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Some STUOD objectives:

- Identify and quantify small-scale displacement fluctuations

- Include these fluctuations in a mathematical framework for the reduction of the equations of motion, solved at 

lower resolution



PLENTY OF DATA & S(P)DEs
LOOKING FOR STATISTICIANS !
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Numerical example of wave (swell) 

traveling inside turbulence

(oceanic currents)
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Dispersion ratio
At the first order in steepness (= ∇𝜙 𝑎)
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Wave phase transport

with a current velocity 𝑣
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Frequency without currentsWave phase transport

with a current velocity 𝑣

Dispersion ratio
At the first order in steepness (= ∇𝜙 𝑎)
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Conservation of action

Amplitude

Method of characteristic
(ray tracing)

Ray 

Refraction & contraction/dilatation

Wave-vector
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Numerical example of wave (swell) 

traveling inside turbulence

(oceanic currents)
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Non-Markovian closure 
with current multi-scale in 

space & in time
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Time-correlated model for 𝑣′:
CalibrationPhysical scale symmetry

On-line fit : 𝐴 𝑘 −𝐻

(Similar to fractional Brownian motion in space)
ℎ2 = 𝐴𝑘−𝛼 − ҧ𝑣 2
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Time-correlated model for 𝑣′:
Calibration

Filter ℎ

Physical scale symmetry

On-line fit : 𝐴 𝑘 −𝐻

(Similar to fractional Brownian motion in space)
ℎ2 = 𝐴𝑘−𝛼 − ҧ𝑣 2
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Time-correlated model for 𝑣′:
Calibration

Filter ℎ

Physical scale symmetry

On-line fit : 𝐴 𝑘 −𝐻

(Similar to fractional Brownian motion in space)
ℎ2 = 𝐴𝑘−𝛼 − ҧ𝑣 2
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- Simple cases & analytic solutions -
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𝑣 = ҧ𝑣 + 𝑣′

Large scale

group velocity: 

ҧ𝑣
Small scale

group velocity:

𝑣′ = 𝜎𝑑𝐵𝑡/𝑑𝑡
(Q Wiener process)

+𝐶𝑔
0



Large scale

group velocity: 

ҧ𝑣
Small scale

group velocity:

𝑣′ = 𝜎𝑑𝐵𝑡/𝑑𝑡
(Q Wiener process)

Wave:

𝑎𝑒
𝑖
𝜖 𝜙 𝜖𝑡,𝜖𝑥

Group velocity

without current

𝐶𝑔
0 = ∇𝑘𝜔0

∇ = ∇𝑥

Conservation of action

Amplitude

Simple linear case

Ray 

Refraction & contraction/dilatation

Wave-vector
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+𝐶𝑔
0

𝑑𝑘 = −𝛻 ҧ𝑣𝑑𝑡 + 𝜎𝑑𝐵𝑡
𝑇𝑘

𝑑𝑋𝑟 = 𝐶𝑔
0 + ҧ𝑣 𝑑𝑡 + 𝜎𝑑𝐵𝑡

𝑑𝐴 = ∇ ⋅ 𝐶𝑔
0 + ҧ𝑣 𝑑𝑡 + 𝜎𝑑𝐵𝑡 𝐴



Simple linear case 1:
stationary deterministic,

divergence-free and

linear in x large-scale velocity

Stretching of phase

𝑑𝑘 = −𝛻 ҧ𝑣𝑇𝑘 𝑑𝑡

with 𝛻 ҧ𝑣𝑇 = 𝜎𝑤
1 𝑟

−𝑟 −1
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Wave shortening Wave rotation

Large scale

group velocity: 

ҧ𝑣

Wave:

𝑘 = ∇𝜙

= 𝜅 cos 𝜃
sin 𝜃

𝜁 = 2𝜃 −
𝜋

2

+𝐶𝑔
0

𝑑𝜁

𝑑𝑡
= 𝑟 − cos 𝜁 = −

𝜕𝑉

𝜕𝜁
𝜁

with 𝑉 𝜁 = 𝑟 𝜁 − 𝑠𝑖𝑛 𝜁

𝑑 𝑙𝑛 𝜅

𝑑𝑡
= − sin 𝜁



Simple linear case 2:
no large-scale current

+ stationary (in space) and divergence-free

small-scale velocity

Stochastic stretching of phase

𝑑𝑘 = −𝛻 𝜎𝑑𝐵𝑡
𝑇𝑘 Log-normal wave- number
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Large scale

group velocity: 

Small scale

group velocity:

𝑣′ = 𝜎𝑑𝐵𝑡/𝑑𝑡
(Q Wiener process)

Wave:

𝑘 = ∇𝜙

= 𝜅 cos 𝜃
sin 𝜃

𝜁 = 2𝜃 −
𝜋

2

+𝐶𝑔
0

ቐ
ln 𝜅 𝑡 = 𝛼2𝑡 + 𝛼𝐵𝑡

1

𝜁 𝑡 = 12𝛼 𝐵𝑡
2

with 𝛼2 =
3

2
𝔼 ∇ 𝜎𝑑𝐵𝑡

𝑇 2/𝑑𝑡.



Simple linear case 3
divergence-free and linear-in-x large-scale current

+ stationary (in space) and divergence-free

small-scale velocity

Stochastic stretching of phase

𝑑𝑘 = −𝛻 ҧ𝑣𝑑𝑡 + 𝜎𝑑𝐵𝑡
𝑇𝑘
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Large scale

group velocity: 

ҧ𝑣
Small scale

group velocity:

𝑣′ = 𝜎𝑑𝐵𝑡/𝑑𝑡
(Q Wiener process)

Wave:

𝑘 = ∇𝜙

= 𝜅 cos 𝜃
sin 𝜃

𝜁 = 2𝜃 −
𝜋

2

+𝐶𝑔
0

൞
𝑑 ln 𝜅 𝑡 = 𝛼2 − sin 𝜁 𝑡 𝑑𝑡 + 𝛼𝑑𝐵𝑡

1

𝑑𝜁 𝑡 = −
𝜕𝑉

𝜕𝜁
𝜁 𝑡 𝑑𝑡 + 12𝛼 𝑑𝐵𝑡

2

with 𝑉 𝜁 = 𝑟 𝜁 − 𝑠𝑖𝑛 𝜁 and 𝛼2 =
3

2
𝔼 ∇ 𝜎𝑑𝐵𝑡

𝑇 2/𝑑𝑡.

We can solve the stationary Fokker-Planck for 𝜁,
and then get the stationary distribution of 𝑘



Large scale

group velocity: 

ҧ𝑣
Small scale

group velocity:

𝑣′ = 𝜎𝑑𝐵𝑡/𝑑𝑡
(Q Wiener process)

Wave:

𝑘 = ∇𝜙

= 𝜅 cos 𝜃
sin 𝜃

𝜁 = 2𝜃 −
𝜋

2

Simple linear case 3
divergence-free and linear-in-x large-scale current

+ stationary (in space) and divergence-free

small-scale velocity

Stochastic stretching of 

phase

𝑑𝑘 = −𝛻 ҧ𝑣𝑑𝑡 + 𝜎𝑑𝐵𝑡
𝑇𝑘
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+𝐶𝑔
0

൞
𝑑 ln 𝜅 𝑡 = 𝛼2 − sin 𝜁 𝑡 𝑑𝑡 + 𝛼𝑑𝐵𝑡

1

𝑑𝜁 𝑡 = −
𝜕𝑉

𝜕𝜁
𝜁 𝑡 𝑑𝑡 + 12𝛼 𝑑𝐵𝑡

2

with 𝑉 𝜁 = 𝑟 𝜁 − 𝑠𝑖𝑛 𝜁 and 𝛼2 =
3

2
𝔼 ∇ 𝜎𝑑𝐵𝑡

𝑇 2/𝑑𝑡.



Large scale

group velocity: 

ҧ𝑣
Small scale

group velocity:

𝑣′ = 𝜎𝑑𝐵𝑡/𝑑𝑡
(Q Wiener process)

Wave:

𝑘 = ∇𝜙

= 𝜅 cos 𝜃
sin 𝜃

𝜁 = 2𝜃 −
𝜋

2

Stochastic shortening

ShorteningRotation Rotation

Weak

shortening

Weak

shorteningShortening

with rotation

bursts

𝛼

Simple linear case 3
divergence-free and linear-in-x large-scale current

+ stationary (in space) and divergence-free

small-scale velocity

Stochastic stretching of 

phase

𝑑𝑘 = −𝛻 ҧ𝑣𝑑𝑡 + 𝜎𝑑𝐵𝑡
𝑇𝑘
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+𝐶𝑔
0

൞
𝑑 ln 𝜅 𝑡 = 𝛼2 − sin 𝜁 𝑡 𝑑𝑡 + 𝛼𝑑𝐵𝑡

1

𝑑𝜁 𝑡 = −
𝜕𝑉

𝜕𝜁
𝜁 𝑡 𝑑𝑡 + 12𝛼 𝑑𝐵𝑡

2

with 𝑉 𝜁 = 𝑟 𝜁 − 𝑠𝑖𝑛 𝜁 and 𝛼2 =
3

2
𝔼 ∇ 𝜎𝑑𝐵𝑡

𝑇 2/𝑑𝑡.



Large scale

group velocity: 

ҧ𝑣
Small scale

group velocity:

𝑣′ = 𝜎𝑑𝐵𝑡/𝑑𝑡
(Q Wiener process)

Wave:

𝑘 = ∇𝜙

= 𝜅 cos 𝜃
sin 𝜃

𝜁 = 2𝜃 −
𝜋

2

Stochastic shortening

ShorteningRotation Rotation

Weak

shortening

Weak

shorteningShortening

with rotation

bursts

𝛼

Simple linear case 3
divergence-free and linear-in-x large-scale current

+ stationary (in space) and divergence-free

small-scale velocity

Stochastic stretching of 

phase

𝑑𝑘 = −𝛻 ҧ𝑣𝑑𝑡 + 𝜎𝑑𝐵𝑡
𝑇𝑘

Depends on 

small scale’s

statistics
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+𝐶𝑔
0

൞
𝑑 ln 𝜅 𝑡 = 𝛼2 − sin 𝜁 𝑡 𝑑𝑡 + 𝛼𝑑𝐵𝑡

1

𝑑𝜁 𝑡 = −
𝜕𝑉

𝜕𝜁
𝜁 𝑡 𝑑𝑡 + 12𝛼 𝑑𝐵𝑡

2

with 𝑉 𝜁 = 𝑟 𝜁 − 𝑠𝑖𝑛 𝜁 and 𝛼2 =
3

2
𝔼 ∇ 𝜎𝑑𝐵𝑡

𝑇 2/𝑑𝑡.



Large scale

group velocity: 

ҧ𝑣
Small scale

group velocity:

𝑣′ = 𝜎𝑑𝐵𝑡/𝑑𝑡
(Q Wiener process)

Wave:

𝑘 = ∇𝜙

= 𝜅 cos 𝜃
sin 𝜃

𝜁 = 2𝜃 −
𝜋

2

Stochastic stretching of 

phase

𝑑𝑘 = −𝛻 ҧ𝑣𝑑𝑡 + 𝜎𝑑𝐵𝑡
𝑇𝑘

Stochastic shortening

ShorteningRotation Rotation

Weak

shortening

Weak

shorteningShortening

with rotation

bursts
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+𝐶𝑔
0

൞
𝑑 ln 𝜅 𝑡 = 𝛼2 − sin 𝜁 𝑡 𝑑𝑡 + 𝛼𝑑𝐵𝑡

1

𝑑𝜁 𝑡 = −
𝜕𝑉

𝜕𝜁
𝜁 𝑡 𝑑𝑡 + 12𝛼 𝑑𝐵𝑡

2

with 𝑉 𝜁 = 𝑟 𝜁 − 𝑠𝑖𝑛 𝜁 and 𝛼2 =
3

2
𝔼 ∇ 𝜎𝑑𝐵𝑡

𝑇 2/𝑑𝑡.

Depends on 

small scale’s

statistics

𝛼



Large scale

group velocity: 

ҧ𝑣
Small scale

group velocity:

𝑣′ = 𝜎𝑑𝐵𝑡/𝑑𝑡
(Q Wiener process)

Wave:

𝑘 = ∇𝜙

= 𝜅 cos 𝜃
sin 𝜃

𝜁 = 2𝜃 −
𝜋

2

Stochastic stretching of 

phase

𝑑𝑘 = −𝛻 ҧ𝑣𝑑𝑡 + 𝜎𝑑𝐵𝑡
𝑇𝑘

Stochastic shortening

ShorteningRotation Rotation

Weak

shortening

Weak

shorteningShortening

with rotation

bursts
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+𝐶𝑔
0

൞
𝑑 ln 𝜅 𝑡 = 𝛼2 − sin 𝜁 𝑡 𝑑𝑡 + 𝛼𝑑𝐵𝑡

1

𝑑𝜁 𝑡 = −
𝜕𝑉

𝜕𝜁
𝜁 𝑡 𝑑𝑡 + 12𝛼 𝑑𝐵𝑡

2

with 𝑉 𝜁 = 𝑟 𝜁 − 𝑠𝑖𝑛 𝜁 and 𝛼2 =
3

2
𝔼 ∇ 𝜎𝑑𝐵𝑡

𝑇 2/𝑑𝑡.

Depends on 

small scale’s

statistics

𝛼



Conclusion
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Conclusion

We propose multi-scale closures for simulation of wave-turbulence interactions.

• At large scales,

the oceanic currents are known because measured by satellite.

• At intermediate scales,

new stochastic closure, which is non-Markovian, with stochastic currents multi-

scale in space and time.

• For smaller scales,

Markovian approaches – e.g., LU & SALT [2,1,3,4,5] – applied (in the wave 

frame). We found an analytical formula for the probability distribution of wave 

properties at long time.

In the future, we would like to use it as prior generation of data assimilation.
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Time decorrelation

assumption for 𝑣′

• Advantages : 

• Simpler / analytic formula   

⇨ physical comprehension & lighter CPU for simulations

• No precise knowledge needed about 𝑣′ time dependency : 

Markovian closure

• Validity :

𝜖 =
Along−ray 𝑣’ correlation time

characteristic time of
wave group properties evolution

=

𝑙𝑣′

𝐶𝑔
0

1
𝛻𝑣

≪ 1

• Limitations : 

• Swells 𝐶𝑔
0 ≫ 1

• Small-scale currents 𝑙𝑣′ ≪ 1
• Moderate current gradients 𝛻𝑣 ≪ 1 ( ⇨ moderate 𝛻𝑣′ ❗️)

Large scale

group velocity: 

ҧ𝑣
Small scale

group velocity:

𝑣′ = 𝜎𝑑𝐵𝑡/𝑑𝑡

Wave:

Doppler

frequency:

+𝐶𝑔
0
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Large scale

group velocity: 

ҧ𝑣
Small scale

group velocity:

𝑣′ = 𝜎𝑑𝐵𝑡/𝑑𝑡

Wave:

Doppler

frequency:

+𝐶𝑔
0

𝑣′ = 𝜎 ሶ𝐵 = filter ∗ white noise

Time-uncorrelated model for 𝑣′
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Doppler

frequency:

+𝐶𝑔
0

𝑣′ = 𝜎 ሶ𝐵 = filter ∗ white noise

Time-uncorrelated model for 𝑣′
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Time-uncorrelated model for 𝑣′
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