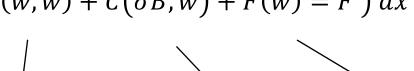
Unresolved fluid velocity:

 $v' = \sigma \dot{B}$ (Gaussian, white wrt t)

Variance tensor:

$$a(x,x) = \frac{\mathbb{E}\{(\sigma dB_t)(\sigma dB_t)^T\}}{dt}$$





New estimator

- Consistency proven $(\Delta t \rightarrow 0)$
- Numerically efficient
- Data-based & Physics-based
 - → Robustness in extrapolation

$$\frac{db(t)}{dt} = c(b(t), b(t)) + K(\sigma \dot{B}) b(t) + f b(t) = \cdots$$

Multiplicative skew-symmetric noise

"Turbulent" diffusion

→ Covariance to estimate

with $a(x) \approx \Delta t \ v' \ (v')^T$

$$K_{jq}[\xi] = -\int_{\Omega} \phi_j \cdot C(\xi, \phi_q)$$

$$K_{jq}[\xi] = -\int_{\Omega} \phi_j \cdot C(\xi, \phi_q)$$

Advection: 2nd order polynomial

POD-Galerkin gives SDEs for resolved modes

Full order : $M \sim 10^7$

Reduced order: $n \sim 10$

$$v = w + v'$$

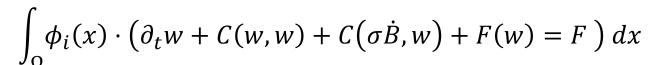
Resolved fluid velocity: $w(x,t) = \overline{\sum_{i=0}^{n} b_i(t) \phi_i(x)}$

Unresolved fluid velocity:

 $v' = \sigma \dot{B}$ (Gaussian, white wrt t)

Variance tensor:

$$a(x,x) = \frac{\mathbb{E}\{(\sigma dB_t)(\sigma dB_t)^T\}}{dt}$$



 \approx globally balanced energy fluxes

New estimator

- Consistency proven $(\Delta t \rightarrow 0)$
- Numerically efficient
- Data-based & Physics-based
 - → Robustness in extrapolation

$$\frac{db(t)}{dt} = c(b(t), b(t)) + K(\sigma \dot{B}) b(t) + f b(t) = \cdots$$

Multiplicative skew-symmetric noise

→ Covariance to estimate

"Turbulent" diffusion

with $a(x) \approx \Delta t \ v' \ (v')^T$

$$K_{jq}[\xi] = -\int_{\Omega} \phi_j \cdot C(\xi, \phi_q)$$

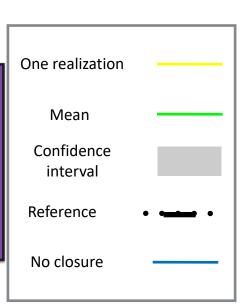
Resseguier et al. (2021). SIAM-ASA J Uncertain. hal- 03169957

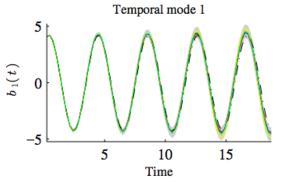
n=4 resolved degrees of freedom No data assimilation Known initial conditions b(t=0)

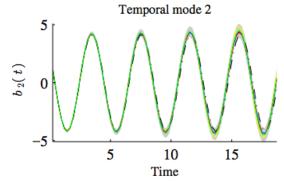
v = w + v'

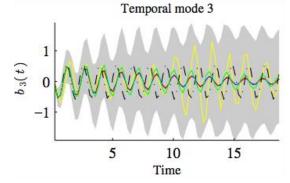
Resolved fluid velocity: $w = \sum_{i=0}^{n} b_i \phi_i$

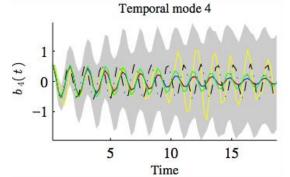
Unresolved fluid velocity: v'











n=4 resolved degrees of freedom No data assimilation Known initial conditions b(t=0)

Mainly from the mean $ar{v}=\phi_0$

Energy

v = w + v'

Resolved fluid velocity: $w = \sum_{i=0}^{n} b_i \phi_i$

Unresolved fluid velocity:

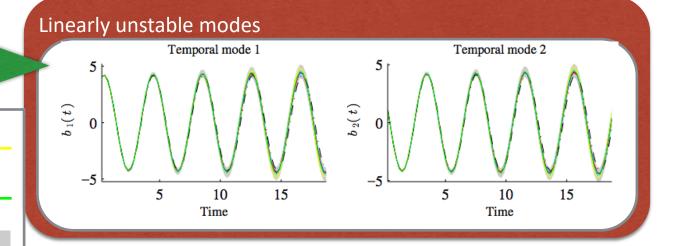
One realization

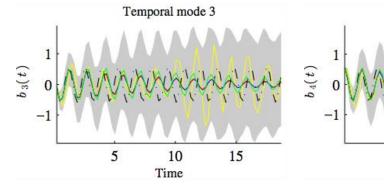
Mean

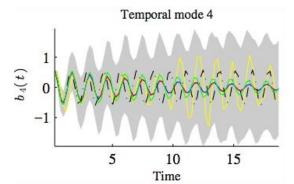
Confidence interval

Reference

No closure







n=4 resolved degrees of freedom No data assimilation Known initial conditions b(t=0)

Mainly from the mean $ar{v}=\phi_0$

c(b(t),b(t))

Energy

v = w + v'

Resolved fluid velocity: $w = \sum_{i=0}^{n} b_i \phi_i$

Unresolved fluid velocity:

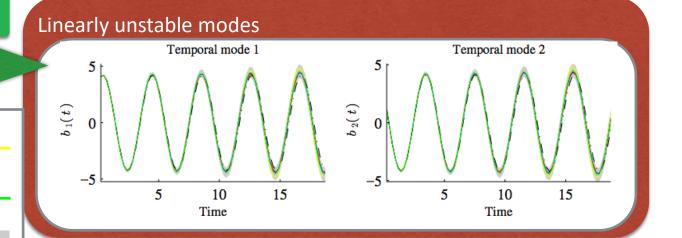
One realization

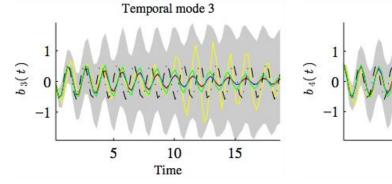
Mean

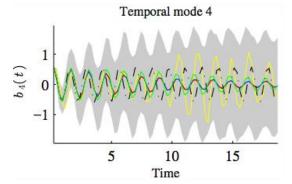
Confidence interval

Reference

No closure







n=4 resolved degrees of freedom No data assimilation Known initial conditions b(t=0)

Mainly from the mean $ar{v}=\phi_0$

c(b(t),b(t))

Energy

v = w + v'

Resolved fluid velocity: $w = \sum_{i=0}^{n} b_i \phi_i$

Unresolved fluid velocity: v'

One realization

Mean

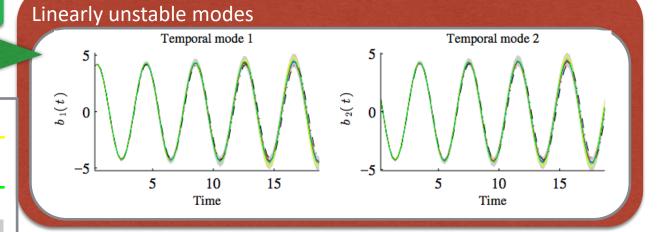
Confidence interval

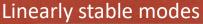
Reference

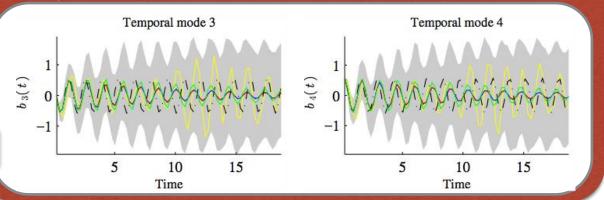
No closure

Mainly to the mean $ar{v}=\phi_0$

Energy







n=4 resolved degrees of freedom No data assimilation Known initial conditions b(t=0)

Mainly from the mean $ar{v}=\phi_0$

c(b(t),b(t))

Energy

v = w + v'

Resolved fluid velocity: $w = \sum_{i=0}^{n} b_i \phi_i$

Unresolved fluid velocity:

One realization

Mean

Confidence interval

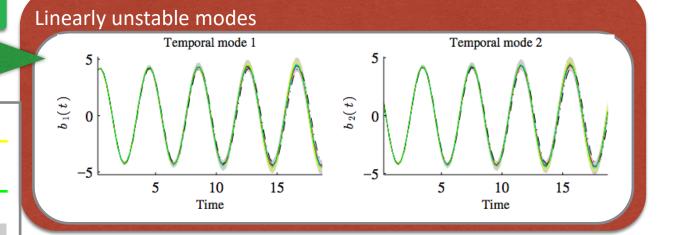
Reference

No closure

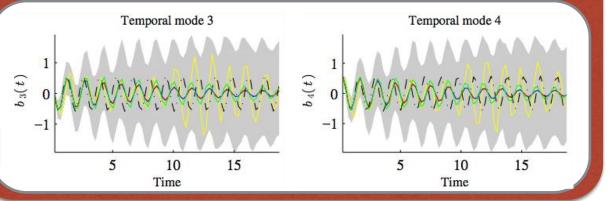
Mainly to the mean $ar{v}=\phi_0$

Energy

c(b(t),b(t))



Linearly stable modes



n = 4 resolved degrees of freedom No data assimilation Known initial conditions b(t = 0)

Mainly from the mean $\bar{v} = \phi_0$ c(b(t),b(t))

Energy

v = w + v'

Resolved fluid velocity: $w = \sum_{i=0}^{n} b_i \phi_i$

Unresolved fluid velocity:

One realization

Mean

Confidence interval

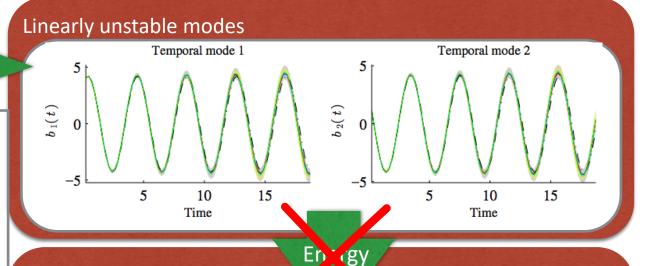
Reference

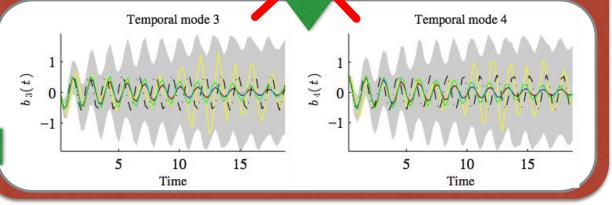
No closure

Mainly to the mean $\bar{v} = \phi_0$

Energy

c(b(t),b(t))





Stabilized

by

turbulent diffusion

f b(t)

UNCERTAINTY QUANTIFICATION (PRIOR)

n = 4 resolved degrees of freedom No data assimilation

Known initial conditions b(t = 0)

Mainly from the mean $\bar{v} = \phi_0$ c(b(t),b(t))

Energy

v = w + v'

Resolved fluid velocity: $w = \sum_{i=0}^{n} b_i \phi_i$

Unresolved fluid velocity:

One realization

Mean

Confidence interval

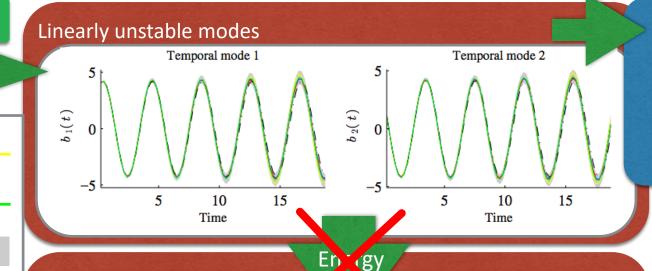
Reference

No closure

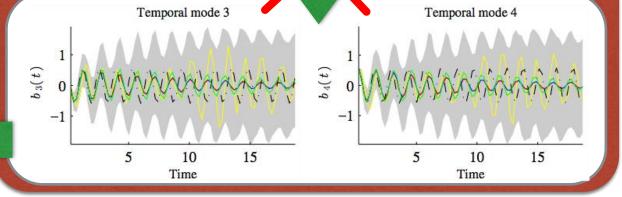
Mainly to the mean $\bar{v} = \phi_0$

Energy

c(b(t),b(t))



Linearly stable modes



Présentation ...

n = 4 resolved degrees of freedom No data assimilation

Known initial conditions b(t = 0)

Mainly from the mean $\bar{v} = \phi_0$ c(b(t),b(t))

Energy

v = w + v'

Resolved fluid velocity: $w = \sum_{i=0}^{n} b_i \phi_i$

Unresolved fluid velocity:

One realization

Mean

Confidence interval

Reference

Mainly to the mean $\bar{v} = \phi_0$

No closure

Energy

c(b(t),b(t))

Linearly stable modes

Linearly unstable modes

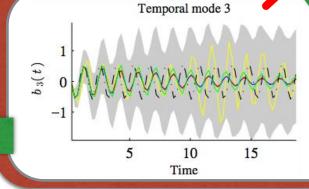
Temporal mode 1

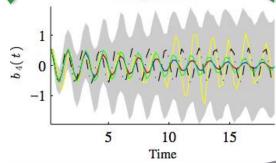
10

Time

 $b_2(t)$

gy





Temporal mode 2

Time

Temporal mode 4

15

Stabilized by turbulent diffusion f b(t)

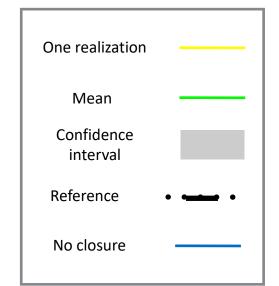
Variability maintained by random energy transfert

n=8 resolved degrees of freedom No data assimilation Known initial conditions b(t=0)

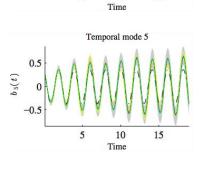
v = w + v'

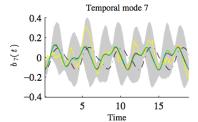
Resolved fluid velocity: $w = \sum_{i=0}^{n} b_i \phi_i$

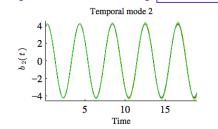
Unresolved fluid velocity:

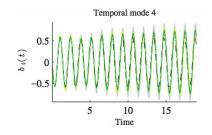


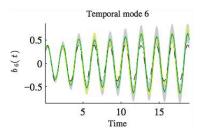


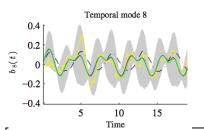










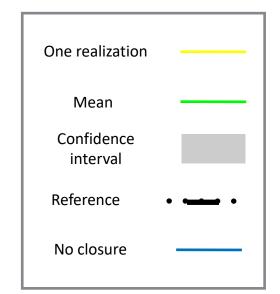


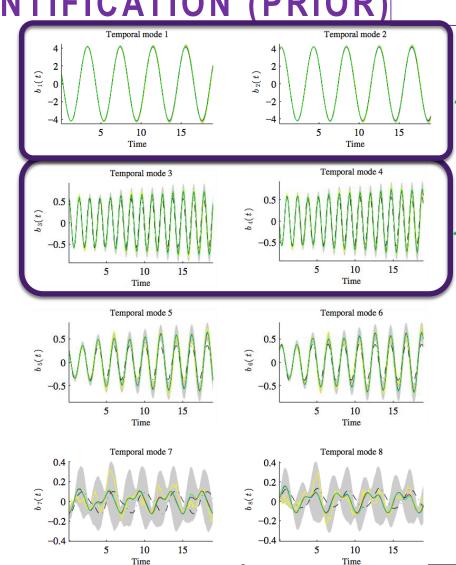
n=8 resolved degrees of freedom No data assimilation Known initial conditions b(t=0)

v = w + v'

Resolved fluid velocity: $w = \sum_{i=0}^{n} b_i \phi_i$

Unresolved fluid velocity:





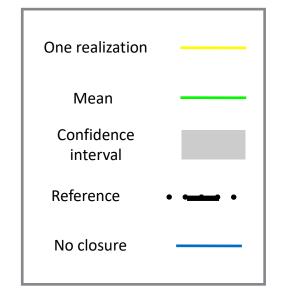
Deterministic energy transfert c(b(t), b(t))

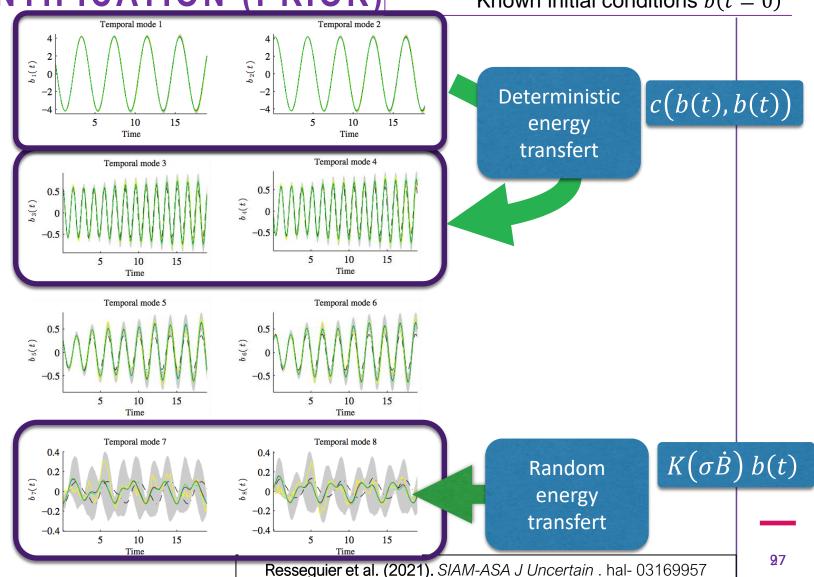
n=8 resolved degrees of freedom No data assimilation Known initial conditions b(t=0)

v = w + v'

Resolved fluid velocity: $w = \sum_{i=0}^{n} b_i \phi_i$

Unresolved fluid velocity:





DATA ASSIMILATION (POSTERIOR)

Error on the solution estimation

v = w + v'

Resolved fluid velocity: $w = \sum_{i=0}^{n} b_i \phi_i$

