Estimation of multiplicative noise operator statistics for reduced data assimilation in fluid mechanics

V. Resseguier, M. Ladvig, A. M. Picard & D. Heitz

INRAO SCALIAN

Context Observer for wind turbine application

Context Observer for wind turbine application

Context Observer for wind turbine application

Context Observer for wind turbine application

Context Observer for wind turbine application

Context Observer for wind turbine application

Context Observer for wind turbine application

Application: Real-time estimation and prediction of 3D fluid flow using strongly-limited computational resources & few sensors

Scientific problem : Simulation & data assimilation under severe dimensional reduction typically, $10^7 \rightarrow O(10)$ degrees of freedom

Content

- I. State of the art
 - a. Intrusive reduced order model (ROM)
 - b. Data assimilation
- II. Reduced location uncertainty models
 - a. Multiscale modeling
 - b. Location uncertainty models (LUM)
 - c. Reduced LUM
- III. Numerical results

PARTI

STATE OF THE ART

- a. Intrusive reduced order model (ROM)
- b. Data assimilation

Reduced order model (ROM)

Solution of an PDE with the form:

$$v(x,t) \approx \sum_{i=0}^{n} b_i(t) \phi_i(x)$$

Reduced order model (ROM)

Solution of an PDE with the form:

$$v(x,t) \approx \sum_{i=0}^{n} b_i(t) \phi_i(x)$$

Time

Reduced order model (ROM)

Reduced order model (ROM)

Solution of an PDE with the form:

$$v(x,t) \approx \sum_{i=0}^{n} b_i(t) \phi_i(x)$$

Time

<u>Order of</u> <u>magnitude</u> <u>examples in</u> <u>CFD</u>

Full spaceReduced
spaceSolution
coordinates
$$(v_q(x_i,t))_{q,i}$$
 $(b_i(t))_i$ Dimension $M \times d \sim 10^7$ $n \sim 10 - 100$

Space

• <u>Principal Component Analysis (PCA)</u> on a *dataset* to reduce the dimensionality:

Off-line
simulationsSnapshots
$$(v(x,t_i))_i$$
Spatial modes
 $(\phi_i(x))_i$

• Approximation:

$$v(x,t)\approx \sum_{i=0} \ b_i(t) \ \phi_i(x)$$

n

• <u>Principal Component Analysis (PCA)</u> on a <u>dataset</u> to reduce the dimensionality:

• <u>Principal Component Analysis (PCA)</u> on a <u>dataset</u> to reduce the dimensionality:

• <u>Principal Component Analysis (PCA)</u> on a <u>dataset</u> to reduce the dimensionality:

 <u>Principal Component Analysis (PCA)</u> on a <u>dataset</u> to reduce the dimensionality:

Intrusive reduced order model Combine physical models and learning approches <u>Principal Component Analysis (PCA)</u> on a dataset to reduce the dimensionality: Spatial modes Snapshois Oiii-Iline PCA simulations Approximation: ٠ lesolved modes Don't work in $v(x,t) \approx$ $b_i(t)$ $\phi_i(x)$ extrapolation! + fitted $\int_\Omega dx \, \phi_i(x) \cdot \, ($ Physical equation Projection of the "physics" correction onto the spatial modes + additive noise (POD-Galerkin) \rightarrow ROM for very fast simulation of temporal modes

Intrusive reduced order model Combine physical models and learning approches Principal Component Analysis (PCA) on a dataset to reduce the dimensionality:

 <u>Principal Component Analysis (PCA)</u> on a <u>dataset</u> to reduce the dimensionality:

 <u>Principal Component Analysis (PCA)</u> on a <u>dataset</u> to reduce the dimensionality:

Data assimilation = Coupling simulations and measurements y

Numerical Simulation (ROM)

 \rightarrow erroneous

On-line measurements

→ incomplete
 → possibly noisy

Velocity

Data assimilation= Coupling simulations and measurements y

Data assimilation = Coupling simulations and measurements y

Data assimilation= Coupling simulations and measurements y

Data assimilation <u>= Coupling simulations and measurements y</u>

31

Data assimilation

= Coupling simulations and measurements y

Part II

REDUCED LOCATION UNCERTAINTY MODELS

- a. Multiscale modeling
- b. Location uncertainty models (LUM)
- c. Reduced LUM (Red LUM)

Multiscale modeling

Multiscale modeling

Multiscale modeling

Multiscale modeling

Fluids are multiscale — Many coupled degrees of freedom

Resolved fluid velocity: $w = \sum_{i=0}^{n} b_i \phi_i$

Unresolved fluid velocity: v'

Large-scale eddy

Multiscale modeling

Fluids are multiscale

Many coupled degrees of freedom

We cannot simulate (or observe) every scales.

Generally, authors

- simulate large scales w,
- model the effect of small scales v' in the equations (closure).

Here, we

- model the small scales v' through stochastic processes,
 <u>calibrated from data and/or from physical scale symmetries.</u>
- inject those in *physical* equations

for physical understanding, simulations & data assimilation.

location uncertainty models (LUM)

v = w + v' Resolved fluid velocity: $w = \sum_{i=0}^{n} b_i \phi_i$	
Unresolved fluid velocity: $v' = \frac{\sigma dB_t}{dt}$	Assumed (conditionally-)Gaussian & white in time (non-stationary in space)

location uncertainty models (LUM)

SCALIAN

location uncertainty models (LUM)

location uncertainty models (LUM) v = w + v'Randomized Resolved fluid velocity: $w = \sum_{i=0}^{n} b_i \phi_i$ Navier-Stokes model Unresolved fluid Assumed (conditionally-)Gaussian velocity: $v' = \frac{\sigma dB_t}{dt}$ & white in time Good closure (non-stationary in space) Good model error quantification for data assimilation LUM SALT Memin. 2014 Crisan et al., 2017 Resseguier et al. 2017 a, b, c, d Mikulevicius & STUOL Holm, 2015 Gay-Balmaz & Holm 2017 erc Cai et al. 2017 References: Rozovskii, 2004 Holm & Tyranowski, 2016 Cotter et al. 2018 a, b Chapron et al. 2018 Flandoli, 2011 Arnaudon et al. 2017 Cotter et al. 2019 Yang & Memin 2019 Cotter et al. 2017 Resseguier et al. 2020, 2021 ... 46

location uncertainty models (LUM), Randomized Navier-Stokes

v = w + v'

Resolved fluid velocity: *w*

```
Unresolved fluid
velocity:
v' = \frac{\sigma dB_t}{dt} (Gaussian, white
wrt t)
(assuming \nabla \cdot w = 0 and \nabla \cdot v' =
```

Momentum conservation $d(w(t, X_t)) = dF$ (Forces)

Positions of fluid parcels X_t : $dX_t = w(t, X_t)dt + \underbrace{\sigma(t, X_t)dB_t}$

> Gaussian process white in time

SCALIAN

From Ito-Wentzell

formula (Kunita

with Ito notations

1990)

location uncertainty models (LUM), Randomized Navier-Stokes

v = w + v'

Resolved fluid velocity: w

Unresolved fluid velocity: $v' = \frac{\sigma dB_t}{dt}$ (Gaussian, white wrt t)

(assuming $\nabla \cdot w = 0$ and $\nabla \cdot v' = 0$)

Variance tensor: $a(x,x) = \frac{\mathbb{E}\{(\sigma dB_t)(\sigma dB_t)^T\}}{dt}$

$$d_t w + w^* dt \cdot \nabla w + \sigma dB_t \cdot \nabla w - \nabla \cdot \left(\frac{1}{2}a\nabla w\right) dt = dF$$

Resseguier V. & al. (2017). Part I. Geophys. Astro. Fluid. hal-01391420

SCALIAN

location uncertainty models (LUM), Randomized Navier-Stokes

From Ito-Wentzell formula (Kunita 1990) with Ito notations

Advection
$$d_t w + w^* dt \cdot \nabla w + \sigma dB_t \cdot \nabla w - \nabla \cdot \left(\frac{1}{2} a \nabla w\right) dt = dF$$

Variance tensor: $a(x, x) = \frac{\mathbb{E}\{(\sigma dB_t)(\sigma dB_t)^T\}}{dt}$

(assuming $\nabla \cdot w = 0$ and $\nabla \cdot$

v = w + v'

Resolved fluid velocity:

(Gaussian, white

Unresolved fluid

velocity: $v' = \frac{\sigma dB_t}{dt}$

wrt t)

v'=0)

W

SCALIAN

SCALIAN

Full order : $M \sim 10^7$

Reduced order : $n \sim 10$

Reduced Lum (Red LUM) POD-Galerkin gives SDEs for resolved modes

v = w + v'

Resolved fluid velocity: $w(x,t) = \sum_{i=0}^{n} b_i(t)\phi_i(x)$

ſ

Unresolved fluid velocity: $v' = \frac{\sigma dB_t}{dt}$ (Gaussian, white wrt t)

$$\int_{\Omega} \phi_i(x) \cdot (d_t w + C(w, w)dt + F(w)dt + C(\sigma dB_t, w) = dF) dx$$

Full order : $M \sim 10^7$

Reduced order : $n \sim 10$

Reduced Lum (Red LUM) POD-Galerkin gives SDEs for resolved modes

v = w + v'Resolved fluid velocity: $w(x,t) = \sum_{i=0}^{n} b_i(t)\phi_i(x)$

Unresolved fluid velocity: $v' = \frac{\sigma dB_t}{dt}$ (Gaussian, white wrt t)

$$\int_{\Omega} \phi_i(x) \cdot (d_t w + C(w, w)dt + F(w)dt + C(\sigma dB_t, w) = dF) dx$$

Full order : $M \sim 10^7$

Reduced order : $n \sim 10$

Reduced Lum (Red LUM) POD-Galerkin gives SDEs for resolved modes

Resseguier et al. (2021). SIAM-ASA J Uncertain . hal- 03169957

v = w + v'

Resolved fluid velocity: $w(x,t) = \sum_{i=0}^{n} b_i(t)\phi_i(x)$

Unresolved fluid velocity: $v' = \frac{\sigma dB_t}{dt}$ (Gaussian, white wrt t)

Variance tensor: $a(x,x) = \frac{\mathbb{E}\{(\sigma dB_t)(\sigma dB_t)^T\}}{dt}$ $\int_{\Omega} \phi_i(x) \cdot (d_t w + C(w, w)dt + F(w)dt + C(\sigma dB_t, w) = dF) dx$

$$db(t) = H(b(t)) dt + K(\sigma dB_t) b(t)$$

$$K_{jq}[\xi] = -\int_{\Omega} \phi_j \cdot C(\xi, \phi_q)$$

Full order : $M \sim 10^7$ Reduced order : $n \sim 10$

Reduced Lum (Red LUM) Multiplicative noise covariance

v = w + v'

Resolved fluid velocity: $w(x,t) = \sum_{i=0}^{n} b_i(t)\phi_i(x)$

Unresolved fluid velocity: $v' = \frac{\sigma dB_t}{dt}$ (Gaussian, white wrt t)

Randomized Navier-Stokes
PCA modes
PCA residual v'
from synthetic data

 $\overline{f} = \frac{1}{T} \int_{0}^{T} f$

$$db(t) = H(b(t)) dt + K(\sigma dB_t) b(t) \text{ with } K_{jq}[\xi] = -\int_{\Omega} \phi_j \cdot C(\xi, \phi_q)$$

- Since σdB_t is white in time, $\Sigma_{jq,ip} = \mathbb{E} \left(K_{jq} (\sigma dB_t) K_{ip} (\sigma dB_t) \right) / dt \approx \Delta t \ \overline{K_{jq}(v') K_{ip}(v')}$
- K is a matrix of integro-differential operators \rightarrow cannot be evaluated on v'(x,t) at every time t
- Covariance of $\sigma dB_t \approx \Delta t^2 \overline{(v'(x,t))(v'(y,t))}^T : M \times M \sim 10^{13} \text{ coefficients} \rightarrow \text{intractable}$

New estimator

- Consistency proven $(\Delta t \rightarrow 0)$
- Numerically efficient
- Physically-based

Reduced order : $n \sim 10$

Number of time steps : $N \sim 10^4$

Full order (~ nb spatial grid points): $M \sim 10^7$

 \rightarrow Robustness in extrapolation

Reduced Lum (Red LUM) Multiplicative noise covariance

v = w + v'

Resolved fluid velocity: $w(x,t) = \sum_{i=0}^{n} b_i(t)\phi_i(x)$

Unresolved fluid velocity: $v' = \frac{\sigma dB_t}{dt}$ (Gaussian, white wrt t)

 $\overline{f} = \frac{1}{T} \int_{0}^{T} f$

$$db(t) = H(b(t)) dt + K(\sigma dB_t) b(t) \text{ with } K_{jq}[\xi] = -\int_{\Omega} \phi_j \cdot C(\xi, \phi_q)$$

- Curse of dimensionality
 - Since σdB_t is white in time, $\Sigma_{jq,ip} = \mathbb{E} \left(K_{jq} (\sigma dB_t) K_{ip} (\sigma dB_t) \right) / dt \approx \Delta t \ \overline{K_{jq}(v') K_{ip}(v')}$
 - K is a matrix of integro-differential operators \rightarrow cannot be evaluated on v'(x,t) at every time t
 - Covariance of $\sigma dB_t \approx \Delta t^2 \overline{(v'(x,t))(v'(y,t))^T}$: $M \times M \sim 10^{13}$ coefficients \rightarrow intractable
 - **Efficient estimator** $\Sigma_{jq,ip} \approx \Delta t K_{jq} \left[\frac{b_p}{b_p^2} \frac{\Delta b_i}{\Delta t} v' \right]$ (hybrid fitting & physics-based) requires only $O(n^2 M)$ correlation estimations and $O(n^2)$ evaluations of K

- New estimator
- Consistency proven $(\Delta t \rightarrow 0)$
- Numerically efficient
- Physically-based

Reduced order : $n \sim 10$

Number of time steps : $N \sim 10^4$

Full order (~ nb spatial grid points): $M \sim 10^7$

 \rightarrow Robustness in extrapolation

Reduced Lum (Red LUM) Multiplicative noise covariance

v = w + v'

Resolved fluid velocity: $w(x,t) = \sum_{i=0}^{n} b_i(t)\phi_i(x)$

Unresolved fluid velocity: $v' = \frac{\sigma dB_t}{dt}$ (Gaussian, white wrt t)

Randomized Navier-Stokes
PCA modes
PCA residual v'
from synthetic data

 $\overline{f} = \frac{1}{T} \int_{0}^{T} f$

 $db(t) = H(b(t)) dt + K(\sigma dB_t) b(t) \text{ with } K_{jq}[\xi] = -\int_{\Omega} \phi_j \cdot C(\xi, \phi_q)$

- Curse of dimensionality
 - Since σdB_t is white in time, $\Sigma_{jq,ip} = \mathbb{E} \left(K_{jq}(\sigma dB_t) K_{ip}(\sigma dB_t) \right) / dt \approx \Delta t \ \overline{K_{jq}(v') K_{ip}(v')}$

New estimator

Reduced order : $n \sim 10$

Number of time steps : $N \sim 10^4$

Full order (~ nb spatial grid points): $M \sim 10^7$

- Consistency proven $(\Delta t \rightarrow 0)$
- Numerically efficient
- Physically-based
 - \rightarrow Robustness in extrapolation
- K is a matrix of integro-differential operators \rightarrow cannot be evaluated on v'(x,t) at every time t
- Covariance of $\sigma dB_t \approx \Delta t^2 \overline{(v'(x,t))(v'(y,t))^T}$: $M \times M \sim 10^{13}$ coefficients \rightarrow intractable
- **Efficient estimator** $\Sigma_{jq,ip} \approx \Delta t \frac{K_{jq}}{b_p^2} \left[\frac{b_p}{\Delta t} \frac{\Delta b_l}{\Delta t} v' \right]$ (hybrid fitting & physics-based) requires only $O(n^2 M)$ correlation estimations and $O(n^2)$ evaluations of K
- Consistency of our estimator (convergence in probability for $\Delta t \rightarrow 0$, using stochastic calculus and continuity of K)

$$\Delta t \, K_{jq} \left[\overline{b_p \frac{\Delta b_i}{\Delta t} \, v'} \right] = \Delta t \, \overline{b_p \frac{\Delta b_i}{\Delta t} \, K_{jq}[v']} \approx \frac{1}{r} \int_0^T b_p \, d < b_i, \\ K_{jq}(\sigma B) > = \frac{1}{r} \int_0^T b_p \sum_{r=0}^n b_r d < K_{ir}(\sigma B), \\ K_{jq}(\sigma B) > = \sum_{r=0}^n \sum_{jq,ir} \overline{b_p b_r} = \sum_{jq,ir} \overline{b_p b_r} = \sum_{r=0}^n \sum_{jq,ir} \sum_{jq,ir} \sum_{jq,ir} \sum_{jq,ir} \sum_{jq,ir} \sum_{jq,ir}$$

Reduced Lum (Red LUM) Multiplicative noise covariance

v = w + v'

Resolved fluid velocity: $w(x,t) = \sum_{i=0}^{n} b_i(t)\phi_i(x)$

Unresolved fluid velocity: $v' = \frac{\sigma dB_t}{dt}$ (Gaussian, white wrt t)

Randomized Navier-Stokes	
PCA modes	
PCA residual v'	
from synthetic data	

 $\overline{f} = \frac{1}{T} \int_{0}^{T} f$

$$db(t) = H(b(t)) dt + K(\sigma dB_t) b(t) \text{ with } K_{jq}[\xi] = -\int_{\Omega} \phi_j \cdot C(\xi, \phi_q)$$

- Curse of dimensionality
 - Since σdB_t is white in time, $\Sigma_{jq,ip} = \mathbb{E} \left(K_{jq}(\sigma dB_t) K_{ip}(\sigma dB_t) \right) / dt \approx \Delta t \ \overline{K_{jq}(v') K_{ip}(v')}$

New estimator

Reduced order : $n \sim 10$

Number of time steps : $N \sim 10^4$

Full order (~ nb spatial grid points): $M \sim 10^7$

- Consistency proven $(\Delta t \rightarrow 0)$
- Numerically efficient
- Physically-based
 - \rightarrow Robustness in extrapolation
- K is a matrix of integro-differential operators \rightarrow cannot be evaluated on v'(x,t) at every time t
- Covariance of $\sigma dB_t \approx \Delta t^2 \overline{(v'(x,t))(v'(y,t))^T}$: $M \times M \sim 10^{13}$ coefficients \rightarrow intractable
- **Efficient estimator** $\Sigma_{jq,ip} \approx \Delta t \frac{K_{jq}}{b_p^2} \left[\frac{\overline{b_p}}{\Delta t} \frac{\Delta b_i}{\Delta t} v' \right]$ (hybrid fitting & physics-based) requires only $O(n^2 M)$ correlation estimations and $O(n^2)$ evaluations of K
- Consistency of our estimator (convergence in probability for $\Delta t \rightarrow 0$, using stochastic calculus and continuity of K)

 $\Delta t \, \frac{K_{jq}}{K_{jq}} \left[\overline{b_{p}} \frac{\Delta b_{i}}{\Delta t} \, v' \right] = \Delta t \, \overline{b_{p}} \frac{\Delta b_{i}}{\Delta t} K_{jq}[v'] \approx \frac{1}{r} \int_{0}^{T} b_{p} \, d < b_{i}, \\ K_{jq}(\sigma B) > = \frac{1}{r} \int_{0}^{T} b_{p} \sum_{r=0}^{n} b_{r} d < K_{ir}(\sigma B), \\ K_{jq}(\sigma B) > = \sum_{r=0}^{n} \sum_{jq,ir} \overline{b_{p} b_{r}} = \sum_{jq,ir} \overline{b_{p}^{2}} \text{ (orthogonality from PCA)}$

• Optimal time subsampling at Δ*t* needed to meet the white assumption

Reduced Lum (Red LUM) Multiplicative noise covariance

v = w + v'

Resolved fluid velocity: $w(x,t) = \sum_{i=0}^{n} b_i(t)\phi_i(x)$

Unresolved fluid velocity: $v' = \frac{\sigma dB_t}{dt}$ (Gaussian, white wrt t)

Randomized Navier-Stokes	J
PCA modes	
PCA residual v'	
from synthetic data	

 $\overline{f} = \frac{1}{T} \int_{0}^{T} f$

$$db(t) = H(b(t)) dt + K(\sigma dB_t) b(t) \text{ with } K_{jq}[\xi] = -\int_{\Omega} \phi_j \cdot C(\xi, \phi_q)$$

- Curse of dimensionality
 - Since σdB_t is white in time, $\Sigma_{jq,ip} = \mathbb{E} \left(K_{jq}(\sigma dB_t) K_{ip}(\sigma dB_t) \right) / dt \approx \Delta t \ \overline{K_{jq}(v') K_{ip}(v')}$

New estimator

Reduced order : $n \sim 10$

Number of time steps : $N \sim 10^4$

Full order (~ nb spatial grid points): $M \sim 10^7$

- Consistency proven $(\Delta t \rightarrow 0)$
- Numerically efficient
- Physically-based
 - \rightarrow Robustness in extrapolation
- K is a matrix of integro-differential operators \rightarrow cannot be evaluated on v'(x,t) at every time t
- Covariance of $\sigma dB_t \approx \Delta t^2 \overline{(v'(x,t))(v'(y,t))^T}$: $M \times M \sim 10^{13}$ coefficients \rightarrow intractable
- Efficient estimator $\Sigma_{jq,ip} \approx \Delta t \frac{K_{jq}}{b_p^2} \left[\frac{\overline{b_p}}{\Delta t} \frac{\Delta b_i}{\Delta t} v' \right]$ (hybrid fitting & physics-based) requires only $O(n^2 M)$ correlation estimations and $O(n^2)$ evaluations of K
- Consistency of our estimator (convergence in probability for $\Delta t \rightarrow 0$, using stochastic calculus and continuity of K)

 $\Delta t \, \frac{K_{jq}}{K_{jq}} \left[\overline{b_{p}} \frac{\Delta b_{i}}{\Delta t} \, v' \right] = \Delta t \, \overline{b_{p}} \frac{\Delta b_{i}}{\Delta t} K_{jq}[v'] \approx \frac{1}{r} \int_{0}^{T} b_{p} \, d < b_{i}, \\ K_{jq}(\sigma B) > = \frac{1}{r} \int_{0}^{T} b_{p} \sum_{r=0}^{n} b_{r} d < K_{ir}(\sigma B), \\ K_{jq}(\sigma B) > = \sum_{r=0}^{n} \sum_{jq,ir} \overline{b_{p} b_{r}} = \sum_{jq,ir} \overline{b_{p}^{2}} \text{ (orthogonality from PCA)}$

- Optimal time subsampling at Δt needed to meet the white assumption
- Additional reduction for efficient sampling : diagonalization of $\Sigma \rightarrow K(\sigma dB_t) \approx \alpha(d\beta_t)$ with a n-dimensional (instead of (n+1)²-dimensional) Brownian motion β

Resseguier et al. (2021). SIAM-ASA J Uncertain . hal- 03169957

Summary Stochastic ROM + Data assimilation

Resseguier et al. (2022). J Comp. Phys . hal-03445455

Summary Stochastic ROM + Data assimilation

Summary Stochastic ROM + Data assimilation

Resseguier et al. (2022). J Comp. Phys . hal-03445455

Part III

NUMERICAL RESULTS

SCALIAN

21

Data assimilation (posterior) On-line estimation of the solution

CONCLUSION

valentin.resseguier@scalian.com

Conclusion

- Reduced order model (ROM) : for very fast and robust CFD $(10^7 \rightarrow 8 \text{ degrees of freedom.})$
 - Combine data & physics (built off-line)
 - Closure problem handled by LUM
 - Efficient estimator for the multiplicative noise
 - ▶ Efficient generation of prior / Model error quantification
- Data assimilation (Bayesian inverse problem) : to correct the fast simulation on-line by incomplete/noisy measurements
- First results
 - Optimal <u>unsteady</u> flow estimation/prediction in the whole spatial domain (large-scale structures)
 - Robust far outside the training set

NEXT STEPS

- Real measurements
- Better stochastic closure
- Parametric ROM (unknown inflow)

More turbulent flows

THANK YOU

- Resseguier, V., Mémin, E., & Chapron, B. (2017). Geophysical flows under location uncertainty, Part I Random transport and general models. Geophysical & Astrophysical Fluid Dynamics, 111(3), 149-176.
- Resseguier, V., Picard, A. M., Mémin, E., & Chapron, B. (2021). Quantifying truncation-related uncertainties in unsteady fluid dynamics reduced order models. SIAM/ASA Journal on Uncertainty Quantification, 9(3), 1152-1183.
- Resseguier, V., Ladvig, M., & Heitz, D. (2022). Real-time estimation and prediction of unsteady flows using reduced-order models coupled with few measurements. *Journal of Computational Physics*, 471, 111631.

valentin.resseguier@scalian.com

Bonus slides

26

Data assimilation Example : the Particle Filter (PF) generates an ensemble $\sim p(v|y)$

- Initialization $v_{t=0}^{(j)} \sim \mathcal{N}(0, \Sigma)$
- Loop over time t

Importance sampling

►
$$v_t^{(j)} = M\left(v_{t-1}^{(j)}, noise(t-1)\right)$$
 Forecast ("Prior" or "background")

- If an observation y_t is available at the current time t
 - $\blacktriangleright \quad W_j(t) \propto p\left(y_t \middle| v_t^{(j)}\right)$

 $\blacktriangleright \quad \mathbf{W}_j(t) = \frac{W_j(t)}{\sum_{k=1}^{N_p} W_k(t)}$

Normalization

Resampling

• Each new $v_t^{(j)}$ is replaced by one of the old particles $v_t^{(1)}, ..., v_t^{(N_p)}$ with probability $\mathbf{W}_1(t), ..., \mathbf{W}_{N_p}(t)$, respectively.

Likelihood evaluation, up to a constant

Final posterior distribution

 $p(v_t|y_{t_1}, \dots, y_{t_K}) \approx \sum_{k=1}^{N_p} \frac{1}{N_p} \delta\left(v_t - v_t^{(k)}\right)$

26

Data assimilation Example : the Particle Filter (PF) generates an ensemble $\sim p(v|y)$

- Initialization $v_{t=0}^{(j)} \sim \mathcal{N}(0, \Sigma)$
- Loop over time t

Importance sampling

►
$$v_t^{(j)} = M\left(v_{t-1}^{(j)}, noise(t-1)\right)$$
 Forecast ("Prior" or "background"

- If an observation y_t is available at the current time t
 - $\blacktriangleright \quad W_j(t) \propto p\left(y_t \middle| v_t^{(j)}\right)$

 $\blacktriangleright \quad \mathbf{W}_j(t) = \frac{W_j(t)}{\sum_{k=1}^{N_p} W_k(t)}$

Normalization

Resampling

• Each new $v_t^{(j)}$ is replaced by one of the old particles $v_t^{(1)}, ..., v_t^{(N_p)}$ with probability $\mathbf{W}_1(t), ..., \mathbf{W}_{N_p}(t)$, respectively.

Likelihood evaluation, up to a constant

Final posterior distribution

 $p(v_t | y_{t_1}, \dots, y_{t_K}) \approx \sum_{k=1}^{N_p} \frac{1}{N_p} \delta\left(v_t - v_t^{(k)}\right)$

UNCERTAINTY QUANTIFICATION (Prior) Known initial conditions b(t = 0)

From 10^7 to 8 degrees of freedom No data assimilation Known initial conditions b(t = 0)

$db(t) = H(b(t)) dt + \alpha(d\beta_t) b(t)$

Metrics choice

- $b_i(t)$ VS reference
- Error metrics

UNCERTAINTY QUANTIFICATION (Prior) $b_i(t)$ VS reference

UNCERTAINTY QUANTIFICATION (Prior) Error on the reduced solution *w*

From 10^7 to 8 degrees of freedom No data assimilation Known initial conditions b(t = 0)

UNCERTAINTY QUANTIFICATION (Prior) Error on the reduced solution *w*

From 10^7 to 8 degrees of freedom No data assimilation Known initial conditions b(t = 0)

Data assimilation (posterior) Error on the solution estimation

v = w + v'

Resolved fluid velocity: $w = \sum_{i=0}^{n} b_i \phi_i$

Unresolved fluid velocity:

> Reynolds number (Re) = 100 / 2D (full-order simulation has 10^4 dof)

Resseguier et al. (2022). J Comp. Phys . hal-03445455