Ifremer

Markovian \& non-Markovian closure for wave-turbulence interaction

Bertrand Chapron, Valentin Resseguier, Erwan Hascoet

Content

1. ERC STUOD

2. Wave-turbulence interactions
3. Non-Markovian closure with current multi-scale in space \& in time
4. Markovian closure with current multi-scale in space \& white in time

- Simple cases and analytic solutions -

1.

Some STUOD objectives:

- Identify and quantify small-scale displacement fluctuations
- Include these fluctuations in a mathematical framework for the reduction of the equations of motion, solved at lower resolution

PLEחTY OF DATA \& S(P)DEs IOOKING FOR STATISTICIANS !

2.
 Wave-turbulence interactions

Numerical example of wave (swell) traveling inside turbulence (oceanic currents)

Numerical example of wave (swell) traveling inside turbulence (oceanic currents)

Dispersion ratio

At the first order in steepness $(=\|\nabla \phi\| a)$

$$
\begin{gathered}
\frac{\partial \phi}{\partial t}+v \cdot \underbrace{\nabla \phi}_{=k}=\underbrace{\sqrt{g\|\nabla \phi\|}}_{=\omega_{0}(\mathrm{k})} \\
\frac{\partial \phi}{\partial t}=\omega(k)=-v \cdot k+\omega_{0}(\mathrm{k})
\end{gathered}
$$

Current velocity:

Dispersion ratio

At the first order in steepness $(=\|\nabla \phi\| a)$

Dispersion ratio

At the first order in steepness $(=\|\nabla \phi\| a)$

Wave:
$a e^{\frac{i}{\epsilon} \phi(\epsilon t, \epsilon x)}$
$k=\nabla \phi$

Total
group velocity:
$v+C_{g}^{0}$
Method of characteristic (ray tracing)

Wave:
$a e^{\frac{i}{\epsilon}} \phi(\epsilon t, \epsilon x)$
Group velocity without current $C_{g}^{0}=\nabla_{k} \omega_{0}$
$\nabla=\nabla_{x}$

$$
\dot{X}_{r}=\nabla_{k} \omega=C_{g}^{0}+v \quad \text { Ray }
$$

Refraction \& contraction/dilatation

$\dot{k}=\nabla_{x} \omega=-\nabla v^{T} \quad k \quad |$| | Wave-vector |
| :--- | :--- |

Conservation of action

$$
\begin{array}{l|l|l}
\dot{A}=-\nabla \cdot u_{g} A & A=\frac{a^{2}}{\omega_{0}} & \text { Amplitude }
\end{array}
$$

Total
group velocity:
$v+C_{g}^{0}$

Wave:
$a e^{\frac{i}{\epsilon} \phi(\epsilon t, \epsilon x)}$
Group velocity without current
$C_{g}^{0}=\nabla_{k} \omega_{0}$
$\nabla=\nabla_{x}$

Method of characteristic (ray tracing)

Total
group velocity:
$v+C_{g}^{0}$

Wave:
$a e^{\frac{i}{\epsilon} \phi(\epsilon t, \epsilon x)}$
Group velocity without current
$C_{g}^{0}=\nabla_{k} \omega_{0}$
$\nabla=\nabla_{x}$

Method of characteristic (ray tracing)

Total
group velocity:
$v+C_{g}^{0}$

Wave:

$$
a e^{\frac{i}{\epsilon} \phi(\epsilon t, \epsilon x)}
$$

Group velocity without current $C_{g}^{0}=\nabla_{k} \omega_{0}$
$\nabla=\nabla_{x}$

Method of characteristic (ray tracing)
Refraction \& contraction/dilatation
$\dot{k}=\nabla_{x} \omega=\underset{\text { Fonction }}{-\nabla v^{T}} k \quad$ Wave-vector
Conservation of action

$$
\begin{array}{l|l|}
\dot{A}=-\nabla \cdot u_{g} A & A=\frac{a^{2}}{\omega_{0}}
\end{array} \quad \text { Amplitude }
$$

Non-linear coupling

Total
group velocity:
$v+C_{g}^{0}$

Wave:
$a e^{\frac{i}{\epsilon} \phi(\epsilon t, \epsilon x)}$
Group velocity without current $C_{g}^{0}=\nabla_{k} \omega_{0}$
$\nabla=\nabla_{x}$

Method of characteristic (ray tracing)

Total
group velocity:
$v+C_{g}^{0}$

Wave:
$a e^{\frac{i}{\epsilon} \phi(\epsilon t, \epsilon x)}$
Group velocity
without current
$C_{g}^{0}=\nabla_{k} \omega_{0}$
$\nabla=\nabla_{x}$

Method of characteristic (ray tracing)

Conservation of action

$$
\begin{array}{l|l|l}
\dot{A}=-\nabla \cdot u_{g} A & A=\frac{a^{2}}{\omega_{0}} & \text { Amplitude }
\end{array}
$$

$\bar{v}+C_{g}^{0}$

Wave:

Group velocity
without current

$$
C_{g}^{0}=\nabla_{k} \omega_{0}
$$

Large scale
$\bar{v}+C_{g}^{0}$

Small scale
group velocity:
v^{\prime}
Wave:
$a e^{\frac{i}{\epsilon}} \phi(\epsilon t, \epsilon x)$

Group velocity without current
$C_{g}^{0}=\nabla_{k} \omega_{0}$

Large scale
group velocity:
$\bar{v}+C_{g}^{0}$

Small scale
group velocity:
v^{\prime}
Wave:
$a e^{\frac{i}{\epsilon} \phi(\epsilon t, \epsilon x)}$

Group velocity without current
$C_{g}^{0}=\nabla_{k} \omega_{0}$
Numerical example of wave (swell) traveling inside turbulence (oceanic currents)

Large scale group velocity:
$\bar{v}+C_{g}^{0}$

Small scale
group velocity:
v^{\prime}
Wave:
$a e^{\frac{i}{\epsilon} \phi(\epsilon t, \epsilon x)}$

Group velocity without current
$C_{g}^{0}=\nabla_{k} \omega_{0}$
Numerical example of wave (swell) traveling inside turbulence (oceanic currents)

Large scale group velocity:
$\bar{v}+C_{g}^{0}$

Small scale group velocity: v^{\prime}
Wave:
$a e^{\frac{i}{\epsilon} \phi(\epsilon t, \epsilon x)}$

Group velocity without current
$C_{g}^{0}=\nabla_{k} \omega_{0}$
Numerical example of wave (swell) traveling inside turbulence
(oceanic currents)
4. Multi-scale in space and white in time

3.
 Non-Markovian closure with current multi-scale in space \& in time

Time-correlated model for v^{\prime} :

$\bar{\nu}+C_{g}^{0}$
Small sc
group ve
v^{\prime}
Wave:
ae $e^{\frac{i}{\epsilon} \phi}$

Calibration

Physical scale symmetry

(Similar to fractional Brownian motion in space)

$$
v^{\prime}=(\text { filter }) *(\text { time }- \text { correl. noise })
$$

Time-correlated model for v^{\prime} :

$\bar{v}+C_{g}^{0}$
Small sc
group ve
v^{\prime}
Wave:
$\quad a e^{\frac{i}{\epsilon} \phi}$

Time-correlated model for v^{\prime} :

$\bar{\nu}+C_{g}^{0}$

Large scale
group velocity:
$\bar{v}+C_{g}^{0}$
Small sc
group ve
v^{\prime}
Wave:
ae $e^{\frac{i}{\epsilon} \phi}$

Time-correlated model for v^{\prime} :

Large scale group velocity:

$\bar{v}+C_{\sigma}^{0}$

Time-correlated model for v^{\prime} :

group ve v
Wave:
$a e^{\frac{i}{\epsilon} \phi}$

Physical scale symmetry
 On-line fit : $A\|k\|^{-H}$

Calibration

(Similar to fractional Brownian motion in space)

$$
v^{\prime}=(\text { filter }) *(\text { time }- \text { correl. noise })
$$

Time-correlated model for v^{\prime} : Method of characteristic

$v=\bar{v}+v^{\prime}$
$v=\bar{v}$
$v=\bar{v}+v_{\text {Cor }}^{\prime}$

әрп!!!Idue dno^б́ әлем
buoyancy
buoyancy
әрпң!|Idue dno^б́ әлем

Deterministic reference:
wave groups in
512×512 flow

Deterministic benchmark:
wave groups in
smoothed flow $\bar{v}(16 \times 16)$

Our random model wave groups in
smoothed flow $\bar{v}(16 \times 16)$

+ time-correlated v^{\prime}

Time-correlated model for v^{\prime} : Method of characteristic

Deterministic reference:
wave groups in
512×512 flow

Deterministic benchmark:
wave groups in
smoothed flow $\bar{v}(16 \times 16)$

Our random model
wave groups in
smoothed flow $\bar{v}(16 \times 16)$

+ time-correlated v^{\prime}

Time-correlated model for v^{\prime} : Method of characteristic

Deterministic reference:
wave groups in
512×512 flow

Deterministic benchmark:
wave groups in
smoothed flow $\bar{v}(16 \times 16)$

Our random model
wave groups in
smoothed flow $\bar{v}(16 \times 16)$

+ time-correlated v^{\prime}

3.
 Markovian closure with current multi-scale in space \& white in time

- Simple cases \& analytic solutions -

Large scale
group velocity:
$\bar{\nu}+C_{g}^{0}$
Small scale
group velocity:
$v^{\prime}=\sigma d B_{t} / d t$ (Q Wiener process)
$v=\bar{v}+v^{\prime}$

Large scale group velocity:

```
\nu}+\mp@subsup{C}{g}{0
```

Small scale
group velocity:
$v^{\prime}=\sigma d B_{t} / d t$ (Q Wiener process)

Resolved
 large scales

$v=\bar{v}+v^{\prime}$

Large scale group velocity:
$\bar{\nu}+C_{g}^{0}$
Small scale
group velocity:
$v^{\prime}=\sigma d B_{t} / d t$ (Q Wiener process)

Resolved large scales

White-in-time small scales

Large scale
group velocity:
$\bar{v}+C_{g}^{0}$
Small scale
group velocity:
$v^{\prime}=\sigma d B_{t} / d t$
(Q Wiener process)

Resolved
 large scales

White-in-time small scales

Mikulevicius \&
References : Rozovskii, 2004 Flandoli, 2011

LU

Memin, 2014
Resseguier et al. 2017 a, b, c Cai et al. 2017
Chapron et al. 2018
Yang \& Memin 2019

SALT

Crisan et al., 2017
Gay-Balmaz \& Holm 2017
Cotter and al. 2018 a, b
Cotter and al. 2019

Cotter and al. 2017 Resseguier et al. 2020, 2021, ...

Large scale
group velocity:
$\bar{\nu}+C_{g}^{0}$
Small scale group velocity:
$v^{\prime}=\sigma d B_{t} / d t$ (Q Wiener process)

Resolved
 large scales

White-in-time small scales

Large scale
group velocity:
$\bar{v}+C_{g}^{0}$
Small scale
group velocity:
$v^{\prime}=\sigma d B_{t} / d t$
(Q Wiener process)

Large scale
group velocity:
$\bar{v}+C_{g}^{0}$
Small scale
group velocity:
$v^{\prime}=\sigma d B_{t} / d t$
(Q Wiener process)
Wave:
$a e^{\frac{i}{\epsilon} \phi(\epsilon t, \epsilon x)}$
Group velocity
without current
$C_{g}^{0}=\nabla_{k} \omega_{0}$
$\nabla=\nabla_{x}$

Simple linear case

> | $d X_{r}=\left(C_{g}^{0}+\bar{v}\right) d t+\sigma d B_{t}$ | Ray |
| :---: | :---: |
| Refraction \& contraction/dilatation | |
| $d k=-\nabla\left(\bar{v} d t+\sigma d B_{t}\right)^{T} k$ | Wave-vector |
| Conservation of action | |
| $d A=\nabla \cdot\left(\left(C_{g}^{0}+\bar{v}\right) d t+\sigma d B_{t}\right) A$ | Amplitude |

Large scale
group velocity:

Simple linear case 1:

stationary deterministic, divergence-free and
linear in x large-scale velocity

Wave:

$$
\begin{aligned}
& a e^{\frac{i}{\epsilon} \phi} \\
& k=\nabla \phi \\
&=\kappa\binom{\cos \theta}{\sin \theta} \\
& \zeta=2 \theta-\frac{\pi}{2}
\end{aligned}
$$

Stretching of phase
$d k=-\nabla \bar{v}^{T} k d t$
with $\nabla \bar{v}^{T}=\sigma_{w}\left[\begin{array}{cc}1 & r \\ -r & -1\end{array}\right]$
$|r|<1$
Wave shortening

$$
|r|>1
$$

Wave rotation

$$
\begin{gathered}
a e^{\frac{i}{\epsilon} \phi} \\
k=\nabla \phi \\
=\kappa\binom{\cos \theta}{\sin \theta} \\
\zeta=2 \theta-\frac{\pi}{2}
\end{gathered}
$$

Simple linear case 2:

no large-scale current

+ stationary (in space) and divergence-free
small-scale velocity

Stochastic stretching of phase

$$
d k=-\nabla\left(\sigma d B_{t}\right)^{T} k \quad \text { Log-normal wave- number }
$$

$$
\begin{aligned}
& \left\{\begin{array}{c}
\ln \kappa(t)=\alpha^{2} t+\alpha B_{t}^{(1)} \\
\zeta(t)=(\sqrt{12} \alpha) B_{t}^{(2)}
\end{array}\right. \\
& \text { with } \alpha^{2}=\frac{3}{2} \mathbb{E}\left\|\nabla\left(\sigma d B_{t}\right)^{T}\right\|^{2} / d t
\end{aligned}
$$

$$
a e^{\frac{i}{\epsilon} \phi}
$$

$$
\begin{aligned}
k & =\nabla \phi \\
& =\kappa\binom{\cos \theta}{\sin \theta} \\
\zeta & =2 \theta-\frac{\pi}{2}
\end{aligned}
$$

Simple linear case 3

divergence-free and linear-in-x large-scale current + stationary (in space) and divergence-free small-scale velocity

Stochastic stretching of phase

$$
d k=-\nabla\left(\bar{v} d t+\sigma d B_{t}\right)^{T} k
$$

$$
\begin{aligned}
& \left\{\begin{array}{l}
d \ln \kappa(t)=\left(\alpha^{2}-\sin \zeta(t)\right) d t+\alpha d B_{t}^{(1)} \\
d \zeta(t)=-\frac{\partial V}{\partial \zeta}(\zeta(t)) d t+(\sqrt{12} \alpha) d B_{t}^{(2)}
\end{array}\right. \\
& \text { with } V(\zeta)=r \zeta-\sin \zeta \text { and } \alpha^{2}=\frac{3}{2} \mathbb{E}\left\|\nabla\left(\sigma d B_{t}\right)^{T}\right\|^{2} / d t .
\end{aligned}
$$

We can solve the stationary Fokker-Planck for ζ, and then get the stationary distribution of k

$$
v^{\prime}=\sigma d B_{t} / d t
$$

(Q Wiener process

Wave:
$a e^{\frac{i}{\epsilon} \phi}$

Simple linear case 3

divergence-free and linear-in-x large-scale current + stationary (in space) and divergence-free small-scale velocity
Stochastic stretching of phase
$d k=-\nabla\left(\bar{v} d t+\sigma d B_{t}\right)^{T} k$
$k=\nabla \phi$
$=\kappa\binom{\cos \theta}{\sin \theta}$
$\zeta=2 \theta-\frac{\pi}{2}$
$\left\{d \ln \kappa(t)=\left(\alpha^{2}-\sin \zeta(t)\right) d t+\alpha d B_{t}^{(1)}\right.$ $\left\{d \zeta(t)=-\frac{\partial V}{\partial \zeta}(\zeta(t)) d t+(\sqrt{12} \alpha) d B_{t}^{(2)}\right.$
with $V(\zeta)=r \zeta-\sin \zeta$ and $\alpha^{2}=\frac{3}{2} \mathbb{E}\left\|\nabla\left(\sigma d B_{t}\right)^{T}\right\|^{2} / d t$.

Large scale group velocity:
$\bar{v}+C_{g}^{0}$
Small scale
group velocity:

$$
v^{\prime}=\sigma d B_{t} / d t
$$

(Q Wiener process

Simple linear case 3

divergence-free and linear-in-x large-scale current + stationary (in space) and divergence-free small-scale velocity

Wave:
$a e^{\frac{i}{\epsilon} \phi}$
Stochastic stretching of phase

$$
d k=-\nabla\left(\bar{v} d t+\sigma d B_{t}\right)^{T} k
$$

$$
\begin{aligned}
k & =\nabla \phi \\
& =\kappa\binom{\cos \theta}{\sin \theta} \\
\zeta & =2 \theta-\frac{\pi}{2}
\end{aligned}
$$

$$
\left\{d \ln \kappa(t)=\left(\alpha^{2}-\sin \zeta(t)\right) d t+\alpha d B_{t}^{(1)}\right.
$$

$$
\left\{d \zeta(t)=-\frac{\partial V}{\partial \zeta}(\zeta(t)) d t+(\sqrt{12} \alpha) d B_{t}^{(2)}\right.
$$

$$
\text { with } V(\zeta)=r \zeta-\sin \zeta \text { and } \alpha^{2}=\frac{3}{2} \mathbb{E}\left\|\nabla\left(\sigma d B_{t}\right)^{T}\right\|^{2} / d t .
$$

States

Stochastic shortening

Large scale group velocity:
$\bar{v}+C_{g}^{0}$
Small scale
group velocity:

$$
v^{\prime}=\sigma d B_{t} / d t
$$

(Q Wiener proces:

Wave:
$a e^{\frac{i}{\epsilon} \phi}$
$k=\nabla \phi$
$=\kappa\binom{\cos \theta}{\sin \theta}$
$\zeta=2 \theta-\frac{\pi}{2}$ phase
$d k=-\nabla\left(\bar{v} d t+\sigma d B_{t}\right)^{T} k$
$\left\{d \ln \kappa(t)=\left(\alpha^{2}-\sin \zeta(t)\right) d t+\alpha d B_{t}^{(1)}\right.$ $\left\{d \zeta(t)=-\frac{\partial V}{\partial \zeta}(\zeta(t)) d t+(\sqrt{12} \alpha) d B_{t}^{(2)}\right.$ with $V(\zeta)=r \zeta-\sin \zeta$ and $\alpha^{2}=\frac{3}{2} \mathbb{E}\left\|\nabla\left(\sigma d B_{t}\right)^{T}\right\|^{2} / d t$.

Stochastic stretching of

Simple linear case 3

divergence-free and linear-in-x large-scale current + stationary (in space) and divergence-free small-scale velocity

Depends on small scale's statistics

States

Stochastic shortening

Large scale group velocity:
$\bar{v}+C_{g}^{0}$
small scale
group velocity:
$v^{\prime}=\sigma d B_{t} / d t$
(Q Wiener process

Wave:
$\left\{d \ln \kappa(t)=\left(\alpha^{2}-\sin \zeta(t)\right) d t+\alpha d B_{t}^{(1)}\right.$ $\left\{d \zeta(t)=-\frac{\partial V}{\partial \zeta}(\zeta(t)) d t+(\sqrt{12} \alpha) d B_{t}^{(2)}\right.$ with $V(\zeta)=r \zeta-\sin \zeta$ and $\alpha^{2}=\frac{3}{2} \mathbb{E}\left\|\nabla\left(\sigma d B_{t}\right)^{T}\right\|^{2} / d t$.

Stochastic stretching of

 phase$$
d k=-\nabla\left(\bar{v} d t+\sigma d B_{t}\right)^{T} k
$$

$$
\begin{aligned}
& a e^{\frac{i}{\epsilon} \phi} \\
k & =\nabla \phi \\
& =\kappa\binom{\cos \theta}{\sin \theta} \\
\zeta & =2 \theta-\frac{\pi}{2}
\end{aligned}
$$

Large scale group velocity:
$\bar{v}+C_{g}^{0}$
Small scale group velocity:

$$
v^{\prime}=\sigma d B_{t} / d t
$$

(Q Wiener process
Wave:
$a e^{\frac{i}{\epsilon} \phi}$
$k=\nabla \phi$
$=\kappa\binom{\cos \theta}{\sin \theta}$
$\zeta=2 \theta-\frac{\pi}{2}$
$\left\{d \ln \kappa(t)=\left(\alpha^{2}-\sin \zeta(t)\right) d t+\alpha d B_{t}^{(1)}\right.$ $\left\{d \zeta(t)=-\frac{\partial V}{\partial \zeta}(\zeta(t)) d t+(\sqrt{12} \alpha) d B_{t}^{(2)}\right.$ with $V(\zeta)=r \zeta-\sin \zeta$ and $\alpha^{2}=\frac{3}{2} \mathbb{E}\left\|\nabla\left(\sigma d B_{t}\right)^{T}\right\|^{2} / d t$.

Conclusion

Conclusion

We propose multi-scale closures for simulation of wave-turbulence interactions.

- At large scales, the oceanic currents are known because measured by satellite.
- At intermediate scales,
new stochastic closure, which is non-Markovian, with stochastic currents multiscale in space and time.
- For smaller scales,

Markovian approaches - e.g., LU \& SALT [2,1,3,4,5] - applied (in the wave frame). We found an analytical formula for the probability distribution of wave properties at long time.

In the future, we would like to use it as prior generation of data assimilation.

References

1. Holm, D. D. (2015). Variational principles for stochastic fluid dynamics. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 471(2176), 20140963.
2. Mémin, E. (2014). Fluid flow dynamics under location uncertainty. Geophysical \& Astrophysical Fluid Dynamics, 108(2), 119-146.
3. Resseguier, V., Pan, W., \& Fox-Kemper, B. (2020). Data-driven versus self-similar parameterizations for stochastic advection by Lie transport and location uncertainty. Nonlinear Processes in Geophysics, 27(2), 209-234.
4. Resseguier, V., Li, L., Jouan, G., Dérian, P., Mémin, E., \& Chapron, B. (2021). New trends in ensemble forecast strategy: uncertainty quantification for coarse-grid computational fluid dynamics. Archives of Computational Methods in Engineering, 28(1), 215-261.
5. Resseguier, V., Hascoët, E., \& Chapron, B. (2023). Random ocean swell-rays: a stochastic framework. In Stochastic Transport in Upper Ocean Dynamics Annual Workshop (pp. 259271). Springer, Cham.

Bonus slides

Large scale
group velocity:
$\bar{\nu}+C_{g}^{0}$
Small scale group velocity:
$v^{\prime}=\sigma d B_{t} / d t$
Wave:
$a e^{\frac{i}{\epsilon} \phi}$
Doppler
frequency:
$\omega_{0}=$
$\sqrt{g\|\mid k\|}$

Time decorrelation assumption for v^{\prime}

- Advantages :
- Simpler / analytic formula
\Rightarrow physical comprehension \& lighter CPU for simulations
- No precise knowledge needed about v^{\prime} time dependency :

Markovian closure

- Validity :

$$
\epsilon=\frac{\text { Along-ray } v^{\prime} \text { correlation time) }}{\binom{\text { characteristic time of }}{\text { wave group properties evolution }}}=\frac{\left(\frac{l_{v^{\prime}}}{\left\|C_{g}^{0}\right\|}\right)}{\left(\frac{1}{\|\nabla v\|}\right)} \ll 1
$$

- Limitations :
- Swells $\left(\left\|C_{g}^{0}\right\| \gg 1\right)$
- Small-scale currents $\left(l_{v^{\prime}} \ll 1\right)$
- Moderate current gradients $(\|\nabla v\| \ll 1) \quad\left(\Rightarrow\right.$ moderate $\left.\left\|\nabla v^{\prime}\right\| \|\right)$

Large scale
group velocity:

$$
\bar{v}+C_{g}^{0}
$$

Time-uncorrelated model for v^{\prime}

Small scale
group velocity:
$v^{\prime}=\sigma d B_{t} / d t$
Wave:

$$
a e^{\frac{i}{\epsilon} \phi}
$$

Doppler frequency:
$\omega_{0}=$
$\sqrt{g\|k\|}$
$v^{\prime}=\sigma \dot{B}=($ filter $) *($ white noise $)$

Large scale group velocity:

```
\nu}+\mp@subsup{C}{g}{0
```

Small scale
group velocity:
$v^{\prime}=\sigma d B_{t} / d t$
Wave:
$a e^{\frac{i}{\epsilon} \phi}$
Doppler frequency:
$\omega_{0}=$
$\sqrt{g\|k\|}$

Time-uncorrelated model for v^{\prime}

$$
v^{\prime}=\sigma \dot{B}=(\text { filter }) *(\text { white noise })
$$

Large scale group velocity:

$$
\bar{\nu}+C_{g}^{0}
$$

Small scale group velocity:
$v^{\prime}=\sigma d B_{t} / d t$
Wave:
$a e^{\frac{i}{\epsilon} \phi}$
Doppler frequency:
$\omega_{0}=$
$\sqrt{g\|k\|}$

Time-uncorrelated model for v^{\prime}

Large scale group velocity:

$$
\bar{v}+C_{g}^{0}
$$

Small scale group velocity:
$v^{\prime}=\sigma d B_{t} / d t$
Wave:
$a e^{\frac{i}{\epsilon} \phi}$
Doppler frequency:
$\omega_{0}=$
$\sqrt{g\|k\|}$

Time-uncorrelated model for v^{\prime}

Correlation time along ray

$$
\tau(\kappa)=\tau_{\text {ray }}(\kappa)=\frac{1 / \kappa}{\left\|C_{g}^{0}\right\|}
$$

$$
v^{\prime}=\sigma \dot{B}=\text { (filter) } *(\text { white noise })
$$

Large scale group velocity:

$$
\bar{v}+C_{g}^{0}
$$

Small scale group velocity:
$v^{\prime}=\sigma d B_{t} / d t$
Wave:
$a e^{\frac{i}{\epsilon} \phi}$
Doppler frequency:
$\omega_{0}=$
$\sqrt{g\|k\|}$

Time-uncorrelated model for v^{\prime}

Correlation time along ray

$$
\tau(\kappa)=\tau_{\text {ray }}(\kappa)=\frac{1 / \kappa}{\left\|C_{g}^{0}\right\|}
$$

$$
\begin{array}{lll}
\text { KE Spectrum } E(\kappa) \\
v^{\prime}=\sigma \dot{B}=\text { (filter) * (white noise) } \\
\text { [3] Resseguier, Pan \& Fox-Kemper 2020 }
\end{array}
$$

