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Reduced order model (ROM)

Time Space
Solution of an PDE with the form:

Full space
Reduced 

space

Solution 

coordinates
𝑣𝑞 𝑥𝑖 , 𝑡
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Multiscale modeling

Large-scale

eddy

Small

-scale

eddy

Medium-scale

eddy

Fluids are multiscale Many coupled degrees of freedom

We cannot simulate (or observe) every scales.

Generally, authors

• simulate large scales 𝑤,

• model the effect of small scales 𝑣′ in the equations (closure).

Here, we

• model the small scales 𝒗′ through stochastic processes, 

calibrated from data and/or from physical scale symmetries.

• inject those in physical equations

for physical understanding, simulations & data assimilation.

𝑣 = 𝑤 + 𝑣′

Resolved fluid velocity: 
𝑤 = σ𝑖=0

𝑛 𝑏𝑖𝜙𝑖

Unresolved fluid 

velocity: 

𝑣′
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location uncertainty models (LUM)
12

𝑣 = 𝑤 + 𝑣′

Resolved fluid velocity: 
𝑤 = σ𝑖=0

𝑛 𝑏𝑖𝜙𝑖

Unresolved fluid 

velocity: 

𝑣′ =
𝜎𝑑𝐵𝑡

𝑑𝑡

Assumed

(conditionally-)Gaussian

& white in time

(non-stationary in space)
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location uncertainty models (LUM),

Randomized Navier-Stokes 

Momentum conservation

d 𝑤 𝑡, 𝑋𝑡 = 𝑑𝐹 (Forces)

Positions of fluid parcels 𝑋𝑡 :
𝑑𝑋𝑡 = 𝑤 𝑡, 𝑋𝑡 𝑑𝑡 + 𝜎 𝑡, 𝑋𝑡 𝑑𝐵𝑡

Gaussian
process

white in time

𝑣 = 𝑤 + 𝑣′

Resolved fluid velocity: 

𝑤

Unresolved fluid 

velocity: 

𝑣′ =
𝜎𝑑𝐵𝑡

𝑑𝑡
(Gaussian, white 

wrt 𝑡)

(assuming 𝛻 ⋅ 𝑤 = 0 and  𝛻 ⋅ 𝑣′ =
0)

Resseguier V. & al. (2017). Part I. Geophys. Astro. Fluid. hal-01391420 48



𝑑𝑡𝑤 + 𝑤∗𝑑𝑡 ⋅ 𝛻𝑤 + 𝜎𝑑𝐵𝑡 ⋅ 𝛻𝑤 − 𝛻 ⋅
1

2
𝑎𝛻𝑤 𝑑𝑡 = 𝑑𝐹

From Ito-Wentzell

formula (Kunita

1990)
with Ito notations

𝑣 = 𝑤 + 𝑣′

Resolved fluid velocity: 

𝑤

Unresolved fluid 

velocity: 

𝑣′ =
𝜎𝑑𝐵𝑡

𝑑𝑡
(Gaussian, white 

wrt 𝑡)

(assuming 𝛻 ⋅ 𝑤 = 0 and  𝛻 ⋅
𝑣′ = 0)

Variance tensor:

𝑎 𝑥, 𝑥 =
𝔼 𝜎𝑑𝐵𝑡 𝜎𝑑𝐵𝑡

𝑇

𝑑𝑡

Resseguier V. & al. (2017). Part I. Geophys. Astro. Fluid. hal-01391420

location uncertainty models (LUM),

Randomized Navier-Stokes 
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Advection

𝑑𝑡𝑤 + 𝑤∗𝑑𝑡 ⋅ 𝛻𝑤 + 𝜎𝑑𝐵𝑡 ⋅ 𝛻𝑤 − 𝛻 ⋅
1

2
𝑎𝛻𝑤 𝑑𝑡 = 𝑑𝐹

From Ito-Wentzell

formula (Kunita

1990)
with Ito notations

𝑣 = 𝑤 + 𝑣′

Resolved fluid velocity: 

𝑤

Unresolved fluid 

velocity: 

𝑣′ =
𝜎𝑑𝐵𝑡

𝑑𝑡
(Gaussian, white 

wrt 𝑡)

(assuming 𝛻 ⋅ 𝑤 = 0 and  𝛻 ⋅
𝑣′ = 0)

Variance tensor:

𝑎 𝑥, 𝑥 =
𝔼 𝜎𝑑𝐵𝑡 𝜎𝑑𝐵𝑡

𝑇

𝑑𝑡

Resseguier V. & al. (2017). Part I. Geophys. Astro. Fluid. hal-01391420

location uncertainty models (LUM),

Randomized Navier-Stokes 
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Diffusion
Advection

𝑑𝑡𝑤 + 𝑤∗𝑑𝑡 ⋅ 𝛻𝑤 + 𝜎𝑑𝐵𝑡 ⋅ 𝛻𝑤 − 𝛻 ⋅
1

2
𝑎𝛻𝑤 𝑑𝑡 = 𝑑𝐹

From Ito-Wentzell

formula (Kunita

1990)
with Ito notations

𝑣 = 𝑤 + 𝑣′

Resolved fluid velocity: 

𝑤

Unresolved fluid 

velocity: 

𝑣′ =
𝜎𝑑𝐵𝑡

𝑑𝑡
(Gaussian, white 

wrt 𝑡)

(assuming 𝛻 ⋅ 𝑤 = 0 and  𝛻 ⋅
𝑣′ = 0)

Variance tensor:

𝑎 𝑥, 𝑥 =
𝔼 𝜎𝑑𝐵𝑡 𝜎𝑑𝐵𝑡

𝑇

𝑑𝑡

Resseguier V. & al. (2017). Part I. Geophys. Astro. Fluid. hal-01391420

location uncertainty models (LUM),

Randomized Navier-Stokes 
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Forces
Diffusion

Advection

𝑑𝑡𝑤 + 𝑤∗𝑑𝑡 ⋅ 𝛻𝑤 + 𝜎𝑑𝐵𝑡 ⋅ 𝛻𝑤 − 𝛻 ⋅
1

2
𝑎𝛻𝑤 𝑑𝑡 = 𝑑𝐹

From Ito-Wentzell

formula (Kunita

1990)
with Ito notations

𝑣 = 𝑤 + 𝑣′

Resolved fluid velocity: 

𝑤

Unresolved fluid 

velocity: 

𝑣′ =
𝜎𝑑𝐵𝑡

𝑑𝑡
(Gaussian, white 

wrt 𝑡)

(assuming 𝛻 ⋅ 𝑤 = 0 and  𝛻 ⋅
𝑣′ = 0)

Variance tensor:

𝑎 𝑥, 𝑥 =
𝔼 𝜎𝑑𝐵𝑡 𝜎𝑑𝐵𝑡

𝑇

𝑑𝑡

Resseguier V. & al. (2017). Part I. Geophys. Astro. Fluid. hal-01391420

location uncertainty models (LUM),

Randomized Navier-Stokes 
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Forces
Diffusion

Advection

𝑑𝑡𝑤 + 𝑤∗𝑑𝑡 ⋅ 𝛻𝑤 + 𝜎𝑑𝐵𝑡 ⋅ 𝛻𝑤 − 𝛻 ⋅
1

2
𝑎𝛻𝑤 𝑑𝑡 = 𝑑𝐹

From Ito-Wentzell

formula (Kunita

1990)
with Ito notations

𝑣 = 𝑤 + 𝑣′

Resolved fluid velocity: 

𝑤

Unresolved fluid 

velocity: 

𝑣′ =
𝜎𝑑𝐵𝑡

𝑑𝑡
(Gaussian, white 

wrt 𝑡)

(assuming 𝛻 ⋅ 𝑤 = 0 and  𝛻 ⋅
𝑣′ = 0)

Variance tensor:

𝑎 𝑥, 𝑥 =
𝔼 𝜎𝑑𝐵𝑡 𝜎𝑑𝐵𝑡

𝑇

𝑑𝑡

Usual

terms

Resseguier V. & al. (2017). Part I. Geophys. Astro. Fluid. hal-01391420

location uncertainty models (LUM),

Randomized Navier-Stokes 
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Forces
Diffusion

Advection

𝑑𝑡𝑤 + 𝑤∗𝑑𝑡 ⋅ 𝛻𝑤 + 𝜎𝑑𝐵𝑡 ⋅ 𝛻𝑤 − 𝛻 ⋅
1

2
𝑎𝛻𝑤 𝑑𝑡 = 𝑑𝐹

Skew-symmetric

multiplicative

random

forcing

From Ito-Wentzell

formula (Kunita

1990)
with Ito notations

𝑣 = 𝑤 + 𝑣′

Resolved fluid velocity: 

𝑤

Unresolved fluid 

velocity: 

𝑣′ =
𝜎𝑑𝐵𝑡

𝑑𝑡
(Gaussian, white 

wrt 𝑡)

(assuming 𝛻 ⋅ 𝑤 = 0 and  𝛻 ⋅
𝑣′ = 0)

Variance tensor:

𝑎 𝑥, 𝑥 =
𝔼 𝜎𝑑𝐵𝑡 𝜎𝑑𝐵𝑡

𝑇

𝑑𝑡

Usual

terms

Resseguier V. & al. (2017). Part I. Geophys. Astro. Fluid. hal-01391420

location uncertainty models (LUM),

Randomized Navier-Stokes 
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Forces
Diffusion

Advection

𝑑𝑡𝑤 + 𝑤∗𝑑𝑡 ⋅ 𝛻𝑤 + 𝜎𝑑𝐵𝑡 ⋅ 𝛻𝑤 − 𝛻 ⋅
1

2
𝑎𝛻𝑤 𝑑𝑡 = 𝑑𝐹

Skew-symmetric

multiplicative

random

forcing

From Ito-Wentzell

formula (Kunita

1990)
with Ito notations

𝑣 = 𝑤 + 𝑣′

Resolved fluid velocity: 

𝑤

Unresolved fluid 

velocity: 

𝑣′ =
𝜎𝑑𝐵𝑡

𝑑𝑡
(Gaussian, white 

wrt 𝑡)

(assuming 𝛻 ⋅ 𝑤 = 0 and  𝛻 ⋅
𝑣′ = 0)

Variance tensor:

𝑎 𝑥, 𝑥 =
𝔼 𝜎𝑑𝐵𝑡 𝜎𝑑𝐵𝑡

𝑇

𝑑𝑡

Usual

terms

Resseguier V. & al. (2017). Part I. Geophys. Astro. Fluid. hal-01391420

location uncertainty models (LUM),

Randomized Navier-Stokes 

55



Forces
Diffusion

Advection

𝑑𝑡𝑤 + 𝑤∗𝑑𝑡 ⋅ 𝛻𝑤 + 𝜎𝑑𝐵𝑡 ⋅ 𝛻𝑤 − 𝛻 ⋅
1

2
𝑎𝛻𝑤 𝑑𝑡 = 𝑑𝐹

Skew-symmetric

multiplicative

random

forcing

From Ito-Wentzell

formula (Kunita

1990)
with Ito notations

𝑣 = 𝑤 + 𝑣′

Resolved fluid velocity: 

𝑤

Unresolved fluid 

velocity: 

𝑣′ =
𝜎𝑑𝐵𝑡

𝑑𝑡
(Gaussian, white 

wrt 𝑡)

(assuming 𝛻 ⋅ 𝑤 = 0 and  𝛻 ⋅
𝑣′ = 0)

Variance tensor:

𝑎 𝑥, 𝑥 =
𝔼 𝜎𝑑𝐵𝑡 𝜎𝑑𝐵𝑡

𝑇

𝑑𝑡

Symmetric

negative

Usual

terms

Resseguier V. & al. (2017). Part I. Geophys. Astro. Fluid. hal-01391420

location uncertainty models (LUM),

Randomized Navier-Stokes 
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Forces
Diffusion

Advection

𝑑𝑡𝑤 + 𝑤∗𝑑𝑡 ⋅ 𝛻𝑤 + 𝜎𝑑𝐵𝑡 ⋅ 𝛻𝑤 − 𝛻 ⋅
1

2
𝑎𝛻𝑤 𝑑𝑡 = 𝑑𝐹

Skew-symmetric

multiplicative

random

forcing

From Ito-Wentzell

formula (Kunita

1990)
with Ito notations

𝑣 = 𝑤 + 𝑣′

Resolved fluid velocity: 

𝑤

Unresolved fluid 

velocity: 

𝑣′ =
𝜎𝑑𝐵𝑡

𝑑𝑡
(Gaussian, white 

wrt 𝑡)

(assuming 𝛻 ⋅ 𝑤 = 0 and  𝛻 ⋅
𝑣′ = 0)

Variance tensor:

𝑎 𝑥, 𝑥 =
𝔼 𝜎𝑑𝐵𝑡 𝜎𝑑𝐵𝑡

𝑇

𝑑𝑡

Symmetric

negative

Usual

terms

Resseguier V. & al. (2017). Part I. Geophys. Astro. Fluid. hal-01391420

location uncertainty models (LUM),

Randomized Navier-Stokes 
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Forces
Diffusion

Advection

𝑑𝑡𝑤 + 𝑤∗𝑑𝑡 ⋅ 𝛻𝑤 + 𝜎𝑑𝐵𝑡 ⋅ 𝛻𝑤 − 𝛻 ⋅
1

2
𝑎𝛻𝑤 𝑑𝑡 = 𝑑𝐹

Skew-symmetric

multiplicative

random

forcing

Balanced

energy

fluxes

From Ito-Wentzell

formula (Kunita

1990)
with Ito notations

𝑣 = 𝑤 + 𝑣′

Resolved fluid velocity: 

𝑤

Unresolved fluid 

velocity: 

𝑣′ =
𝜎𝑑𝐵𝑡

𝑑𝑡
(Gaussian, white 

wrt 𝑡)

(assuming 𝛻 ⋅ 𝑤 = 0 and  𝛻 ⋅
𝑣′ = 0)

Variance tensor:

𝑎 𝑥, 𝑥 =
𝔼 𝜎𝑑𝐵𝑡 𝜎𝑑𝐵𝑡

𝑇

𝑑𝑡

Symmetric

negative

Usual

terms

Resseguier V. & al. (2017). Part I. Geophys. Astro. Fluid. hal-01391420

location uncertainty models (LUM),

Randomized Navier-Stokes 
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ForcesDiffusionAdvection

𝑑𝑡𝑤 + 𝐶 𝑤,𝑤 𝑑𝑡 + 𝐶 𝜎𝑑𝐵𝑡, 𝑤 + 𝐹 𝑤 𝑑𝑡 = 𝑑𝐹

Skew-symmetric

multiplicative

random

forcing

Balanced

energy

fluxes

From Ito-Wentzell

formula (Kunita

1990)
with Ito notations

Symmetric

negative

𝑣 = 𝑤 + 𝑣′

Resolved fluid velocity: 

𝑤

Unresolved fluid 

velocity: 

𝑣′ =
𝜎𝑑𝐵𝑡

𝑑𝑡
(Gaussian, white 

wrt 𝑡)

Usual

terms

Resseguier V. & al. (2017). Part I. Geophys. Astro. Fluid. hal-01391420

location uncertainty models (LUM),

Randomized Navier-Stokes 
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Reduced Lum (Red LUM)

POD-Galerkin gives SDEs for resolved modes

1

6

Resseguier et al. (2021). SIAM-ASA J Uncertain . hal- 03169957

න
Ω

𝜙𝑖 𝑥 ⋅ 𝑑𝑡𝑤 + 𝐶 𝑤,𝑤 𝑑𝑡 + 𝐹 𝑤 𝑑𝑡 + 𝐶 𝜎𝑑𝐵𝑡 , 𝑤 = 𝑑𝐹 𝑑𝑥

𝑣 = 𝑤 + 𝑣′

Resolved fluid velocity: 
𝑤(𝑥, 𝑡) = σ𝑖=0

𝑛 𝑏𝑖 𝑡 𝜙𝑖 𝑥

Unresolved fluid 

velocity: 

𝑣′ =
𝜎𝑑𝐵𝑡

𝑑𝑡
(Gaussian, white 

wrt 𝑡)

Full order : 𝑀 ∼ 107

Reduced order :   𝑛 ∼ 10
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Reduced Lum (Red LUM)

POD-Galerkin gives SDEs for resolved modes

1

6

Resseguier et al. (2021). SIAM-ASA J Uncertain . hal- 03169957

න
Ω

𝜙𝑖 𝑥 ⋅ 𝑑𝑡𝑤 + 𝐶 𝑤,𝑤 𝑑𝑡 + 𝐹 𝑤 𝑑𝑡 + 𝐶 𝜎𝑑𝐵𝑡 , 𝑤 = 𝑑𝐹 𝑑𝑥

𝑣 = 𝑤 + 𝑣′

Resolved fluid velocity: 
𝑤(𝑥, 𝑡) = σ𝑖=0

𝑛 𝑏𝑖 𝑡 𝜙𝑖 𝑥

Unresolved fluid 

velocity: 

𝑣′ =
𝜎𝑑𝐵𝑡

𝑑𝑡
(Gaussian, white 

wrt 𝑡)

Full order : 𝑀 ∼ 107

Reduced order :   𝑛 ∼ 10
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Reduced Lum (Red LUM)

POD-Galerkin gives SDEs for resolved modes

1

6

Resseguier et al. (2021). SIAM-ASA J Uncertain . hal- 03169957

න
Ω

𝜙𝑖 𝑥 ⋅ 𝑑𝑡𝑤 + 𝐶 𝑤,𝑤 𝑑𝑡 + 𝐹 𝑤 𝑑𝑡 + 𝐶 𝜎𝑑𝐵𝑡 , 𝑤 = 𝑑𝐹 𝑑𝑥

𝑣 = 𝑤 + 𝑣′

Resolved fluid velocity: 
𝑤(𝑥, 𝑡) = σ𝑖=0

𝑛 𝑏𝑖 𝑡 𝜙𝑖 𝑥

Unresolved fluid 

velocity: 

𝑣′ =
𝜎𝑑𝐵𝑡

𝑑𝑡
(Gaussian, white 

wrt 𝑡)

𝑑𝑏 𝑡 = 𝐻 𝑏 𝑡 𝑑𝑡 + 𝐾 𝜎𝑑𝐵𝑡 𝑏 𝑡

Full order : 𝑀 ∼ 107

Reduced order :   𝑛 ∼ 10
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Reduced Lum (Red LUM)

POD-Galerkin gives SDEs for resolved modes

1

6

Resseguier et al. (2021). SIAM-ASA J Uncertain . hal- 03169957

න
Ω

𝜙𝑖 𝑥 ⋅ 𝑑𝑡𝑤 + 𝐶 𝑤,𝑤 𝑑𝑡 + 𝐹 𝑤 𝑑𝑡 + 𝐶 𝜎𝑑𝐵𝑡 , 𝑤 = 𝑑𝐹 𝑑𝑥

𝑣 = 𝑤 + 𝑣′

Resolved fluid velocity: 
𝑤(𝑥, 𝑡) = σ𝑖=0

𝑛 𝑏𝑖 𝑡 𝜙𝑖 𝑥

Unresolved fluid 

velocity: 

𝑣′ =
𝜎𝑑𝐵𝑡

𝑑𝑡
(Gaussian, white 

wrt 𝑡)

𝑑𝑏 𝑡 = 𝐻 𝑏 𝑡 𝑑𝑡 + 𝐾 𝜎𝑑𝐵𝑡 𝑏 𝑡

2nd order polynomial

Full order : 𝑀 ∼ 107

Reduced order :   𝑛 ∼ 10
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Reduced Lum (Red LUM)

POD-Galerkin gives SDEs for resolved modes

1

6

Multiplicative skew-symmetric noise

Resseguier et al. (2021). SIAM-ASA J Uncertain . hal- 03169957

න
Ω

𝜙𝑖 𝑥 ⋅ 𝑑𝑡𝑤 + 𝐶 𝑤,𝑤 𝑑𝑡 + 𝐹 𝑤 𝑑𝑡 + 𝐶 𝜎𝑑𝐵𝑡 , 𝑤 = 𝑑𝐹 𝑑𝑥

𝑣 = 𝑤 + 𝑣′

Resolved fluid velocity: 
𝑤(𝑥, 𝑡) = σ𝑖=0

𝑛 𝑏𝑖 𝑡 𝜙𝑖 𝑥

Unresolved fluid 

velocity: 

𝑣′ =
𝜎𝑑𝐵𝑡

𝑑𝑡
(Gaussian, white 

wrt 𝑡)

𝑑𝑏 𝑡 = 𝐻 𝑏 𝑡 𝑑𝑡 + 𝐾 𝜎𝑑𝐵𝑡 𝑏 𝑡

2nd order polynomial

Full order : 𝑀 ∼ 107

Reduced order :   𝑛 ∼ 10
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Reduced Lum (Red LUM)

POD-Galerkin gives SDEs for resolved modes

1

6

Multiplicative skew-symmetric noise

Resseguier et al. (2021). SIAM-ASA J Uncertain . hal- 03169957

න
Ω

𝜙𝑖 𝑥 ⋅ 𝑑𝑡𝑤 + 𝐶 𝑤,𝑤 𝑑𝑡 + 𝐹 𝑤 𝑑𝑡 + 𝐶 𝜎𝑑𝐵𝑡 , 𝑤 = 𝑑𝐹 𝑑𝑥

𝑣 = 𝑤 + 𝑣′

Resolved fluid velocity: 
𝑤(𝑥, 𝑡) = σ𝑖=0

𝑛 𝑏𝑖 𝑡 𝜙𝑖 𝑥

Unresolved fluid 

velocity: 

𝑣′ =
𝜎𝑑𝐵𝑡

𝑑𝑡
(Gaussian, white 

wrt 𝑡)

𝑑𝑏 𝑡 = 𝐻 𝑏 𝑡 𝑑𝑡 + 𝐾 𝜎𝑑𝐵𝑡 𝑏 𝑡

2nd order polynomial

Full order : 𝑀 ∼ 107

Reduced order :   𝑛 ∼ 10

𝐾𝑗𝑞 𝜉 = Ω𝜙𝑗− ⋅ 𝐶 𝜉, ϕ𝑞

65



𝐾𝑗𝑞 𝜉 = Ω𝜙𝑗− ⋅ 𝐶 𝜉, ϕ𝑞

1

7

𝑑𝑏 𝑡 = 𝐻 𝑏 𝑡 𝑑𝑡 + 𝐾 𝜎𝑑𝐵𝑡 𝑏 𝑡

Full order : 𝑀 ∼ 107

Reduced order :   𝑛 ∼ 10

Resseguier et al. (2021). SIAM-ASA J Uncertain . hal- 03169957

න
Ω

𝜙𝑖 𝑥 ⋅ 𝑑𝑡𝑤 + 𝐶 𝑤,𝑤 𝑑𝑡 + 𝐹 𝑤 𝑑𝑡 + 𝐶 𝜎𝑑𝐵𝑡, 𝑤 = 𝑑𝐹 𝑑𝑥

𝑣 = 𝑤 + 𝑣′

Resolved fluid velocity: 
𝑤(𝑥, 𝑡) = σ𝑖=0

𝑛 𝑏𝑖 𝑡 𝜙𝑖 𝑥

Unresolved fluid 

velocity: 

𝑣′ =
𝜎𝑑𝐵𝑡

𝑑𝑡
(Gaussian, white 

wrt 𝑡)

Variance tensor:

𝑎 𝑥, 𝑥 =
𝔼 𝜎𝑑𝐵𝑡 𝜎𝑑𝐵𝑡

𝑇

𝑑𝑡

Reduced Lum (Red LUM)

POD-Galerkin gives SDEs for resolved modes
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2nd order polynomial

Coefficients given by :

• Randomized Navier-Stokes

• 𝜙𝑗 𝑗

• 𝑎(𝑥) ≈ Δ𝑡 𝑣′ 𝑣′ 𝑇

𝑓 =
1

𝑇
න
0

𝑇

𝑓
𝐾𝑗𝑞 𝜉 = Ω𝜙𝑗− ⋅ 𝐶 𝜉, ϕ𝑞

1

7

𝑑𝑏 𝑡 = 𝐻 𝑏 𝑡 𝑑𝑡 + 𝐾 𝜎𝑑𝐵𝑡 𝑏 𝑡

Full order : 𝑀 ∼ 107

Reduced order :   𝑛 ∼ 10

Resseguier et al. (2021). SIAM-ASA J Uncertain . hal- 03169957

න
Ω

𝜙𝑖 𝑥 ⋅ 𝑑𝑡𝑤 + 𝐶 𝑤,𝑤 𝑑𝑡 + 𝐹 𝑤 𝑑𝑡 + 𝐶 𝜎𝑑𝐵𝑡, 𝑤 = 𝑑𝐹 𝑑𝑥

𝑣 = 𝑤 + 𝑣′

Resolved fluid velocity: 
𝑤(𝑥, 𝑡) = σ𝑖=0

𝑛 𝑏𝑖 𝑡 𝜙𝑖 𝑥

Unresolved fluid 

velocity: 

𝑣′ =
𝜎𝑑𝐵𝑡

𝑑𝑡
(Gaussian, white 

wrt 𝑡)

Variance tensor:

𝑎 𝑥, 𝑥 =
𝔼 𝜎𝑑𝐵𝑡 𝜎𝑑𝐵𝑡

𝑇

𝑑𝑡

Reduced Lum (Red LUM)

POD-Galerkin gives SDEs for resolved modes

67



2nd order polynomial

Coefficients given by :

• Randomized Navier-Stokes

• 𝜙𝑗 𝑗

• 𝑎(𝑥) ≈ Δ𝑡 𝑣′ 𝑣′ 𝑇

𝑓 =
1

𝑇
න
0

𝑇

𝑓
𝐾𝑗𝑞 𝜉 = Ω𝜙𝑗− ⋅ 𝐶 𝜉, ϕ𝑞

1

7

𝑑𝑏 𝑡 = 𝐻 𝑏 𝑡 𝑑𝑡 + 𝐾 𝜎𝑑𝐵𝑡 𝑏 𝑡

Full order : 𝑀 ∼ 107

Reduced order :   𝑛 ∼ 10

Randomized Navier-Stokes

Resseguier et al. (2021). SIAM-ASA J Uncertain . hal- 03169957

න
Ω

𝜙𝑖 𝑥 ⋅ 𝑑𝑡𝑤 + 𝐶 𝑤,𝑤 𝑑𝑡 + 𝐹 𝑤 𝑑𝑡 + 𝐶 𝜎𝑑𝐵𝑡, 𝑤 = 𝑑𝐹 𝑑𝑥

𝑣 = 𝑤 + 𝑣′

Resolved fluid velocity: 
𝑤(𝑥, 𝑡) = σ𝑖=0

𝑛 𝑏𝑖 𝑡 𝜙𝑖 𝑥

Unresolved fluid 

velocity: 

𝑣′ =
𝜎𝑑𝐵𝑡

𝑑𝑡
(Gaussian, white 

wrt 𝑡)

Variance tensor:

𝑎 𝑥, 𝑥 =
𝔼 𝜎𝑑𝐵𝑡 𝜎𝑑𝐵𝑡

𝑇

𝑑𝑡

Reduced Lum (Red LUM)

POD-Galerkin gives SDEs for resolved modes
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2nd order polynomial

Coefficients given by :

• Randomized Navier-Stokes

• 𝜙𝑗 𝑗

• 𝑎(𝑥) ≈ Δ𝑡 𝑣′ 𝑣′ 𝑇

𝑓 =
1

𝑇
න
0

𝑇

𝑓
𝐾𝑗𝑞 𝜉 = Ω𝜙𝑗− ⋅ 𝐶 𝜉, ϕ𝑞

1

7

𝑑𝑏 𝑡 = 𝐻 𝑏 𝑡 𝑑𝑡 + 𝐾 𝜎𝑑𝐵𝑡 𝑏 𝑡

Full order : 𝑀 ∼ 107

Reduced order :   𝑛 ∼ 10

PCA modes

Randomized Navier-Stokes

Resseguier et al. (2021). SIAM-ASA J Uncertain . hal- 03169957

න
Ω

𝜙𝑖 𝑥 ⋅ 𝑑𝑡𝑤 + 𝐶 𝑤,𝑤 𝑑𝑡 + 𝐹 𝑤 𝑑𝑡 + 𝐶 𝜎𝑑𝐵𝑡, 𝑤 = 𝑑𝐹 𝑑𝑥

𝑣 = 𝑤 + 𝑣′

Resolved fluid velocity: 
𝑤(𝑥, 𝑡) = σ𝑖=0

𝑛 𝑏𝑖 𝑡 𝜙𝑖 𝑥

Unresolved fluid 

velocity: 

𝑣′ =
𝜎𝑑𝐵𝑡

𝑑𝑡
(Gaussian, white 

wrt 𝑡)

Variance tensor:

𝑎 𝑥, 𝑥 =
𝔼 𝜎𝑑𝐵𝑡 𝜎𝑑𝐵𝑡

𝑇

𝑑𝑡

Reduced Lum (Red LUM)

POD-Galerkin gives SDEs for resolved modes
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2nd order polynomial

Coefficients given by :

• Randomized Navier-Stokes

• 𝜙𝑗 𝑗

• 𝑎(𝑥) ≈ Δ𝑡 𝑣′ 𝑣′ 𝑇

𝑓 =
1

𝑇
න
0

𝑇

𝑓
𝐾𝑗𝑞 𝜉 = Ω𝜙𝑗− ⋅ 𝐶 𝜉, ϕ𝑞

1

7

𝑑𝑏 𝑡 = 𝐻 𝑏 𝑡 𝑑𝑡 + 𝐾 𝜎𝑑𝐵𝑡 𝑏 𝑡

Full order : 𝑀 ∼ 107

Reduced order :   𝑛 ∼ 10

PCA modes

Randomized Navier-Stokes

PCA residual 𝒗′

Resseguier et al. (2021). SIAM-ASA J Uncertain . hal- 03169957

න
Ω

𝜙𝑖 𝑥 ⋅ 𝑑𝑡𝑤 + 𝐶 𝑤,𝑤 𝑑𝑡 + 𝐹 𝑤 𝑑𝑡 + 𝐶 𝜎𝑑𝐵𝑡, 𝑤 = 𝑑𝐹 𝑑𝑥

𝑣 = 𝑤 + 𝑣′

Resolved fluid velocity: 
𝑤(𝑥, 𝑡) = σ𝑖=0

𝑛 𝑏𝑖 𝑡 𝜙𝑖 𝑥

Unresolved fluid 

velocity: 

𝑣′ =
𝜎𝑑𝐵𝑡

𝑑𝑡
(Gaussian, white 

wrt 𝑡)

Variance tensor:

𝑎 𝑥, 𝑥 =
𝔼 𝜎𝑑𝐵𝑡 𝜎𝑑𝐵𝑡

𝑇

𝑑𝑡

Reduced Lum (Red LUM)

POD-Galerkin gives SDEs for resolved modes
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2nd order polynomial

Coefficients given by :

• Randomized Navier-Stokes

• 𝜙𝑗 𝑗

• 𝑎(𝑥) ≈ Δ𝑡 𝑣′ 𝑣′ 𝑇

𝑓 =
1

𝑇
න
0

𝑇

𝑓
𝐾𝑗𝑞 𝜉 = Ω𝜙𝑗− ⋅ 𝐶 𝜉, ϕ𝑞

1

7

𝑑𝑏 𝑡 = 𝐻 𝑏 𝑡 𝑑𝑡 + 𝐾 𝜎𝑑𝐵𝑡 𝑏 𝑡

Multiplicative skew-symmetric noise

Full order : 𝑀 ∼ 107

Reduced order :   𝑛 ∼ 10

PCA modes

Randomized Navier-Stokes

PCA residual 𝒗′

Resseguier et al. (2021). SIAM-ASA J Uncertain . hal- 03169957

න
Ω

𝜙𝑖 𝑥 ⋅ 𝑑𝑡𝑤 + 𝐶 𝑤,𝑤 𝑑𝑡 + 𝐹 𝑤 𝑑𝑡 + 𝐶 𝜎𝑑𝐵𝑡, 𝑤 = 𝑑𝐹 𝑑𝑥

𝑣 = 𝑤 + 𝑣′

Resolved fluid velocity: 
𝑤(𝑥, 𝑡) = σ𝑖=0

𝑛 𝑏𝑖 𝑡 𝜙𝑖 𝑥

Unresolved fluid 

velocity: 

𝑣′ =
𝜎𝑑𝐵𝑡

𝑑𝑡
(Gaussian, white 

wrt 𝑡)

Variance tensor:

𝑎 𝑥, 𝑥 =
𝔼 𝜎𝑑𝐵𝑡 𝜎𝑑𝐵𝑡

𝑇

𝑑𝑡

Reduced Lum (Red LUM)

POD-Galerkin gives SDEs for resolved modes
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2nd order polynomial

Coefficients given by :

• Randomized Navier-Stokes

• 𝜙𝑗 𝑗

• 𝑎(𝑥) ≈ Δ𝑡 𝑣′ 𝑣′ 𝑇

𝑓 =
1

𝑇
න
0

𝑇

𝑓
𝐾𝑗𝑞 𝜉 = Ω𝜙𝑗− ⋅ 𝐶 𝜉, ϕ𝑞

1

7

𝑑𝑏 𝑡 = 𝐻 𝑏 𝑡 𝑑𝑡 + 𝐾 𝜎𝑑𝐵𝑡 𝑏 𝑡

Multiplicative skew-symmetric noise

(n+1) x (n+1)

M x 1

(n+1) x 1

Full order : 𝑀 ∼ 107

Reduced order :   𝑛 ∼ 10

PCA modes

Randomized Navier-Stokes

PCA residual 𝒗′

Resseguier et al. (2021). SIAM-ASA J Uncertain . hal- 03169957

න
Ω

𝜙𝑖 𝑥 ⋅ 𝑑𝑡𝑤 + 𝐶 𝑤,𝑤 𝑑𝑡 + 𝐹 𝑤 𝑑𝑡 + 𝐶 𝜎𝑑𝐵𝑡, 𝑤 = 𝑑𝐹 𝑑𝑥

𝑣 = 𝑤 + 𝑣′

Resolved fluid velocity: 
𝑤(𝑥, 𝑡) = σ𝑖=0

𝑛 𝑏𝑖 𝑡 𝜙𝑖 𝑥

Unresolved fluid 

velocity: 

𝑣′ =
𝜎𝑑𝐵𝑡

𝑑𝑡
(Gaussian, white 

wrt 𝑡)

Variance tensor:

𝑎 𝑥, 𝑥 =
𝔼 𝜎𝑑𝐵𝑡 𝜎𝑑𝐵𝑡

𝑇

𝑑𝑡

Reduced Lum (Red LUM)

POD-Galerkin gives SDEs for resolved modes

72



2nd order polynomial

Coefficients given by :

• Randomized Navier-Stokes

• 𝜙𝑗 𝑗

• 𝑎(𝑥) ≈ Δ𝑡 𝑣′ 𝑣′ 𝑇

𝑓 =
1

𝑇
න
0

𝑇

𝑓
𝐾𝑗𝑞 𝜉 = Ω𝜙𝑗− ⋅ 𝐶 𝜉, ϕ𝑞

1

7

𝑑𝑏 𝑡 = 𝐻 𝑏 𝑡 𝑑𝑡 + 𝐾 𝜎𝑑𝐵𝑡 𝑏 𝑡

Multiplicative skew-symmetric noise

Covariance to estimate

(n+1) x (n+1)

M x 1

(n+1) x 1

Full order : 𝑀 ∼ 107

Reduced order :   𝑛 ∼ 10

PCA modes

Randomized Navier-Stokes

PCA residual 𝒗′

Resseguier et al. (2021). SIAM-ASA J Uncertain . hal- 03169957

න
Ω

𝜙𝑖 𝑥 ⋅ 𝑑𝑡𝑤 + 𝐶 𝑤,𝑤 𝑑𝑡 + 𝐹 𝑤 𝑑𝑡 + 𝐶 𝜎𝑑𝐵𝑡, 𝑤 = 𝑑𝐹 𝑑𝑥

𝑣 = 𝑤 + 𝑣′

Resolved fluid velocity: 
𝑤(𝑥, 𝑡) = σ𝑖=0

𝑛 𝑏𝑖 𝑡 𝜙𝑖 𝑥

Unresolved fluid 

velocity: 

𝑣′ =
𝜎𝑑𝐵𝑡

𝑑𝑡
(Gaussian, white 

wrt 𝑡)

Variance tensor:

𝑎 𝑥, 𝑥 =
𝔼 𝜎𝑑𝐵𝑡 𝜎𝑑𝐵𝑡

𝑇

𝑑𝑡

Reduced Lum (Red LUM)

POD-Galerkin gives SDEs for resolved modes
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2nd order polynomial

Coefficients given by :

• Randomized Navier-Stokes

• 𝜙𝑗 𝑗

• 𝑎(𝑥) ≈ Δ𝑡 𝑣′ 𝑣′ 𝑇

𝑓 =
1

𝑇
න
0

𝑇

𝑓
𝐾𝑗𝑞 𝜉 = Ω𝜙𝑗− ⋅ 𝐶 𝜉, ϕ𝑞

1

7

𝔼 𝐾𝑗𝑞 𝜎𝑑𝐵𝑡 𝐾𝑖𝑝 𝜎𝑑𝐵𝑡 /𝑑𝑡 ≈ Δ𝑡 𝐾𝑗𝑞
𝑏𝑝

𝑏𝑝
2

Δ𝑏𝑖

Δ𝑡
𝑣′

𝑑𝑏 𝑡 = 𝐻 𝑏 𝑡 𝑑𝑡 + 𝐾 𝜎𝑑𝐵𝑡 𝑏 𝑡

Multiplicative skew-symmetric noise

Covariance to estimate

(n+1) x (n+1)

M x 1

(n+1) x 1

Full order : 𝑀 ∼ 107

Reduced order :   𝑛 ∼ 10

PCA modes

Randomized Navier-Stokes

PCA residual 𝒗′

Resseguier et al. (2021). SIAM-ASA J Uncertain . hal- 03169957

න
Ω

𝜙𝑖 𝑥 ⋅ 𝑑𝑡𝑤 + 𝐶 𝑤,𝑤 𝑑𝑡 + 𝐹 𝑤 𝑑𝑡 + 𝐶 𝜎𝑑𝐵𝑡, 𝑤 = 𝑑𝐹 𝑑𝑥

𝑣 = 𝑤 + 𝑣′

Resolved fluid velocity: 
𝑤(𝑥, 𝑡) = σ𝑖=0

𝑛 𝑏𝑖 𝑡 𝜙𝑖 𝑥

Unresolved fluid 

velocity: 

𝑣′ =
𝜎𝑑𝐵𝑡

𝑑𝑡
(Gaussian, white 

wrt 𝑡)

Variance tensor:

𝑎 𝑥, 𝑥 =
𝔼 𝜎𝑑𝐵𝑡 𝜎𝑑𝐵𝑡

𝑇

𝑑𝑡

Reduced Lum (Red LUM)

POD-Galerkin gives SDEs for resolved modes
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2nd order polynomial

Coefficients given by :

• Randomized Navier-Stokes

• 𝜙𝑗 𝑗

• 𝑎(𝑥) ≈ Δ𝑡 𝑣′ 𝑣′ 𝑇

𝑓 =
1

𝑇
න
0

𝑇

𝑓
𝐾𝑗𝑞 𝜉 = Ω𝜙𝑗− ⋅ 𝐶 𝜉, ϕ𝑞

1

7

𝔼 𝐾𝑗𝑞 𝜎𝑑𝐵𝑡 𝐾𝑖𝑝 𝜎𝑑𝐵𝑡 /𝑑𝑡 ≈ Δ𝑡 𝐾𝑗𝑞
𝑏𝑝

𝑏𝑝
2

Δ𝑏𝑖

Δ𝑡
𝑣′

𝑑𝑏 𝑡 = 𝐻 𝑏 𝑡 𝑑𝑡 + 𝐾 𝜎𝑑𝐵𝑡 𝑏 𝑡

Multiplicative skew-symmetric noise

Covariance to estimate

(n+1) x (n+1)

M x 1

(n+1) x 1

Full order : 𝑀 ∼ 107

Reduced order :   𝑛 ∼ 10

PCA modes

Randomized Navier-Stokes

PCA residual 𝒗′

Resseguier et al. (2021). SIAM-ASA J Uncertain . hal- 03169957

න
Ω

𝜙𝑖 𝑥 ⋅ 𝑑𝑡𝑤 + 𝐶 𝑤,𝑤 𝑑𝑡 + 𝐹 𝑤 𝑑𝑡 + 𝐶 𝜎𝑑𝐵𝑡, 𝑤 = 𝑑𝐹 𝑑𝑥

𝑣 = 𝑤 + 𝑣′

Resolved fluid velocity: 
𝑤(𝑥, 𝑡) = σ𝑖=0

𝑛 𝑏𝑖 𝑡 𝜙𝑖 𝑥

Unresolved fluid 

velocity: 

𝑣′ =
𝜎𝑑𝐵𝑡

𝑑𝑡
(Gaussian, white 

wrt 𝑡)

Variance tensor:

𝑎 𝑥, 𝑥 =
𝔼 𝜎𝑑𝐵𝑡 𝜎𝑑𝐵𝑡

𝑇

𝑑𝑡

Reduced Lum (Red LUM)

POD-Galerkin gives SDEs for resolved modes
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2nd order polynomial

Coefficients given by :

• Randomized Navier-Stokes

• 𝜙𝑗 𝑗

• 𝑎(𝑥) ≈ Δ𝑡 𝑣′ 𝑣′ 𝑇

𝑓 =
1

𝑇
න
0

𝑇

𝑓
𝐾𝑗𝑞 𝜉 = Ω𝜙𝑗− ⋅ 𝐶 𝜉, ϕ𝑞

1

7

𝔼 𝐾𝑗𝑞 𝜎𝑑𝐵𝑡 𝐾𝑖𝑝 𝜎𝑑𝐵𝑡 /𝑑𝑡 ≈ Δ𝑡 𝐾𝑗𝑞
𝑏𝑝

𝑏𝑝
2

Δ𝑏𝑖

Δ𝑡
𝑣′

𝑑𝑏 𝑡 = 𝐻 𝑏 𝑡 𝑑𝑡 + 𝐾 𝜎𝑑𝐵𝑡 𝑏 𝑡

Multiplicative skew-symmetric noise

Covariance to estimate

(n+1) x (n+1)

M x 1

(n+1) x 1

Full order : 𝑀 ∼ 107

Reduced order :   𝑛 ∼ 10

PCA modes

Randomized Navier-Stokes

PCA residual 𝒗′

Resseguier et al. (2021). SIAM-ASA J Uncertain . hal- 03169957

න
Ω

𝜙𝑖 𝑥 ⋅ 𝑑𝑡𝑤 + 𝐶 𝑤,𝑤 𝑑𝑡 + 𝐹 𝑤 𝑑𝑡 + 𝐶 𝜎𝑑𝐵𝑡, 𝑤 = 𝑑𝐹 𝑑𝑥

𝑣 = 𝑤 + 𝑣′

Resolved fluid velocity: 
𝑤(𝑥, 𝑡) = σ𝑖=0

𝑛 𝑏𝑖 𝑡 𝜙𝑖 𝑥

Unresolved fluid 

velocity: 

𝑣′ =
𝜎𝑑𝐵𝑡

𝑑𝑡
(Gaussian, white 

wrt 𝑡)

Variance tensor:

𝑎 𝑥, 𝑥 =
𝔼 𝜎𝑑𝐵𝑡 𝜎𝑑𝐵𝑡

𝑇

𝑑𝑡

Reduced Lum (Red LUM)

POD-Galerkin gives SDEs for resolved modes
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2nd order polynomial

Coefficients given by :

• Randomized Navier-Stokes

• 𝜙𝑗 𝑗

• 𝑎(𝑥) ≈ Δ𝑡 𝑣′ 𝑣′ 𝑇

𝑓 =
1

𝑇
න
0

𝑇

𝑓
𝐾𝑗𝑞 𝜉 = Ω𝜙𝑗− ⋅ 𝐶 𝜉, ϕ𝑞

1

7

𝔼 𝐾𝑗𝑞 𝜎𝑑𝐵𝑡 𝐾𝑖𝑝 𝜎𝑑𝐵𝑡 /𝑑𝑡 ≈ Δ𝑡 𝐾𝑗𝑞
𝑏𝑝

𝑏𝑝
2

Δ𝑏𝑖

Δ𝑡
𝑣′

𝑑𝑏 𝑡 = 𝐻 𝑏 𝑡 𝑑𝑡 + 𝐾 𝜎𝑑𝐵𝑡 𝑏 𝑡

Multiplicative skew-symmetric noise

Covariance to estimate

(n+1) x (n+1)

M x 1

(n+1) x 1

Full order : 𝑀 ∼ 107

Reduced order :   𝑛 ∼ 10

PCA modes

Randomized Navier-Stokes

PCA residual 𝒗′

Resseguier et al. (2021). SIAM-ASA J Uncertain . hal- 03169957

න
Ω

𝜙𝑖 𝑥 ⋅ 𝑑𝑡𝑤 + 𝐶 𝑤,𝑤 𝑑𝑡 + 𝐹 𝑤 𝑑𝑡 + 𝐶 𝜎𝑑𝐵𝑡, 𝑤 = 𝑑𝐹 𝑑𝑥

𝑣 = 𝑤 + 𝑣′

Resolved fluid velocity: 
𝑤(𝑥, 𝑡) = σ𝑖=0

𝑛 𝑏𝑖 𝑡 𝜙𝑖 𝑥

Unresolved fluid 

velocity: 

𝑣′ =
𝜎𝑑𝐵𝑡

𝑑𝑡
(Gaussian, white 

wrt 𝑡)

Variance tensor:

𝑎 𝑥, 𝑥 =
𝔼 𝜎𝑑𝐵𝑡 𝜎𝑑𝐵𝑡

𝑇

𝑑𝑡

Reduced Lum (Red LUM)

POD-Galerkin gives SDEs for resolved modes
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2nd order polynomial

Coefficients given by :

• Randomized Navier-Stokes

• 𝜙𝑗 𝑗

• 𝑎(𝑥) ≈ Δ𝑡 𝑣′ 𝑣′ 𝑇

𝑓 =
1

𝑇
න
0

𝑇

𝑓
𝐾𝑗𝑞 𝜉 = Ω𝜙𝑗− ⋅ 𝐶 𝜉, ϕ𝑞

1

7

𝔼 𝐾𝑗𝑞 𝜎𝑑𝐵𝑡 𝐾𝑖𝑝 𝜎𝑑𝐵𝑡 /𝑑𝑡 ≈ Δ𝑡 𝐾𝑗𝑞
𝑏𝑝

𝑏𝑝
2

Δ𝑏𝑖

Δ𝑡
𝑣′

from synthetic data

𝑑𝑏 𝑡 = 𝐻 𝑏 𝑡 𝑑𝑡 + 𝐾 𝜎𝑑𝐵𝑡 𝑏 𝑡

Multiplicative skew-symmetric noise

Covariance to estimate

(n+1) x (n+1)

M x 1

(n+1) x 1

Full order : 𝑀 ∼ 107

Reduced order :   𝑛 ∼ 10

PCA modes

Randomized Navier-Stokes

PCA residual 𝒗′

Resseguier et al. (2021). SIAM-ASA J Uncertain . hal- 03169957

න
Ω

𝜙𝑖 𝑥 ⋅ 𝑑𝑡𝑤 + 𝐶 𝑤,𝑤 𝑑𝑡 + 𝐹 𝑤 𝑑𝑡 + 𝐶 𝜎𝑑𝐵𝑡, 𝑤 = 𝑑𝐹 𝑑𝑥

𝑣 = 𝑤 + 𝑣′

Resolved fluid velocity: 
𝑤(𝑥, 𝑡) = σ𝑖=0

𝑛 𝑏𝑖 𝑡 𝜙𝑖 𝑥

Unresolved fluid 

velocity: 

𝑣′ =
𝜎𝑑𝐵𝑡

𝑑𝑡
(Gaussian, white 

wrt 𝑡)

Variance tensor:

𝑎 𝑥, 𝑥 =
𝔼 𝜎𝑑𝐵𝑡 𝜎𝑑𝐵𝑡

𝑇

𝑑𝑡

Reduced Lum (Red LUM)

POD-Galerkin gives SDEs for resolved modes
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2nd order polynomial

Coefficients given by :

• Randomized Navier-Stokes

• 𝜙𝑗 𝑗

• 𝑎(𝑥) ≈ Δ𝑡 𝑣′ 𝑣′ 𝑇

𝑓 =
1

𝑇
න
0

𝑇

𝑓
𝐾𝑗𝑞 𝜉 = Ω𝜙𝑗− ⋅ 𝐶 𝜉, ϕ𝑞

1

7

𝔼 𝐾𝑗𝑞 𝜎𝑑𝐵𝑡 𝐾𝑖𝑝 𝜎𝑑𝐵𝑡 /𝑑𝑡 ≈ Δ𝑡 𝐾𝑗𝑞
𝑏𝑝

𝑏𝑝
2

Δ𝑏𝑖

Δ𝑡
𝑣′

from synthetic data

𝑑𝑏 𝑡 = 𝐻 𝑏 𝑡 𝑑𝑡 + 𝐾 𝜎𝑑𝐵𝑡 𝑏 𝑡

Multiplicative skew-symmetric noise

Covariance to estimate

(n+1) x (n+1)

M x 1

(n+1) x 1

Full order : 𝑀 ∼ 107

Reduced order :   𝑛 ∼ 10

PCA modes

Randomized Navier-Stokes

PCA residual 𝒗′

Resseguier et al. (2021). SIAM-ASA J Uncertain . hal- 03169957

න
Ω

𝜙𝑖 𝑥 ⋅ 𝑑𝑡𝑤 + 𝐶 𝑤,𝑤 𝑑𝑡 + 𝐹 𝑤 𝑑𝑡 + 𝐶 𝜎𝑑𝐵𝑡, 𝑤 = 𝑑𝐹 𝑑𝑥

New estimator

• Consistency proven (Δ𝑡 → 0)

• Numerically efficient

• Physically-based

→ Robustness in extrapolation

𝑣 = 𝑤 + 𝑣′

Resolved fluid velocity: 
𝑤(𝑥, 𝑡) = σ𝑖=0

𝑛 𝑏𝑖 𝑡 𝜙𝑖 𝑥

Unresolved fluid 

velocity: 

𝑣′ =
𝜎𝑑𝐵𝑡

𝑑𝑡
(Gaussian, white 

wrt 𝑡)

Variance tensor:

𝑎 𝑥, 𝑥 =
𝔼 𝜎𝑑𝐵𝑡 𝜎𝑑𝐵𝑡

𝑇

𝑑𝑡

Reduced Lum (Red LUM)

POD-Galerkin gives SDEs for resolved modes
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 Curse of dimensionality

 Since 𝜎𝑑𝐵𝑡 is white in time,

Σ𝑗𝑞,𝑖𝑝 = 𝔼 𝐾𝑗𝑞 𝜎𝑑𝐵𝑡 𝐾𝑖𝑝 𝜎𝑑𝐵𝑡 /𝑑𝑡 ≈ Δ𝑡 𝐾𝑗𝑞 𝑣′ 𝐾𝑖𝑝 𝑣′

 𝐾 is a matrix of integro-differential operators → cannot be evaluated  on 𝑣′ 𝑥, 𝑡 at every time t

 Covariance of 𝜎𝑑𝐵𝑡 ≈ Δ𝑡2 𝑣′ 𝑥, 𝑡 𝑣′ 𝑦, 𝑡
𝑇
∶ 𝑀 × 𝑀 ∼ 1013 coefficients → intractable

1

8
𝑓 =

1

𝑇
න
0

𝑇

𝑓

𝑑𝑏 𝑡 = 𝐻 𝑏 𝑡 𝑑𝑡 + 𝐾 𝜎𝑑𝐵𝑡 𝑏 𝑡 with   𝐾𝑗𝑞 𝜉 = −
Ω
𝜙𝑗 ⋅ 𝐶 𝜉, ϕ𝑞

(n+1) x (n+1)

M x 1

Full order (∼ nb spatial grid points): 𝑀 ∼ 107

Reduced order :   𝑛 ∼ 10
Number of time steps : 𝑁 ∼ 104

𝑣 = 𝑤 + 𝑣′

Resolved fluid velocity: 
𝑤(𝑥, 𝑡) = σ𝑖=0

𝑛 𝑏𝑖 𝑡 𝜙𝑖 𝑥

Unresolved fluid 

velocity: 

𝑣′ =
𝜎𝑑𝐵𝑡

𝑑𝑡
(Gaussian, white 

wrt 𝑡)

from synthetic data

PCA modes

Randomized Navier-Stokes

PCA residual 𝒗′

New estimator

• Consistency proven (Δ𝑡 → 0)

• Numerically efficient

• Physically-based

→ Robustness in extrapolation

Resseguier et al. (2021). SIAM-ASA J Uncertain . hal- 03169957

Reduced Lum (Red LUM)
Multiplicative noise covariance
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 Curse of dimensionality

 Since 𝜎𝑑𝐵𝑡 is white in time,

Σ𝑗𝑞,𝑖𝑝 = 𝔼 𝐾𝑗𝑞 𝜎𝑑𝐵𝑡 𝐾𝑖𝑝 𝜎𝑑𝐵𝑡 /𝑑𝑡 ≈ Δ𝑡 𝐾𝑗𝑞 𝑣′ 𝐾𝑖𝑝 𝑣′

 𝐾 is a matrix of integro-differential operators → cannot be evaluated  on 𝑣′ 𝑥, 𝑡 at every time t

 Covariance of 𝜎𝑑𝐵𝑡 ≈ Δ𝑡2 𝑣′ 𝑥, 𝑡 𝑣′ 𝑦, 𝑡
𝑇
∶ 𝑀 × 𝑀 ∼ 1013 coefficients → intractable

1

8
𝑓 =

1

𝑇
න
0

𝑇

𝑓

𝑑𝑏 𝑡 = 𝐻 𝑏 𝑡 𝑑𝑡 + 𝐾 𝜎𝑑𝐵𝑡 𝑏 𝑡 with   𝐾𝑗𝑞 𝜉 = −
Ω
𝜙𝑗 ⋅ 𝐶 𝜉, ϕ𝑞

(n+1) x (n+1)

M x 1

Full order (∼ nb spatial grid points): 𝑀 ∼ 107

Reduced order :   𝑛 ∼ 10
Number of time steps : 𝑁 ∼ 104

𝑣 = 𝑤 + 𝑣′

Resolved fluid velocity: 
𝑤(𝑥, 𝑡) = σ𝑖=0

𝑛 𝑏𝑖 𝑡 𝜙𝑖 𝑥

Unresolved fluid 

velocity: 

𝑣′ =
𝜎𝑑𝐵𝑡

𝑑𝑡
(Gaussian, white 

wrt 𝑡)

from synthetic data

PCA modes

Randomized Navier-Stokes

PCA residual 𝒗′

New estimator

• Consistency proven (Δ𝑡 → 0)

• Numerically efficient

• Physically-based

→ Robustness in extrapolation

▪ Efficient estimator Σ𝑗𝑞,𝑖𝑝 ≈ Δ𝑡 𝐾𝑗𝑞
𝑏𝑝

𝑏𝑝
2

Δ𝑏𝑖

Δ𝑡
𝑣′ (hybrid fitting & physics-based)

requires only 𝑂 𝑛2𝑀 correlation estimations and 𝑂 𝑛2 evaluations of 𝐾

Resseguier et al. (2021). SIAM-ASA J Uncertain . hal- 03169957

Reduced Lum (Red LUM)
Multiplicative noise covariance
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 Curse of dimensionality

 Since 𝜎𝑑𝐵𝑡 is white in time,

Σ𝑗𝑞,𝑖𝑝 = 𝔼 𝐾𝑗𝑞 𝜎𝑑𝐵𝑡 𝐾𝑖𝑝 𝜎𝑑𝐵𝑡 /𝑑𝑡 ≈ Δ𝑡 𝐾𝑗𝑞 𝑣′ 𝐾𝑖𝑝 𝑣′

 𝐾 is a matrix of integro-differential operators → cannot be evaluated  on 𝑣′ 𝑥, 𝑡 at every time t

 Covariance of 𝜎𝑑𝐵𝑡 ≈ Δ𝑡2 𝑣′ 𝑥, 𝑡 𝑣′ 𝑦, 𝑡
𝑇
∶ 𝑀 × 𝑀 ∼ 1013 coefficients → intractable

1

8
𝑓 =

1

𝑇
න
0

𝑇

𝑓

𝑑𝑏 𝑡 = 𝐻 𝑏 𝑡 𝑑𝑡 + 𝐾 𝜎𝑑𝐵𝑡 𝑏 𝑡 with   𝐾𝑗𝑞 𝜉 = −
Ω
𝜙𝑗 ⋅ 𝐶 𝜉, ϕ𝑞

(n+1) x (n+1)

M x 1

Full order (∼ nb spatial grid points): 𝑀 ∼ 107

Reduced order :   𝑛 ∼ 10
Number of time steps : 𝑁 ∼ 104

𝑣 = 𝑤 + 𝑣′

Resolved fluid velocity: 
𝑤(𝑥, 𝑡) = σ𝑖=0

𝑛 𝑏𝑖 𝑡 𝜙𝑖 𝑥

Unresolved fluid 

velocity: 

𝑣′ =
𝜎𝑑𝐵𝑡

𝑑𝑡
(Gaussian, white 

wrt 𝑡)

from synthetic data

PCA modes

Randomized Navier-Stokes

PCA residual 𝒗′

New estimator

• Consistency proven (Δ𝑡 → 0)

• Numerically efficient

• Physically-based

→ Robustness in extrapolation

▪ Efficient estimator Σ𝑗𝑞,𝑖𝑝 ≈ Δ𝑡 𝐾𝑗𝑞
𝑏𝑝

𝑏𝑝
2

Δ𝑏𝑖

Δ𝑡
𝑣′ (hybrid fitting & physics-based)

requires only 𝑂 𝑛2𝑀 correlation estimations and 𝑂 𝑛2 evaluations of 𝐾

 Consistency of our estimator (convergence in probability for Δ𝑡 → 0, using stochastic calculus and continuity of K)

Δ𝑡 𝐾𝑗𝑞 𝑏𝑝
Δ𝑏𝑖

Δ𝑡
𝑣′ = Δ𝑡 𝑏𝑝

Δ𝑏𝑖

Δ𝑡
𝐾𝑗𝑞 𝑣′ ≈

1

𝑇
0
𝑇
𝑏𝑝 𝑑 < 𝑏𝑖 , 𝐾𝑗𝑞 𝜎𝐵 > =

1

𝑇
0
𝑇
𝑏𝑝 σr=0

n 𝑏𝑟𝑑 < 𝐾𝑖𝑟 𝜎𝐵 , 𝐾𝑗𝑞 𝜎𝐵 > =σr=0
n Σ𝑗𝑞,𝑖𝑟 𝑏𝑝𝑏𝑟 = Σ𝑗𝑞,𝑖𝑝 𝑏𝑝

2 (orthogonality from PCA)

Resseguier et al. (2021). SIAM-ASA J Uncertain . hal- 03169957

Reduced Lum (Red LUM)
Multiplicative noise covariance
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 Curse of dimensionality

 Since 𝜎𝑑𝐵𝑡 is white in time,

Σ𝑗𝑞,𝑖𝑝 = 𝔼 𝐾𝑗𝑞 𝜎𝑑𝐵𝑡 𝐾𝑖𝑝 𝜎𝑑𝐵𝑡 /𝑑𝑡 ≈ Δ𝑡 𝐾𝑗𝑞 𝑣′ 𝐾𝑖𝑝 𝑣′

 𝐾 is a matrix of integro-differential operators → cannot be evaluated  on 𝑣′ 𝑥, 𝑡 at every time t

 Covariance of 𝜎𝑑𝐵𝑡 ≈ Δ𝑡2 𝑣′ 𝑥, 𝑡 𝑣′ 𝑦, 𝑡
𝑇
∶ 𝑀 × 𝑀 ∼ 1013 coefficients → intractable

1

8
𝑓 =

1

𝑇
න
0

𝑇

𝑓

𝑑𝑏 𝑡 = 𝐻 𝑏 𝑡 𝑑𝑡 + 𝐾 𝜎𝑑𝐵𝑡 𝑏 𝑡 with   𝐾𝑗𝑞 𝜉 = −
Ω
𝜙𝑗 ⋅ 𝐶 𝜉, ϕ𝑞

(n+1) x (n+1)

M x 1

Full order (∼ nb spatial grid points): 𝑀 ∼ 107

Reduced order :   𝑛 ∼ 10
Number of time steps : 𝑁 ∼ 104

𝑣 = 𝑤 + 𝑣′

Resolved fluid velocity: 
𝑤(𝑥, 𝑡) = σ𝑖=0

𝑛 𝑏𝑖 𝑡 𝜙𝑖 𝑥

Unresolved fluid 

velocity: 

𝑣′ =
𝜎𝑑𝐵𝑡

𝑑𝑡
(Gaussian, white 

wrt 𝑡)

from synthetic data

PCA modes

Randomized Navier-Stokes

PCA residual 𝒗′

New estimator

• Consistency proven (Δ𝑡 → 0)

• Numerically efficient

• Physically-based

→ Robustness in extrapolation

▪ Efficient estimator Σ𝑗𝑞,𝑖𝑝 ≈ Δ𝑡 𝐾𝑗𝑞
𝑏𝑝

𝑏𝑝
2

Δ𝑏𝑖

Δ𝑡
𝑣′ (hybrid fitting & physics-based)

requires only 𝑂 𝑛2𝑀 correlation estimations and 𝑂 𝑛2 evaluations of 𝐾

 Consistency of our estimator (convergence in probability for Δ𝑡 → 0, using stochastic calculus and continuity of K)

Δ𝑡 𝐾𝑗𝑞 𝑏𝑝
Δ𝑏𝑖

Δ𝑡
𝑣′ = Δ𝑡 𝑏𝑝

Δ𝑏𝑖

Δ𝑡
𝐾𝑗𝑞 𝑣′ ≈

1

𝑇
0
𝑇
𝑏𝑝 𝑑 < 𝑏𝑖 , 𝐾𝑗𝑞 𝜎𝐵 > =

1

𝑇
0
𝑇
𝑏𝑝 σr=0

n 𝑏𝑟𝑑 < 𝐾𝑖𝑟 𝜎𝐵 , 𝐾𝑗𝑞 𝜎𝐵 > =σr=0
n Σ𝑗𝑞,𝑖𝑟 𝑏𝑝𝑏𝑟 = Σ𝑗𝑞,𝑖𝑝 𝑏𝑝

2 (orthogonality from PCA)

 Optimal time subsampling at 𝚫𝒕 needed to meet the white assumption

Resseguier et al. (2021). SIAM-ASA J Uncertain . hal- 03169957

Reduced Lum (Red LUM)
Multiplicative noise covariance
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 Curse of dimensionality

 Since 𝜎𝑑𝐵𝑡 is white in time,

Σ𝑗𝑞,𝑖𝑝 = 𝔼 𝐾𝑗𝑞 𝜎𝑑𝐵𝑡 𝐾𝑖𝑝 𝜎𝑑𝐵𝑡 /𝑑𝑡 ≈ Δ𝑡 𝐾𝑗𝑞 𝑣′ 𝐾𝑖𝑝 𝑣′

 𝐾 is a matrix of integro-differential operators → cannot be evaluated  on 𝑣′ 𝑥, 𝑡 at every time t

 Covariance of 𝜎𝑑𝐵𝑡 ≈ Δ𝑡2 𝑣′ 𝑥, 𝑡 𝑣′ 𝑦, 𝑡
𝑇
∶ 𝑀 × 𝑀 ∼ 1013 coefficients → intractable

1

8
𝑓 =

1

𝑇
න
0

𝑇

𝑓

𝑑𝑏 𝑡 = 𝐻 𝑏 𝑡 𝑑𝑡 + 𝐾 𝜎𝑑𝐵𝑡 𝑏 𝑡 with   𝐾𝑗𝑞 𝜉 = −
Ω
𝜙𝑗 ⋅ 𝐶 𝜉, ϕ𝑞

(n+1) x (n+1)

M x 1

Full order (∼ nb spatial grid points): 𝑀 ∼ 107

Reduced order :   𝑛 ∼ 10
Number of time steps : 𝑁 ∼ 104

𝑣 = 𝑤 + 𝑣′

Resolved fluid velocity: 
𝑤(𝑥, 𝑡) = σ𝑖=0

𝑛 𝑏𝑖 𝑡 𝜙𝑖 𝑥

Unresolved fluid 

velocity: 

𝑣′ =
𝜎𝑑𝐵𝑡

𝑑𝑡
(Gaussian, white 

wrt 𝑡)

from synthetic data

PCA modes

Randomized Navier-Stokes

PCA residual 𝒗′

New estimator

• Consistency proven (Δ𝑡 → 0)

• Numerically efficient

• Physically-based

→ Robustness in extrapolation

▪ Efficient estimator Σ𝑗𝑞,𝑖𝑝 ≈ Δ𝑡 𝐾𝑗𝑞
𝑏𝑝

𝑏𝑝
2

Δ𝑏𝑖

Δ𝑡
𝑣′ (hybrid fitting & physics-based)

requires only 𝑂 𝑛2𝑀 correlation estimations and 𝑂 𝑛2 evaluations of 𝐾

 Consistency of our estimator (convergence in probability for Δ𝑡 → 0, using stochastic calculus and continuity of K)

Δ𝑡 𝐾𝑗𝑞 𝑏𝑝
Δ𝑏𝑖

Δ𝑡
𝑣′ = Δ𝑡 𝑏𝑝

Δ𝑏𝑖

Δ𝑡
𝐾𝑗𝑞 𝑣′ ≈

1

𝑇
0
𝑇
𝑏𝑝 𝑑 < 𝑏𝑖 , 𝐾𝑗𝑞 𝜎𝐵 > =

1

𝑇
0
𝑇
𝑏𝑝 σr=0

n 𝑏𝑟𝑑 < 𝐾𝑖𝑟 𝜎𝐵 , 𝐾𝑗𝑞 𝜎𝐵 > =σr=0
n Σ𝑗𝑞,𝑖𝑟 𝑏𝑝𝑏𝑟 = Σ𝑗𝑞,𝑖𝑝 𝑏𝑝

2 (orthogonality from PCA)

 Optimal time subsampling at 𝚫𝒕 needed to meet the white assumption

 Additional reduction for efficient sampling : 
diagonalization of Σ → 𝐾 𝜎𝑑𝐵𝑡 ≈ 𝛼 𝑑𝛽𝑡 with a n-dimensional (instead of (n+1)2-dimensional) Brownian motion 𝛽

Resseguier et al. (2021). SIAM-ASA J Uncertain . hal- 03169957

Reduced Lum (Red LUM)
Multiplicative noise covariance
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Summary
Stochastic ROM + Data assimilation

Off-line : Building SROM On-line :

Simulation & data assimilation

SROM

(POD-Galerkin)
𝑑𝑏 𝑡 =

𝐻 𝑏 𝑡 𝑑𝑡 +

𝛼 𝑑𝛽𝑡 𝑏 𝑡

Randomized

Navier-Stokes

SROM

𝑑𝑏 𝑡 =

𝐻 𝑏 𝑡 𝑑𝑡 + 𝛼 𝑑𝛽𝑡 𝑏 𝑡

Solution

𝑣 ≈

𝑖=0

𝑛

𝑏𝑖𝜙𝑖

Temporal 

modes

𝑏𝑖 𝑡

Data

Assimilation

(particle filter)

Sparse

measurement

data

PCA 

modes

Synthetic 

Data

CFD codePhysics
(Navier-Stokes)

PCA 

residual

Resseguier et al. (2022). J Comp.Phys . hal-03445455
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Data assimilation (posterior)

On-line estimation of the solution
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CONCLUSION
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Conclusion

 Reduced order model (ROM) : for very fast and robust CFD  (107 → 8 degrees of freedom.)

 Combine data & physics (built off-line)

 Closure problem handled by LUM

 Efficient estimator for the multiplicative noise

 Efficient generation of prior / Model error quantification

 Data assimilation (Bayesian inverse problem) :
to correct the fast simulation on-line by incomplete/noisy measurements

 First results 

 Optimal unsteady flow estimation/prediction in the whole spatial domain (large-scale structures)

 Robust far outside the training set
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N E X T  S T E P S

 More turbulent flows
 Real measurements

 Better stochastic closure

 Parametric ROM (unknown inflow)

92



references
 Resseguier, V., Mémin, E., & Chapron, B. (2017). Geophysical flows under

location uncertainty, Part I Random transport and general models.
Geophysical & Astrophysical Fluid Dynamics, 111(3), 149-176.

 Resseguier, V., Picard, A. M., Mémin, E., & Chapron, B. (2021). Quantifying
truncation-related uncertainties in unsteady fluid dynamics reduced order
models. SIAM/ASA Journal on Uncertainty Quantification, 9(3), 1152-1183.

 Resseguier, V., Ladvig, M., & Heitz, D. (2022). Real-time estimation and
prediction of unsteady flows using reduced-order models coupled with few
measurements. Journal of Computational Physics, 471, 111631.

24

valentin.resseguier@scalian.com

TH ANK Y O U

93



Bonus slides
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Data assimilation

Example : the Particle Filter (PF) generates an ensemble ~𝑝 𝑣 𝑦

 Initialization
𝑣𝑡=0

𝑗
~𝒩 0, Σ

 Loop over time 𝑡

Importance sampling

 𝑣𝑡
𝑗
= 𝑀 𝑣𝑡−1

𝑗
, 𝑛𝑜𝑖𝑠𝑒 𝑡 − 1 Forecast (“Prior” or “background”) 

 If an observation 𝑦𝑡 is available at the current time 𝑡

 𝑊𝑗 𝑡 ∝ 𝑝 𝑦𝑡 𝑣𝑡
𝑗

Likelihood evaluation, up to a constant

 𝐖𝑗 𝑡 =
𝑊𝑗 𝑡

σ
𝑘=1

𝑁𝑝
𝑊𝑘 𝑡

Normalization

Resampling

 Each new 𝑣𝑡
𝑗

is replaced by one of the old particles 𝑣𝑡
1
, … , 𝑣𝑡

𝑁𝑝
with probability 𝐖1 𝑡 , … ,𝐖𝑁𝑝 𝑡 , 

respectively.

 Final posterior distribution

𝑝 𝑣𝑡 𝑦𝑡1 , … , 𝑦𝑡𝐾 ≈ σ
𝑘=1

𝑁𝑝 1

𝑁𝑝
𝛿 𝑣𝑡 − 𝑣𝑡

𝑘

Présentation ...
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UNCERTAINTY QUANTIFICATION (Prior)
Known initial conditions 𝑏 𝑡 = 0

27

m ean 

part icle

reference

closest  

part icle

bias

m in distance

RMS distance

ensemble

𝑑𝑏 𝑡 = 𝐻 𝑏 𝑡 𝑑𝑡 + 𝛼 𝑑𝛽𝑡 𝑏 𝑡

Metrics choice

• 𝑏𝑖 𝑡 VS reference

• Error metrics

Test cases

Reynolds number (Re) = 300 3D
(full-order simulation has 107 dof)

Reduced-order reference
PCA-projection of the full-order simulation

(Optimal from 8-dof linear decomposition)

Wind Q-criterion

Wind

Vorticity

(round) wind turbine 

blade

vortic

es

Reynolds number (Re) = 100 

/ 2D
(full-order simulation has 104 dof)

Full-order

reference

Wind

Wind

From 107 to 8 degrees of freedom

No data assimilation

Known initial conditions 𝑏 𝑡 = 0
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From 107 to 8 degrees of freedom

No data assimilation

Known initial conditions 𝑏 𝑡 = 0

UNCERTAINTY QUANTIFICATION (Prior)
𝑏𝑖 𝑡 VS reference

28

State of the art

Red. LUM

mean

Red. LUM

confiden
ce

interval

Reference

(full-order 
simulation)

a Red. 

LUM
realizatio

n
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UNCERTAINTY QUANTIFICATION (Prior)
Error on the reduced solution 𝑤

29

𝑣 = 𝑤 + 𝑣′

Resolved fluid velocity: 
𝑤 = σ𝑖=0

𝑛 𝑏𝑖𝜙𝑖

Unresolved fluid 

velocity: 

𝑣′

Reynolds number (Re) = 100 

/ 2D
(full-order simulation has 104 dof)

Reynolds number (Re) = 300 3D
(full-order simulation has 107 dof)

Red. 

LUM
RMSE

Red. 

LUM
bias

Red. LUM

ensemble
minimal

distance
to the 

reference

Red. 

LUM
std

m ean 

part icle

reference

closest  

part icle

bias

m in distance

RMS distance

ensemble

From 107 to 8 degrees of freedom

No data assimilation

Known initial conditions 𝑏 𝑡 = 0
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From 107 to 8 degrees of freedom

No data assimilation

Known initial conditions 𝑏 𝑡 = 0

The Reference remains always close

to the Red. LUM ensemble
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Data assimilation (posterior)

Error on the solution estimation

30

Reynolds number (Re) = 100 

/ 2D
(full-order simulation has 104 dof)

Reynolds number (Re) = 300 3D
(full-order simulation has 107 dof)

Red. 

LUM
bias

Red. 
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std

State of the art

State of the 

art
𝑣 = 𝑤 + 𝑣′

Resolved fluid velocity: 
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