

Context

Observer for wind turbine application

Application: Real-time estimation and prediction of 3D fluid flow using strongly-limited computational resources \& few sensors

Context

Observer for wind turbine application

Application: Real-time estimation and prediction of 3D fluid flow using strongly-limited computational resources \& few sensors

Context

Observer for wind turbine application

Application: Real-time estimation and prediction of 3D fluid flow using strongly-limited computational resources \& few sensors

Context

Observer for wind turbine application

Application: Real-time estimation and prediction of 3D fluid flow using strongly-limited computational resources \& few sensors

Context

Observer for wind turbine application

Application: Real-time estimation and prediction of 3D fluid flow using strongly-limited computational resources \& few sensors

Estimation and prediction:

- Air flow
- Lift, drag, inflow
- ...

Few sensors

Context

Observer for wind turbine application

Application: Real-time estimation and prediction of 3D fluid flow using strongly-limited computational resources \& few sensors

Estimation and prediction:

- Air flow
- Lift, drag, inflow
- ...

Which simple model? How to combine model \& measurements?

Context

Observer for wind turbine application

Application: Real-time estimation and prediction of 3D fluid flow using strongly-limited computational resources \& few sensors

Estimation and prediction:

- Air flow
- Lift, drag, inflow

Which simple model? How to combine model \& measurements?

Scientific problem :

Simulation \& data assimilation under severe dimensional reduction
typically, $10^{7} \rightarrow O(10)$ degrees of freedom

Content

I. State of the art
a. Intrusive reduced order model (ROM)
b. Data assimilation
II. Reduced location uncertainty models
a. Multiscale modeling
b. Location uncertainty models (LUM)
c. Reduced LUM
III. Numerical results

PARTI

STATE OF THE ART

a. Intrusive
reduced order model (ROM)
b. Data assimilation

Reduced order model (ROM)

Solution of an PDE with the form:

$$
v(x, t) \approx \sum_{i=0}^{n} b_{i}(t) \phi_{i}(x)
$$

Reduced order model (ROM)

Solution of an PDE with the form:

$$
v(x, t) \approx \sum_{i=0}^{n} b_{i}(t) \phi_{i}(x)
$$

Reduced order model (ROM)

Solution of an PDE with the form:

$$
v(x, t) \approx \sum_{i=0}^{n} b_{i}(t) \phi_{i}(x)
$$

Reduced order model (ROM)

Solution of an PDE with the form:

$$
v(x, t) \approx \sum_{i=0}^{n} b_{i}(t) \phi_{i}(x)
$$

Full space

Reduced space

$\begin{gathered}\text { Solution } \\ \text { coordinates }\end{gathered}$$\left(v_{q}\left(x_{i}, t\right)\right)_{q, i} \quad\left(b_{i}(t)\right)_{i}$

Dimension
$M \times d \sim 10^{7}$
$n \sim 10-100$

Intrusive reduced order model

Combine physical models and learning approches

- Principal Component Analysis (PCA) on a dataset to reduce the dimensionality:

- Approximation:

$$
v(x, t) \approx \sum_{i=0}^{n} b_{i}(t) \phi_{i}(x)
$$

Intrusive reduced order model

Combine physical models and learning approches

- Principal Component Analysis (PCA) on a dataset to reduce the dimensionality:

- Approximation:

$$
v(x, t) \approx \sum_{i=0}^{n} b_{i}(t) \phi_{i}(x)
$$

Intrusive reduced order model

Combine physical models and learning approches

- Principal Component Analysis (PCA) on a dataset to reduce the dimensionality:

- Approximation:

$$
\left.v(x, t) \approx \sum_{i=0}^{n} b_{i} \begin{array}{c}
\text { Resolved } \\
\text { modes }
\end{array}\right) b_{i}(x)
$$

Intrusive reduced order model

Combine physical models and learning approches

- Principal Component Analysis (PCA) on a dataset to reduce the dimensionality:

- Approximation:

$$
v(x, t) \approx \sum_{i=0}^{n} \begin{gathered}
\text { Resolved } \\
\text { modes } \\
b_{i}(t)
\end{gathered} \phi_{i}(x)
$$

- Projection of the "physics" onto the spatial modes (POD-Galerkin)

$$
\int_{\Omega} d x \phi_{i}(x) \cdot(\text { Physical equation (e.g. Navier-Stokes) }
$$

Intrusive reduced order model

Combine physical models and learning approches

- Principal Component Analysis (PCA) on a dataset to reduce the dimensionality:

- Approximation:
- Projection of the "physics" onto the spatial modes (POD-Galerkin)
$\int_{\Omega} d x \phi_{i}(x) \cdot($ Physical equation (e.g. Navier-Stokes))
\rightarrow ROM for very fast simulation of temporal modes

Intrusive reduced order model

Combine physical models and learning approches

- Principal Component Analysis (PCA) on a dataset to reduce the dimensionality:

- Approximation:
- Projection of the "physics" onto the spatial modes (POD-Galerkin)

Intrusive reduced order model

Combine physical models and learning approches

- Principal Component Analysis (PCA) on a dataset to reduce the dimensionality:

- Approximation:

- Projection of the "physics" onto the spatial modes (POD-Galerkin)

\rightarrow ROM for very fast simulation of temporal modes

Intrusive reduced order model

Combine physical models and learning approches

- Principal Component Analysis (PCA) on a dataset to reduce the dimensionality:

- Approximation:
- Projection of the "physics" onto the spatial modes (POD-Galerkin)

Don't work in extrapolation!
$\int_{\Omega} d x \phi_{i}(x) \cdot$ (Physical equation $\begin{gathered}\text { + fitted } \\ \text { correction } \\ \text { + additive noise }\end{gathered}$
\rightarrow ROM for very fast simulation of temporal modes

Intrusive reduced order model

Combine physical models and learning approches

- Principal Component Analysis (PCA) on a dataset to reduce the dimensionality:

- Approximation:
- Projection of the "physics" onto the spatial modes (POD-Galerkin)

Intrusive reduced order model

Combine physical models and learning approches

- Principal Component Analysis (PCA) on a dataset to reduce the dimensionality:

- Approximation:
- Projection of the "physics" onto the spatial modes (POD-Galerkin)
$\int_{\Omega} d x \phi_{i}(x)$.
\rightarrow ROM for very fast simulation of temporal modes

Intrusive reduced order model

Combine physical models and learning approches

- Principal Component Analysis (PCA) on a dataset to reduce the dimensionality:

- Approximation:
- Projection of the "physics" onto the spatial modes (POD-Galerkin)
$\int_{\Omega} d x \phi_{i}(x) \cdot \quad$ (Randomized Navier-Stokes)
\rightarrow ROM for very fast simulation of temporal modes

Data assimilation $=$ Coupling simulations and measurements y

Numerical
Simulation (ROM)
\rightarrow erroneous

On-line
measurements
\rightarrow incomplete
\rightarrow possibly noisy

Data assimilation $=$ Coupling simulations and measurements y

Numerical
 Simulation
 (ROM)
 \rightarrow erroneous

On-line
measurements
\rightarrow incomplete
\rightarrow possibly noisy

Data assimilation $=$ Coupling simulations and measurements y

Data assimilation $=$ Coupling simulations and measurements y

Data assimilation $=$ Coupling simulations and measurements y

Data assimilation
 $=$ Coupling simulations and measurements y

Data assimilation
 $=$ Coupling simulations and measurements y

Data assimilation
 $=$ Coupling simulations and measurements y

Data assimilation
 $=$ Coupling simulations and measurements y

Data assimilation

$=$ Coupling simulations and measurements y

Data assimilation

$=$ Coupling simulations and measurements y

REDUCED LOCATION UNCERTAINTY MODELS
a. Multiscale modeling
Part II
b. Location uncertainty models (LUM)
c. Reduced LUM (Red LUM)

Multiscale modeling

Multiscale modeling

Multiscale modeling

Multiscale modeling

Fluids are multiscale \longrightarrow Many coupled degrees of freedom

Multiscale modeling

Fluids are multiscale Many coupled degrees of freedom

Resolved fluid velocity:
$w=\sum_{i=0}^{n} b_{i} \phi_{i}$
Unresolved fluid
velocity:
v^{\prime}
We cannot simulate (or observe) every scales.

Generally, authors

- simulate large scales w,
- model the effect of small scales v^{\prime} in the equations (closure).

Here, we

- model the small scales v^{\prime} through stochastic processes, calibrated from data and/or from physical scale symmetries.
- inject those in physical equations for physical understanding, simulations \& data assimilation.

location uncertainty models (LUM)

$$
v=w+v^{\prime}
$$

Resolved fluid velocity: $w=\sum_{i=0}^{n} b_{i} \phi_{i}$

Unresolved fluid
velocity:
$v^{\prime}=\frac{\sigma d B_{t}}{d t}$

Assumed
(conditionally-)Gaussian
\& white in time
(non-stationary in space)

location uncertainty models (LUM)

$$
v=w+v^{\prime}
$$

Resolved fluid velocity: $w=\sum_{i=0}^{n} b_{i} \phi_{i}$

Unresolved fluid velocity:
$v^{\prime}=\frac{\sigma d B_{t}}{d t}$

location uncertainty models (LUM)

$$
v=w+v^{\prime}
$$

Resolved fluid velocity:
$w=\sum_{i=0}^{n} b_{i} \phi_{i}$
Unresolved fluid
velocity:
$v^{\prime}=\frac{\sigma d B_{t}}{d t}$

location uncertainty models (LUM)

$$
v=w+v^{\prime}
$$

Resolved fluid velocity:
$w=\sum_{i=0}^{n} b_{i} \phi_{i}$
Unresolved fluid
velocity:
$v^{\prime}=\frac{\sigma d B_{t}}{d t}$

location uncertainty models (LUM)

```
v=w+\mp@subsup{v}{}{\prime}
```

Resolved fluid velocity:
$w=\sum_{i=0}^{n} b_{i} \phi_{i}$
Unresolved fluid velocity:
$v^{\prime}=\frac{\sigma d B_{t}}{d t}$

- Good model error quantification for data assimilation

location uncertainty models (LUM), Randomized Navier-Stokes

$$
v=w+v^{\prime}
$$

Resolved fluid velocity:

Unresolved fluid
velocity:
$v^{\prime}=\frac{\sigma d B_{t}}{d t} \quad$ (Gaussian, white writ t)
(assuming $\nabla \cdot w=0$ and $\nabla \cdot v^{\prime}=$
0)

Momentum conservation
$\mathrm{d}\left(w\left(t, X_{t}\right)\right)=d F$ (forces)
Positions of fluid parcels X_{t} :

$$
d X_{t}=w\left(t, X_{t}\right) d t+\underbrace{\sigma\left(t, X_{t}\right) d B_{t}}_{\begin{array}{c}
\text { Gaussian } \\
\text { process } \\
\text { white in time }
\end{array}}
$$

location uncertainty models (LUM), Randomized Navier-Stokes

$$
v=w+v^{\prime}
$$

Resolved fluid velocity:

Unresolved fluid
velocity:
$v^{\prime}=\frac{\sigma d B_{t}}{d t}$ (Gaussian, white

$$
\text { wit } t \text {) }
$$

(assuming $\nabla \cdot w=0$ and ∇. $v^{\prime}=0$)

Variance tensor:
$a(x, x)=\frac{\mathbb{E}\left\{\left(\sigma d B_{t}\right)\left(\sigma d B_{t}\right)^{T}\right\}}{d t}$

$$
d_{t} w+w^{*} d t \cdot \nabla w+\sigma d B_{t} \cdot \nabla w-\nabla \cdot\left(\frac{1}{2} a \nabla w\right) d t=d F
$$

From Ito-Wentzell formula (Kunita 1990)
with Ito notations

location uncertainty models (LUM), Randomized Navier-Stokes

$$
v=w+v^{\prime}
$$

Resolved fluid velocity:

Unresolved fluid
velocity:
$v^{\prime}=\frac{\sigma d B_{t}}{d t}$ (Gaussian, white wrt t)
(assuming $\nabla \cdot w=0$ and ∇. $v^{\prime}=0$)

Variance tensor:
$a(x, x)=\frac{\mathbb{E}\left\{\left(\sigma d B_{t}\right)\left(\sigma d B_{t}\right)^{T}\right\}}{d t}$

$$
d_{t} w+w^{*} d t \cdot \nabla w+\sigma d B_{t} \cdot \nabla w-\nabla \cdot\left(\frac{1}{2} a \nabla w\right) d t=d F
$$

From Ito-Wentzell formula (Kunita 1990)
with Ito notations

location uncertainty models (LUM), Randomized Navier-Stokes

$$
v=w+v^{\prime}
$$

Resolved fluid velocity:

Unresolved fluid
velocity:
$v^{\prime}=\frac{\sigma d B_{t}}{d t}$ (Gaussian, white wrt t)
(assuming $\nabla \cdot w=0$ and ∇. $v^{\prime}=0$)

Variance tensor:
$a(x, x)=\frac{\mathbb{E}\left\{\left(\sigma d B_{t}\right)\left(\sigma d B_{t}\right)^{T}\right\}}{d t}$

From Ito-Wentzell formula (Kunita 1990)
with Ito notations

location uncertainty models (LUM), Randomized Navier-Stokes

$$
v=w+v^{\prime}
$$

Resolved fluid velocity:

Unresolved fluid
velocity:
$v^{\prime}=\frac{\sigma d B_{t}}{d t} \quad$ (Gaussian, white
wrt $t)$
(assuming $\nabla \cdot w=0$ and ∇. $v^{\prime}=0$)

Variance tensor:
$a(x, x)=\frac{\mathbb{E}\left\{\left(\sigma d B_{t}\right)\left(\sigma d B_{t}\right)^{T}\right\}}{d t}$

location uncertainty models (LUM), Randomized Navier-Stokes

$$
v=w+v^{\prime}
$$

Resolved fluid velocity:

Unresolved fluid velocity:
$v^{\prime}=\frac{\sigma d B_{t}}{d t} \quad$ (Gaussian, white
wrt $t)$
(assuming $\nabla \cdot w=0$ and ∇. $\left.v^{\prime}=0\right)$

Variance tensor:
$a(x, x)=\frac{\mathbb{E}\left\{\left(\sigma d B_{t}\right)\left(\sigma d B_{t}\right)^{T}\right\}}{d t}$

Usual
terms

location uncertainty models (LUM), Randomized Navier-Stokes

$$
v=w+v^{\prime}
$$

Resolved fluid velocity:

Unresolved fluid velocity:
$v^{\prime}=\frac{\sigma d B_{t}}{d t} \quad$ (Gaussian, white
wrt t)

location uncertainty models (LUM), Randomized Navier-Stokes

$$
v=w+v^{\prime}
$$

Resolved fluid velocity:

Unresolved fluid velocity:
$v^{\prime}=\frac{\sigma d B_{t}}{d t} \quad$ (Gaussian, white
wrt t)

location uncertainty models (LUM), Randomized Navier-Stokes

$$
v=w+v^{\prime}
$$

Resolved fluid velocity:

Unresolved fluid
velocity:
$v^{\prime}=\frac{\sigma d B_{t}}{d t} \quad$ (Gaussian, white
$w i t t)$
(assuming $\nabla \cdot w=0$ and ∇.
$v^{\prime}=0$)
Variance tensor:
$a(x, x)=\frac{\mathbb{E}\left\{\left(\sigma d B_{t}\right)\left(\sigma d B_{t}\right)^{T}\right\}}{d t}$

location uncertainty models (LUM), Randomized Navier-Stokes

$$
v=w+v^{\prime}
$$

Resolved fluid velocity:

Unresolved fluid velocity:
$v^{\prime}=\frac{\sigma d B_{t}}{d t}$
writ $t)$ (Gaussian, white

location uncertainty models (LUM), Randomized Navier-Stokes

$$
v=w+v^{\prime}
$$

Resolved fluid velocity:

Unresolved fluid velocity:
$v^{\prime}=\frac{\sigma d B_{t}}{d t} \quad$ (Gaussian, white
wrt t)

location uncertainty models (LUM), Randomized Navier-Stokes

$$
v=w+v^{\prime}
$$

Resolved fluid velocity:
w

Unresolved fluid
velocity:
$v^{\prime}=\frac{\sigma d B_{t}}{d t} \quad$ (Gaussian, white
wrt^{t})

From Ito-Wentzell formula (Kunita 1990)
with Ito notations

$$
d_{t} w+C(w, w) d t+C\left(\sigma d B_{t}, w\right)+F(w) d t=d F
$$

Usual terms

Skew-symmetric multiplicative random

Balanced energy
fluxes
forcing

Reduced Lum (Red LUM) POD-Galerkin gives SDEs for resolved modes

$$
v=w+v^{\prime}
$$

Full order: $M \sim 10^{7}$
Reduced order: $n \sim 10$

Resolved fluid velocity: $w(x, t)=\sum_{i=0}^{n} b_{i}(t) \phi_{i}(x)$

Unresolved fluid
velocity:
$v^{\prime}=\frac{\sigma d B_{t}}{d t} \quad$ (Gaussian, white wrt t)

Reduced Lum (Red LUM) POD-Galerkin gives SDEs for resolved modes

$$
v=w+v^{\prime}
$$

Full order: $M \sim 10^{7}$
Reduced order: $n \sim 10$

$$
\int_{\Omega} \phi_{i}(x) \cdot\left(d_{t} w+C(w, w) d t+F(w) d t+C\left(\sigma d B_{t}, w\right)=d F\right) d x
$$

Reduced Lum (Red LUM) POD-Galerkin gives SDEs for resolved modes

```
v=w+\mp@subsup{v}{}{\prime}
```

Full order: $M \sim 10^{7}$
Reduced order: $n \sim 10$

```
Resolved fluid velocity:
w}(x,t)=\mp@subsup{\sum}{i=0}{n}\mp@subsup{b}{i}{}(t)\mp@subsup{\phi}{i}{}(x
```

Unresolved fluid
velocity:
$v^{\prime}=\frac{\sigma d B_{t}}{d t} \quad$ (Gaussian, white $\int_{\Omega} \phi_{i}(x) \cdot\left(d_{t} w+C(w, w) d t+F(w) d t+C\left(\sigma d B_{t}, w\right)=d F\right) d x$

Reduced Lum (Red LUM) POD-Galerkin gives SDEs for resolved modes

```
v=w+\mp@subsup{v}{}{\prime}
```

```
Resolved fluid velocity:
w(x,t)=\mp@subsup{\sum}{i=0}{n}\mp@subsup{b}{i}{}(t)\mp@subsup{\phi}{i}{}(x)
```

Unresolved fluid
velocity:
$v^{\prime}=\frac{\sigma d B_{t}}{d t} \quad$ (Gaussian, white
wrt t)

Full order : $M \sim 10^{7}$
Reduced order: $n \sim 10$

$$
\int_{\Omega} \phi_{i}(x) \cdot\left(d_{t} w+C(w, w) d t+F(w) d t+C\left(\sigma d B_{t}, w\right)=d F\right) d x
$$

$2^{\text {nd }}$ order polynomial

Reduced Lum (Red LUM) POD-Galerkin gives SDEs for resolved modes

```
v=w+\mp@subsup{v}{}{\prime}
```

```
Resolved fluid velocity:
w(x,t)=\mp@subsup{\sum}{i=0}{n}\mp@subsup{b}{i}{}(t)\mp@subsup{\phi}{i}{}(x)
```

Unresolved fluid
velocity:
$v^{\prime}=\frac{\sigma d B_{t}}{d t}$ (Gaussian, white
(Gaussian, white
$\int_{\Omega} \phi_{i}(x) \cdot\left(d_{t} w+C(w, w) d t+F(w) d t+C\left(\sigma d B_{t}, w\right)=d F\right) d x$

Multiplicative skew-symmetric noise
$2^{\text {nd }}$ order polynomial
Full order : $M \sim 10^{7}$
Reduced order: $n \sim 10$

Reduced Lum (Red LUM) POD-Galerkin gives SDEs for resolved modes

```
v=w+\mp@subsup{v}{}{\prime}
```

```
Resolved fluid velocity:
w(x,t)=\mp@subsup{\sum}{i=0}{n}\mp@subsup{b}{i}{}(t)\mp@subsup{\phi}{i}{}(x)
```

Unresolved fluid
velocity:
$v^{\prime}=\frac{\sigma d B_{t}}{d t}$ (Gaussian, white
(Gaussian, white
$\int_{\Omega} \phi_{i}(x) \cdot\left(d_{t} w+C(w, w) d t+F(w) d t+C\left(\sigma d B_{t}, w\right)=d F\right) d x$

Multiplicative skew-symmetric noise
$2^{\text {nd }}$ order polynomial

$$
K_{j q}[\xi]=-\int_{\Omega} \phi_{j} \cdot C\left(\xi, \phi_{q}\right)
$$

Reduced Lum (Red LUM) POD-Galerkin gives SDEs for resolved modes

$$
v=w+v^{\prime}
$$

Resolved fluid velocity: $w(x, t)=\sum_{i=0}^{n} b_{i}(t) \phi_{i}(x)$

Unresolved fluid
velocity:
$v^{\prime}=\frac{\sigma d B_{t}}{d t} \quad$ (Gaussian, white

$$
d b(t)=H(b(t)) d t+K\left(\sigma d B_{t}\right) b(t)
$$

$$
\int_{\Omega} \phi_{i}(x) \cdot\left(d_{t} w+C(w, w) d t+F(w) d t+C\left(\sigma d B_{t}, w\right)=d F\right) d x
$$

Variance tensor:
$a(x, x)=\frac{\mathbb{E}\left\{\left(\sigma d B_{t}\right)\left(\sigma d B_{t}\right)^{T}\right\}}{d t}$

Reduced Lum (Red LUM) POD-Galerkin gives SDEs for resolved modes

$$
v=w+v^{\prime}
$$

Full order: $M \sim 10^{7}$
Reduced order: $n \sim 10$

Resolved fluid velocity: $w(x, t)=\sum_{i=0}^{n} b_{i}(t) \phi_{i}(x)$

Unresolved fluid
velocity:
$v^{\prime}=\frac{\sigma d B_{t}}{d t} \quad$ (Gaussian, white
Variance tensor:
$a(x, x)=\frac{\mathbb{E}\left\{\left(\sigma d B_{t}\right)\left(\sigma d B_{t}\right)^{T}\right\}}{d t}$

$$
\int_{\Omega} \phi_{i}(x) \cdot\left(d_{t} w+C(w, w) d t+F(w) d t+C\left(\sigma d B_{t}, w\right)=d F\right) d x
$$

$$
\Rightarrow \quad d b(t)=H(b(t)) d t+K\left(\sigma d B_{t}\right) b(t)
$$

$2^{\text {nd }}$ order polynomial

Coefficients given by :

- Randomized Navier-Stokes
- $\left(\phi_{j}\right)_{j}$
- $a(x) \approx \Delta t \overline{v^{\prime}\left(v^{\prime}\right)^{T}}$

$$
\bar{f}=\frac{1}{T} \int_{0}^{T} f
$$

$$
K_{j q}[\xi]=-\int_{\Omega} \phi_{j} \cdot C\left(\xi, \phi_{q}\right)
$$

Reduced Lum (Red LUM) POD-Galerkin gives SDEs for resolved modes

$$
v=w+v^{\prime}
$$

Full order: $M \sim 10^{7}$
Reduced order: $n \sim 10$

Resolved fluid velocity: $w(x, t)=\sum_{i=0}^{n} b_{i}(t) \phi_{i}(x)$

Unresolved fluid
velocity:
$v^{\prime}=\frac{\sigma d B_{t}}{d t} \quad$ (Gaussian, white
wrt t)
Variance tensor:
$a(x, x)=\frac{\mathbb{E}\left\{\left(\sigma d B_{t}\right)\left(\sigma d B_{t}\right)^{T}\right\}}{d t}$

$$
\int_{\Omega} \phi_{i}(x) \cdot\left(d_{t} w+C(w, w) d t+F(w) d t+C\left(\sigma d B_{t}, w\right)=d F\right) d x
$$

Coefficients given by :

- Randomized Navier-Stokes

Randomized Navier-Stokes

- $\left(\phi_{j}\right)_{j}$
- $a(x) \approx \Delta t \overline{v^{\prime}\left(v^{\prime}\right)^{T}}$

$$
\bar{f}=\frac{1}{T} \int_{0}^{T} f
$$

$$
K_{j q}[\xi]=-\int_{\Omega} \phi_{j} \cdot C\left(\xi, \phi_{q}\right)
$$

Reduced Lum (Red LUM) POD-Galerkin gives SDEs for resolved modes

$$
v=w+v^{\prime}
$$

Full order: $M \sim 10^{7}$
Reduced order: $n \sim 10$

Resolved fluid velocity: $w(x, t)=\sum_{i=0}^{n} b_{i}(t) \phi_{i}(x)$

Unresolved fluid
velocity:
$v^{\prime}=\frac{\sigma d B_{t}}{d t} \quad$ (Gaussian, white
wrt t)
Variance tensor:
$a(x, x)=\frac{\mathbb{E}\left\{\left(\sigma d B_{t}\right)\left(\sigma d B_{t}\right)^{T}\right\}}{d t}$

$$
\int_{\Omega} \phi_{i}(x) \cdot\left(d_{t} w+C(w, w) d t+F(w) d t+C\left(\sigma d B_{t}, w\right)=d F\right) d x
$$

Coefficients given by :

- Randomized Navier-Stokes
- $\left(\phi_{j}\right)_{j}$
- $a(x) \approx \Delta t \overline{v^{\prime}\left(v^{\prime}\right)^{T}}$

$$
\bar{f}=\frac{1}{T} \int_{0}^{T} f
$$

$$
K_{j q}[\xi]=-\int_{\Omega} \phi_{j} \cdot C\left(\xi, \phi_{q}\right)
$$

Reduced Lum (Red LUM) POD-Galerkin gives SDEs for resolved modes

$$
v=w+v^{\prime}
$$

Full order: $M \sim 10^{7}$
Reduced order: $n \sim 10$

Resolved fluid velocity: $w(x, t)=\sum_{i=0}^{n} b_{i}(t) \phi_{i}(x)$

Unresolved fluid
velocity:
$v^{\prime}=\frac{\sigma d B_{t}}{d t} \quad$ (Gaussian, white
wrt t)
Variance tensor:
$a(x, x)=\frac{\mathbb{E}\left\{\left(\sigma d B_{t}\right)\left(\sigma d B_{t}\right)^{T}\right\}}{d t}$

$$
\int_{\Omega} \phi_{i}(x) \cdot\left(d_{t} w+C(w, w) d t+F(w) d t+C\left(\sigma d B_{t}, w\right)=d F\right) d x
$$

$$
\Rightarrow \quad d b(t)=H(b(t)) d t+K\left(\sigma d B_{t}\right) b(t)
$$

$2^{\text {nd }}$ order polynomial

Coefficients given by :

- Randomized Navier-Stokes
- $\left(\phi_{j}\right)_{j}$
- $a(x) \approx \Delta t \overline{v^{\prime}\left(v^{\prime}\right)^{T}}$

$$
\bar{f}=\frac{1}{T} \int_{0}^{T} f
$$

Reduced Lum (Red LUM) POD-Galerkin gives SDEs for resolved modes

$$
v=w+v^{\prime}
$$

Full order: $M \sim 10^{7}$
Reduced order: $n \sim 10$

Resolved fluid velocity: $w(x, t)=\sum_{i=0}^{n} b_{i}(t) \phi_{i}(x)$

Unresolved fluid velocity:
$v^{\prime}=\frac{\sigma d B_{t}}{d t} \quad$ (Gaussian, white
Variance tensor:
$a(x, x)=\frac{\mathbb{E}\left\{\left(\sigma d B_{t}\right)\left(\sigma d B_{t}\right)^{T}\right\}}{d t}$

$$
\int_{\Omega} \phi_{i}(x) \cdot\left(d_{t} w+C(w, w) d t+F(w) d t+C\left(\sigma d B_{t}, w\right)=d F\right) d x
$$

Coefficients given by :

- Randomized Navier-Stokes
- $\left(\phi_{j}\right)_{j}$
- $a(x) \approx \Delta t \overline{v^{\prime}\left(v^{\prime}\right)^{T}}$

$K_{j q}[\xi]=-\int_{\Omega} \phi_{j} \cdot C\left(\xi, \phi_{q}\right)$

$$
\bar{f}=\frac{1}{T} \int_{0}^{T} f
$$

Reduced Lum (Red LUM) POD-Galerkin gives SDEs for resolved modes

$$
v=w+v^{\prime}
$$

Full order: $M \sim 10^{7}$
Reduced order: $n \sim 10$

Resolved fluid velocity: $w(x, t)=\sum_{i=0}^{n} b_{i}(t) \phi_{i}(x)$

Unresolved fluid velocity:
$v^{\prime}=\frac{\sigma d B_{t}}{d t} \quad$ (Gaussian, white
$w(t)$
Variance tensor:
$a(x, x)=\frac{\mathbb{E}\left\{\left(\sigma d B_{t}\right)\left(\sigma d B_{t}\right)^{T}\right\}}{d t}$

$$
\int_{\Omega} \phi_{i}(x) \cdot\left(d_{t} w+C(w, w) d t+F(w) d t+C\left(\sigma d B_{t}, w\right)=d F\right) d x
$$

- Randomized Navier-Stokes
- $\left(\phi_{j}\right)_{j}$
- $a(x) \approx \Delta t \overline{v^{\prime}\left(v^{\prime}\right)^{T}}$

$$
\bar{f}=\frac{1}{T} \int_{0}^{T} f
$$

Reduced Lum (Red LUM) POD-Galerkin gives SDEs for resolved modes

$$
v=w+v^{\prime}
$$

Full order: $M \sim 10^{7}$
Reduced order: $n \sim 10$

Resolved fluid velocity: $w(x, t)=\sum_{i=0}^{n} b_{i}(t) \phi_{i}(x)$

Unresolved fluid velocity:
$v^{\prime}=\frac{\sigma d B_{t}}{d t} \quad$ (Gaussian, white
wrt t)
Variance tensor:
$a(x, x)=\frac{\mathbb{E}\left\{\left(\sigma d B_{t}\right)\left(\sigma d B_{t}\right)^{T}\right\}}{d t}$

$$
\int_{\Omega} \phi_{i}(x) \cdot\left(d_{t} w+C(w, w) d t+F(w) d t+C\left(\sigma d B_{t}, w\right)=d F\right) d x
$$

- Randomized Navier-Stokes
- $\left(\phi_{j}\right)_{j}$
- $a(x) \approx \Delta t \overline{v^{\prime}\left(v^{\prime}\right)^{T}}$

$$
\bar{f}=\frac{1}{T} \int_{0}^{T} f
$$

Reduced Lum (Red LUM) POD-Galerkin gives SDEs for resolved modes

$$
v=w+v^{\prime}
$$

Full order: $M \sim 10^{7}$
Reduced order: $n \sim 10$

Resolved fluid velocity: $w(x, t)=\sum_{i=0}^{n} b_{i}(t) \phi_{i}(x)$

Unresolved fluid velocity:
$v^{\prime}=\frac{\sigma d B_{t}}{d t} \quad$ (Gaussian, white
wit t)
Variance tensor:
$a(x, x)=\frac{\mathbb{E}\left\{\left(\sigma d B_{t}\right)\left(\sigma d B_{t}\right)^{T}\right\}}{d t}$

$$
\int_{\Omega} \phi_{i}(x) \cdot\left(d_{t} w+C(w, w) d t+F(w) d t+C\left(\sigma d B_{t}, w\right)=d F\right) d x
$$

Coefficients given by

- Randomized Navier-Stokes
- $\left(\phi_{j}\right)_{j}$
- $a(x) \approx \Delta t \overline{v^{\prime}\left(v^{\prime}\right)^{T}}$

$$
d b(t)=H(b(t)) d t+\overbrace{}^{(n+1) \times(n+1)} \quad \sigma d B_{t}) \quad b(t)
$$

$2^{\text {nd }}$ order polynomial

Multiplicative skew-symmetric noise
Covariance to estimate

$$
\mathbb{E}\left(K_{j q}\left(\sigma d B_{t}\right) K_{i p}\left(\sigma d B_{t}\right)\right) / d t \approx \Delta t K_{j q}\left[\overline{\frac{b_{p}}{\overline{b_{p}^{2}}} \frac{\Delta b_{i}}{\Delta t} v^{\prime}}\right]
$$

$$
K_{j q}[\xi]=-\int_{\Omega} \phi_{j} \cdot C\left(\xi, \phi_{q}\right)
$$

Reduced Lum (Red LUM) POD-Galerkin gives SDEs for resolved modes

$$
v=w+v^{\prime}
$$

Full order: $M \sim 10^{7}$
Reduced order: $n \sim 10$

Resolved fluid velocity: $w(x, t)=\sum_{i=0}^{n} b_{i}(t) \phi_{i}(x)$

Unresolved fluid velocity:
$v^{\prime}=\frac{\sigma d B_{t}}{d t} \quad$ (Gaussian, white
wit t)
Variance tensor:
$a(x, x)=\frac{\mathbb{E}\left\{\left(\sigma d B_{t}\right)\left(\sigma d B_{t}\right)^{T}\right\}}{d t}$

$$
\int_{\Omega} \phi_{i}(x) \cdot\left(d_{t} w+C(w, w) d t+F(w) d t+C\left(\sigma d B_{t}, w\right)=d F\right) d x
$$

Coefficients given by :

- Randomized Navier-Stokes
- $\left(\phi_{j}\right)_{j}$
- $a(x) \approx \Delta t \overline{v^{\prime}\left(v^{\prime}\right)^{T}}$

$$
d b(t)=H(b(t)) d t+\overbrace{}^{(n+1) \times(n+1)} \quad \sigma d B_{t}) \quad b(t)
$$

$2^{\text {nd }}$ order polynomial

Covariance to estimate
$\mathbb{E}\left(K_{j q}\left(\sigma d B_{t}\right) K_{i p}\left(\sigma d B_{t}\right)\right) / d t \approx \Delta t K_{j q}\left[\overline{\frac{b_{p}}{\overline{b_{p}^{2}}} \frac{\Delta b_{i}}{\Delta t} v^{\prime}}\right]$
PCA modes
PCA residual v^{\prime}
$K_{j q}[\xi]=-\int_{\Omega} \phi_{j} \cdot C\left(\xi, \phi_{q}\right)$

$$
\bar{f}=\frac{1}{T} \int_{0}^{T} f
$$

Reduced Lum (Red LUM) POD-Galerkin gives SDEs for resolved modes

$$
v=w+v^{\prime}
$$

Full order: $M \sim 10^{7}$
Reduced order: $n \sim 10$

Resolved fluid velocity: $w(x, t)=\sum_{i=0}^{n} b_{i}(t) \phi_{i}(x)$

Unresolved fluid velocity:
$v^{\prime}=\frac{\sigma d B_{t}}{d t} \quad$ (Gaussian, white
wit t)
Variance tensor:
$a(x, x)=\frac{\mathbb{E}\left\{\left(\sigma d B_{t}\right)\left(\sigma d B_{t}\right)^{T}\right\}}{d t}$

$$
\int_{\Omega} \phi_{i}(x) \cdot\left(d_{t} w+C(w, w) d t+F(w) d t+C\left(\sigma d B_{t}, w\right)=d F\right) d x
$$

- Randomized Navier-Stokes
- $\left(\phi_{j}\right)_{j}$
- $a(x) \approx \Delta t \overline{v^{\prime}\left(v^{\prime}\right)^{T}}$

$$
d b(t)=H(b(t)) d t+K\left(\sigma d B_{t}\right) b(t)
$$

$2^{\text {nd }}$ order polynomial

Covariance to estimate
$\mathbb{E}\left(K_{j q}\left(\sigma d B_{t}\right) K_{i p}\left(\sigma d B_{t}\right)\right) / d t \approx \Delta t K_{j q}\left[\overline{\left[\frac{b_{p}}{\overline{b_{p}^{2}} \frac{\Delta b_{i}}{\Delta t} v^{\prime}}\right]}\right.$

Reduced Lum (Red LUM) POD-Galerkin gives SDEs for resolved modes

$$
v=w+v^{\prime}
$$

Full order: $M \sim 10^{7}$
Reduced order: $n \sim 10$

Resolved fluid velocity: $w(x, t)=\sum_{i=0}^{n} b_{i}(t) \phi_{i}(x)$

Unresolved fluid velocity:
$v^{\prime}=\frac{\sigma d B_{t}}{d t} \quad$ (Gaussian, white
wrt $t)$
Variance tensor:
$a(x, x)=\frac{\mathbb{E}\left\{\left(\sigma d B_{t}\right)\left(\sigma d B_{t}\right)^{T}\right\}}{d t}$

$$
\int_{\Omega} \phi_{i}(x) \cdot\left(d_{t} w+C(w, w) d t+F(w) d t+C\left(\sigma d B_{t}, w\right)=d F\right) d x
$$

Coefficients given by :

- Randomized Navier-Stokes
- $\left(\phi_{j}\right)_{j}$
- $a(x) \approx \Delta t \overline{v^{\prime}\left(v^{\prime}\right)^{T}}$

$$
\bar{f}=\frac{1}{T} \int_{0}^{T} f
$$

$$
d b(t)=H(b(t)) d t+K\binom{(n+1) \times(n+1)}{\sigma d B_{t}} b(t)
$$

$2^{\text {nd }}$ order polynomial

Multiplicative skew-symmetric noise
Covariance to estimate

$$
\mathbb{E}\left(K_{j q}\left(\sigma d B_{t}\right) K_{i p}\left(\sigma d B_{t}\right)\right) / d t \approx \Delta t K_{j q}\left[\overline{\frac{b_{p}}{\overline{b_{p}^{2}}} \frac{\Delta b_{i}}{\Delta t} v^{\prime}}\right]
$$

Reduced Lum (Red LUM) POD-Galerkin gives SDEs for resolved modes

$$
v=w+v^{\prime}
$$

Full order: $M \sim 10^{7}$
Reduced order: $n \sim 10$

Resolved fluid velocity: $w(x, t)=\sum_{i=0}^{n} b_{i}(t) \phi_{i}(x)$

Unresolved fluid velocity:
$v^{\prime}=\frac{\sigma d B_{t}}{d t} \quad$ (Gaussian, white
wrt $t)$
Variance tensor:
$a(x, x)=\frac{\mathbb{E}\left\{\left(\sigma d B_{t}\right)\left(\sigma d B_{t}\right)^{T}\right\}}{d t}$

$$
\int_{\Omega} \phi_{i}(x) \cdot\left(d_{t} w+C(w, w) d t+F(w) d t+C\left(\sigma d B_{t}, w\right)=d F\right) d x
$$

- Randomized Navier-Stokes
- $\left(\phi_{j}\right)_{j}$
- $a(x) \approx \Delta t \overline{v^{\prime}\left(v^{\prime}\right)^{T}}$

$$
\bar{f}=\frac{1}{T} \int_{0}^{T} f
$$

$$
d b(t)=H(b(t)) d t+K\left(\sigma d B_{t}\right) \quad b(t)
$$

$2^{\text {nd }}$ order polynomial

Reduced Lum (Red LUM) POD-Galerkin gives SDEs for resolved modes

$$
v=w+v^{\prime}
$$

Full order: $M \sim 10^{7}$
Reduced order: $n \sim 10$

$$
\int_{\Omega} \phi_{i}(x) \cdot\left(d_{t} w+C(w, w) d t+F(w) d t+C\left(\sigma d B_{t}, w\right)=d F\right) d x
$$

Unresolved fluid velocity:
$v^{\prime}=\frac{\sigma d B_{t}}{d t} \quad$ (Gaussian, white
wrt t)
Variance tensor:
$a(x, x)=\frac{\mathbb{E}\left\{\left(\sigma d B_{t}\right)\left(\sigma d B_{t}\right)^{T}\right\}}{d t}$

New estimator

- Consistency proven $(\Delta t \rightarrow 0)$
- Numerically efficient
- Physically-based
\rightarrow Robustness in extrapolation
$2^{\text {nd }}$ order polynomial Coefficients given by :
- Randomized Navier-Stokes
- $\left(\phi_{j}\right)_{j}$
- $a(x) \approx \Delta t \overline{v^{\prime}\left(v^{\prime}\right)^{T}}$

Reduced Lum (Red LUM) Multiplicative noise covariance

$$
v=w+v^{\prime}
$$

Full order (\sim nb spatial grid points): $M \sim 10^{7}$
Reduced order : $n \sim 10$
Number of time steps : $N \sim 10^{4}$
$d b(t)=H(b(t)) d t+K\left(\sigma d B_{t}\right) b(t)$ with $K_{j q}[\xi]=-\int_{\Omega} \phi_{j} \cdot C\left(\xi, \phi_{q}\right)$

$(n+1) \times(n+1)$

- Curse of dimensionality
- Since $\sigma d B_{t}$ is white in time,

$$
\Sigma_{j q, i p}=\mathbb{E}\left(K_{j q}\left(\sigma d B_{t}\right) K_{i p}\left(\sigma d B_{t}\right)\right) / d t \approx \Delta t \overline{K_{j q}\left(v^{\prime}\right) K_{i p}\left(v^{\prime}\right)}
$$

- $\quad K$ is a matrix of integro-differential operators \rightarrow cannot be evaluated on $v^{\prime}(x, t)$ at every time \dagger
- Covariance of $\sigma d B_{t} \approx \Delta t^{2} \overline{\left(v^{\prime}(x, t)\right)\left(v^{\prime}(y, t)\right)^{T}}: M \times M \sim 10^{13}$ coefficients \rightarrow intractable
- Physically-based

New estimator

- Consistency proven $(\Delta t \rightarrow 0)$
- Numerically efficient
\rightarrow Robustness in extrapolation
Randomized Navier-Stokes
PCA modes

$$
\bar{f}=\frac{1}{T} \int_{0}^{T} f
$$

Reduced Lum (Red LUM) Multiplicative noise covariance

$$
v=w+v^{\prime}
$$

Full order (\sim nb spatial grid points): $M \sim 10^{7}$
Reduced order : $n \sim 10$
Number of time steps : $N \sim 10^{4}$
$d b(t)=H(b(t)) d t+K\left(\sigma d B_{t}\right) b(t)$ with $K_{j q}[\xi]=-\int_{\Omega} \phi_{j} \cdot C\left(\xi, \phi_{q}\right)$

$$
(n+1) \times(n+1)
$$

- Curse of dimensionality
- Since $\sigma d B_{t}$ is white in time,

$$
\Sigma_{j q, i p}=\mathbb{E}\left(K_{j q}\left(\sigma d B_{t}\right) K_{i p}\left(\sigma d B_{t}\right)\right) / d t \approx \Delta t \overline{K_{j q}\left(v^{\prime}\right) K_{i p}\left(v^{\prime}\right)}
$$

New estimator

- Consistency proven $(\Delta t \rightarrow 0)$
- Numerically efficient
- Physically-based
\rightarrow Robustness in extrapolation
- $\quad K$ is a matrix of integro-differential operators \rightarrow cannot be evaluated on $v^{\prime}(x, t)$ at every time \dagger
- Covariance of $\sigma d B_{t} \approx \Delta t^{2} \overline{\left(v^{\prime}(x, t)\right)\left(v^{\prime}(y, t)\right)^{T}}: M \times M \sim 10^{13}$ coefficients \rightarrow intractable
- Efficient estimator $\Sigma_{j q, i p} \approx \Delta t K_{j q}\left[\overline{\overline{b_{p}} \frac{\Delta b_{i}}{\Delta t} v^{\prime}}\right] \quad$ (hybrid fitting \& physics-based) requires only $O\left(n^{2} M\right)$ correlation estimations and $O\left(n^{2}\right)$ evaluations of K

$$
\bar{f}=\frac{1}{T} \int_{0}^{T} f
$$

Reduced Lum (Red LUM) Multiplicative noise covariance

$$
v=w+v^{\prime}
$$

Full order (\sim nb spatial grid points): $M \sim 10^{7}$
Reduced order: $n \sim 10$
Number of time steps : $N \sim 10^{4}$
$d b(t)=H(b(t)) d t+K\left(\xi \sigma_{t}\right) b(t)$ with $K_{j q}[\xi]=-\int_{\Omega} \phi_{j} \cdot C\left(\xi, \phi_{q}\right)$
$(n+1) \times(n+1)$

- Curse of dimensionality
- Since $\sigma d B_{t}$ is white in time,

$$
\Sigma_{j q, i p}=\mathbb{E}\left(K_{j q}\left(\sigma d B_{t}\right) K_{i p}\left(\sigma d B_{t}\right)\right) / d t \approx \Delta t \overline{K_{j q}\left(v^{\prime}\right) K_{i p}\left(v^{\prime}\right)}
$$

New estimator

- Consistency proven $(\Delta t \rightarrow 0)$
- Numerically efficient
- Physically-based
\rightarrow Robustness in extrapolation
- $\quad K$ is a matrix of integro-differential operators \rightarrow cannot be evaluated on $v^{\prime}(x, t)$ at every time \dagger
- Covariance of $\sigma d B_{t} \approx \Delta t^{2} \overline{\left(v^{\prime}(x, t)\right)\left(v^{\prime}(y, t)\right)^{T}}: M \times M \sim 10^{13}$ coefficients \rightarrow intractable
- Efficient estimator $\Sigma_{j q, i p} \approx \Delta t K_{j q}\left[\overline{\overline{b_{p}} \frac{\Delta b_{i}}{\Delta t} v^{\prime}}\right] \quad$ (hybrid fitting \& physics-based) requires only $O\left(n^{2} M\right)$ correlation estimations and $O\left(n^{2}\right)$ evaluations of K
- Consistency of our estimator (convergence in probability for $\Delta t \rightarrow 0$, using stochastic calculus and continuity of K) $\Delta t K_{j q}\left[\overline{b_{p} \frac{\Delta b_{b}}{\Delta t} v^{\prime}}\right]=\Delta t \overline{b_{p} \frac{\Delta b_{i}}{\Delta t}} K_{j q}\left[v^{\prime}\right] \approx \frac{1}{T} \int_{0}^{T} b_{p} d<b_{i}, K_{j q}(\sigma B)>=\frac{1}{T} \int_{0}^{T} b_{p} \sum_{r=0}^{\mathrm{n}} b_{r} d<K_{i r}(\sigma B), K_{j q}(\sigma B)>=\sum_{r=0}^{\mathrm{n}} \Sigma_{j q, i r} \overline{b_{p} b_{r}}=\sum_{j q, i p} \overline{b_{p}^{2}}$ (orthogonality from PCA)

Reduced Lum (Red LUM) Multiplicative noise covariance

$$
v=w+v^{\prime}
$$

Resolved fluid velocity:
$w(x, t)=\sum_{i=0}^{n} b_{i}(t) \phi_{i}(x)$
Unresolved fluid velocity:
$v^{\prime}=\frac{\sigma d B_{t}}{d t}$ (Gaussian, white wrt t)

Randomized Navier-Stokes
PCA modes
PCA residual v^{\prime}
from synthetic data

Full order (\sim nb spatial grid points): $M \sim 10^{7}$
Reduced order : $n \sim 10$
Number of time steps : $N \sim 10^{4}$
$d b(t)=H(b(t)) d t+K\left(\sigma d B_{t}\right) b(t)$ with $K_{j q}[\xi]=-\int_{\Omega} \phi_{j} \cdot C\left(\xi, \phi_{q}\right)$

$$
(n+1) \times(n+1)
$$

- Curse of dimensionality
- Since $\sigma d B_{t}$ is white in time,

$$
\Sigma_{j q, i p}=\mathbb{E}\left(K_{j q}\left(\sigma d B_{t}\right) K_{i p}\left(\sigma d B_{t}\right)\right) / d t \approx \Delta t \overline{K_{j q}\left(v^{\prime}\right) K_{i p}\left(v^{\prime}\right)}
$$

- $\quad K$ is a matrix of integro-differential operators \rightarrow cannot be evaluated on $v^{\prime}(x, t)$ at every time \dagger
- Covariance of $\sigma d B_{t} \approx \Delta t^{2} \overline{\left(v^{\prime}(x, t)\right)\left(v^{\prime}(y, t)\right)^{T}}: M \times M \sim 10^{13}$ coefficients \rightarrow intractable
- Efficient estimator $\Sigma_{j q, i p} \approx \Delta t K_{j q}\left[\overline{\frac{b_{p}}{\overline{b_{p}^{2}}} \frac{\Delta b_{i}}{\Delta t} v^{\prime}}\right] \quad$ (hybrid fitting \& physics-based) requires only $O\left(n^{2} M\right)$ correlation estimations and $O\left(n^{2}\right)$ evaluations of K
- Consistency of our estimator (convergence in probability for $\Delta t \rightarrow 0$, using stochastic calculus and continuity of K)
$\left.\left.\Delta t K_{j q}\left[\overline{b_{p} \frac{\Delta b_{i}}{\Delta t} v^{\prime}}\right]=\Delta t \overline{b_{p} \frac{\Delta b_{i}}{\Delta t} K_{j q}\left[v^{\prime}\right]} \approx \frac{1}{T} \int_{0}^{T} b_{p} d<b_{i}, K_{j q}(\sigma B)\right\rangle=\frac{1}{T} \int_{0}^{T} b_{p} \sum_{\mathrm{r}=0}^{\mathrm{n}} b_{r} d<K_{i r}(\sigma B), K_{j q}(\sigma B)\right\rangle=\sum_{\mathrm{r}=0}^{\mathrm{n}} \Sigma_{j q, i r} \overline{b_{p} b_{r}}=\Sigma_{j q, i p} \overline{b_{p}^{2}}$ (orthogonality from PCA)
- Optimal time subsampling at $\Delta \boldsymbol{t}$ needed to meet the white assumption

New estimator

- Consistency proven $(\Delta t \rightarrow 0)$
- Numerically efficient
- Physically-based
\rightarrow Robustness in extrapolation

Reduced Lum (Red LUM) Multiplicative noise covariance

$$
v=w+v^{\prime}
$$

Resolved fluid velocity:
$w(x, t)=\sum_{i=0}^{n} b_{i}(t) \phi_{i}(x)$
Unresolved fluid velocity:
$v^{\prime}=\frac{\sigma d B_{t}}{d t} \quad$ (Gaussian, white wrt t)

Randomized Navier-Stokes
PCA modes
PCA residual v^{\prime}
from synthetic data
$\bar{f}=\frac{1}{T} \int_{0}^{T} f$

Full order (\sim nb spatial grid points): $M \sim 10^{7}$
Reduced order : $n \sim 10$
Full order (\sim nb spatial grid points): $M \sim 10^{7}$
Reduced order : $n \sim 10$
Number of time steps : $N \sim 10^{4}$
$d b(t)=H(b(t)) d t+K\left(\sigma d B_{t}\right) b(t)$ with $K_{j q}[\xi]=-\int_{\Omega} \phi_{j} \cdot C\left(\xi, \phi_{q}\right)$

$$
(n+1) \times(n+1)
$$

- Curse of dimensionality
- Since $\sigma d B_{t}$ is white in time,

$$
\Sigma_{j q, i p}=\mathbb{E}\left(K_{j q}\left(\sigma d B_{t}\right) K_{i p}\left(\sigma d B_{t}\right)\right) / d t \approx \Delta t \overline{K_{j q}\left(v^{\prime}\right) K_{i p}\left(v^{\prime}\right)}
$$

- $\quad K$ is a matrix of integro-differential operators \rightarrow cannot be evaluated on $v^{\prime}(x, t)$ at every time \dagger
- Covariance of $\sigma d B_{t} \approx \Delta t^{2} \overline{\left(v^{\prime}(x, t)\right)\left(v^{\prime}(y, t)\right)^{T}}: M \times M \sim 10^{13}$ coefficients \rightarrow intractable
- Efficient estimator $\Sigma_{j q, i p} \approx \Delta t K_{j q}\left[\overline{\frac{b_{p}}{\overline{b_{p}^{2}}} \frac{\Delta b_{i}}{\Delta t} v^{\prime}}\right] \quad$ (hybrid fitting \& physics-based) requires only $O\left(n^{2} M\right)$ correlation estimations and $O\left(n^{2}\right)$ evaluations of K
- Consistency of our estimator (convergence in probability for $\Delta t \rightarrow 0$, using stochastic calculus and continuity of K)
$\left.\left.\Delta t K_{j q}\left[\overline{b_{p} \frac{\Delta b_{i}}{\Delta t} v^{\prime}}\right]=\Delta t \overline{b_{p} \frac{\Delta b_{i}}{\Delta t} K_{j q}\left[v^{\prime}\right]} \approx \frac{1}{T} \int_{0}^{T} b_{p} d<b_{i}, K_{j q}(\sigma B)\right\rangle=\frac{1}{T} \int_{0}^{T} b_{p} \sum_{\mathrm{r}=0}^{\mathrm{n}} b_{r} d<K_{i r}(\sigma B), K_{j q}(\sigma B)\right\rangle=\sum_{\mathrm{r}=0}^{\mathrm{n}} \Sigma_{j q, i r} \overline{b_{p} b_{r}}=\Sigma_{j q, i p} \overline{b_{p}^{2}}$ (orthogonality from PCA)
- Optimal time subsampling at Δt needed to meet the white assumption
- Additional reduction for efficient sampling :
diagonalization of $\Sigma \rightarrow K\left(\sigma d B_{t}\right) \approx \alpha\left(d \beta_{t}\right)$ with a n -dimensional (instead of $(\mathrm{n}+1)^{2}$-dimensional) Brownian motion β

Summary Stochastic ROM + Data assimilation

Summary Stochastic ROM + Data assimilation

Summary Stochastic ROM + Data assimilation

Part III

NUMERICAL RESULTS

Data assimilation (posterior) On-line estimation of the solution

Data assimilation (posterior) On-line estimation of the solution

FIRST RED LUM NUMERICAL RESULTS
FAST OBSERVER OF THE WHOLE 3D FLOW

From 10^{7} to 8 degrees of freedom
Single measurement point (blurred \& noisy velocity)
 23

Conclusion

- Reduced order model (ROM) : for very fast and robust CFD ($10^{7} \rightarrow 8$ degrees of freedom.)
- Combine data \& physics (built off-line)
- Closure problem handled by LUM
- Efficient estimator for the multiplicative noise
- Efficient generation of prior / Model error quantification
- Data assimilation (Bayesian inverse problem) :
to correct the fast simulation on-line by incomplete/noisy measurements
- First results
- Optimal unsteady flow estimation/prediction in the whole spatial domain (large-scale structures)
- Robust far outside the training set

NEXT STEPS

- Real measurements
- More turbulent flows
- Better stochastic closure
- Parametric ROM (unknown inflow)

THANK YOU

- Resseguier, V., Mémin, E., \& Chapron, B. (2017). Geophysical flows under location uncertainty, Part I Random transport and general models. Geophysical \& Astrophysical Fluid Dynamics, 111 (3), 149-176.
- Resseguier, V., Picard, A. M., Mémin, E., \& Chapron, B. (2021). Quantifying truncation-related uncertainties in unsteady fluid dynamics reduced order models. SIAM/ASA Journal on Uncertainty Quantification, 9(3), 1152-1 183.
- Resseguier, V., Ladvig, M., \& Heitz, D. (2022). Real-time estimation and prediction of unsteady flows using reduced-order models coupled with few measurements. Journal of Computational Physics, 471, 111631.

Bonus slides

Data assimilation

Example : the Particle Filter (PF) generates an ensemble $\sim p(v \mid y)$

- Initialization
$v_{t=0}^{(j)} \sim \mathcal{N}(0, \Sigma)$
- Loop over time t

Importance sampling

- $v_{t}^{(j)}=M\left(v_{t-1}^{(j)}\right.$, noise $\left.(t-1)\right) \quad$ Forecast ("Prior" or "background")
- If an observation y_{t} is available at the current time t
- $W_{j}(t) \propto p\left(y_{t} \mid v_{t}^{(j)}\right) \quad$ Likelihood evaluation, up to a constant
- $\mathbf{W}_{j}(t)=\frac{W_{j}(t)}{\sum_{k=1}^{N_{p}} W_{k}(t)} \quad$ Normalization

Resampling

- Each new $v_{t}^{(j)}$ is replaced by one of the old particles $v_{t}^{(1)}, \ldots, v_{t}^{\left(N_{p}\right)}$ with probability $\mathbf{W}_{1}(t), \ldots, \mathbf{W}_{N_{p}}(t)$, respectively.
- Final posterior distribution
$p\left(v_{t} \mid y_{t_{1}}, \ldots, y_{t_{K}}\right) \approx \sum_{k=1}^{N_{p}} \frac{1}{N_{p}} \delta\left(v_{t}-v_{t}^{(k)}\right)$

Data assimilation

Example : the Particle Filter (PF) generates an ensemble $\sim p(v \mid y)$

- Initialization
$v_{t=0}^{(j)} \sim \mathcal{N}(0, \Sigma)$
- Loop over time t

Importance sampling

- If an observation y_{t} is available at the current time t
- $W_{j}(t) \propto p\left(y_{t} \mid v_{t}^{(j)}\right) \quad$ Likelihood evaluation, up to a constant
- $\mathbf{W}_{j}(t)=\frac{W_{j}(t)}{\sum_{k=1}^{N_{p}} W_{k}(t)} \quad$ Normalization

Resampling

- Each new $v_{t}^{(j)}$ is replaced by one of the old particles $v_{t}^{(1)}, \ldots, v_{t}^{\left(N_{p}\right)}$ with probability $\mathbf{W}_{1}(t), \ldots, \mathbf{W}_{N_{p}}(t)$, respectively.
- Final posterior distribution
$p\left(v_{t} \mid y_{t_{1}}, \ldots, y_{t_{K}}\right) \approx \sum_{k=1}^{N_{p}} \frac{1}{N_{p}} \delta\left(v_{t}-v_{t}^{(k)}\right)$

UNCERTAINTY QUANTIFICATION (Prior) Known initial conditions $b(t=0)$

From 10^{7} to 8 degrees of freedom No data assimilation
Known initial conditions $b(t=0)$
$d b(t)=H(b(t)) d t+\alpha\left(d \beta_{t}\right) b(t)$
Metrics choice

- $\quad b_{i}(t) V S$ reference
- Error metrics

UNCERTAINTY QUANTIFICATION (Prior) $b_{i}(t)$ VS reference

From 10^{7} to 8 degrees of freedom
 No data assimilation
 Known initial conditions $b(t=0)$

Temporal mode 1

Temporal mode 6

Temporal mode 4

UNCERTAINTY QUANTIFICATION (Prior) Error on the reduced solution w

From 10^{7} to 8 degrees of freedom No data assimilation Known initial conditions $b(t=0)$

$$
v=w+v^{\prime}
$$

Resolved fluid velocity: $w=\sum_{i=0}^{n} b_{i} \phi_{i}$

Unresolved fluid velocity:

Reynolds number $(\operatorname{Re})=100$ / 2D
(full-order simulation has 10^{4} dof)

 (full-order simulation has 10^{7} dof)

UNCERTAINTY QUANTIFICATION (Prior) Error on the reduced solution w

From 10^{7} to 8 degrees of freedom No data assimilation Known initial conditions $b(t=0)$

$$
v=w+v^{\prime}
$$

Resolved fluid velocity: $w=\sum_{i=0}^{n} b_{i} \phi_{i}$

Unresolved fluid velocity:

Reynolds number $(\operatorname{Re})=100$ / 2D
(full-order simulation has 10^{4} dof)

The Reference remains always close
to the Red. LUM ensemble

Reynolds number $(\operatorname{Re})=300$ 3D (full-order simulation has 10^{7} dof)

Data assimilation (posterior) Error on the solution estimation

$$
v=w+v^{\prime}
$$

Resolved fluid velocity: $w=\sum_{i=0}^{n} b_{i} \phi_{i}$

Unresolved fluid velocity:

Reynolds number $($ Re $)=100$
(full-order simulation has 10^{4} dof)

Reynolds number (Re) = 300 3D (full-order simulation has 10^{7} dof)

