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Deciphering single yeast wall elasticity with flat microlever compression. †

Single cell organisms such as yeast can survive in very different environments thanks to a polysaccharide wall that reinforces their extracellular membrane. This wall is not a static structure since it is expected to remodel dynamically depending on the stage of growth, division cycle, environmental osmotic pressure and aging. Probing the mechanics of these organisms is therefore of strong interest, however it implies some more difficulties as compared to other mammal cells, in particular because of their small size (radius of a few microns) and their lack of an adhesion machinery. Using flat cantilevers, we perform compression experiments of single yeast cells (S. cerevisiae) on poly-L-lysine coated glass plates, in the limit of small deformation with an atomic force microscope (AFM). We compare the mechanical response of single yeast cells grown in different culture media, with different carbon sources to address different energetic metabolisms and at different stages of their proliferation (initial, intermediary and final stationary stages). We develop a multi-scale nonlinear analysis of AFM force-displacement curves that provides evidences for non stationary scaling laws. We propose to model this phenomena based on a multilayered elastic system, each layer following a different scaling law.

Introduction

Among natural kingdoms, plants, fungi and unicellular microorganisms (yeasts, bacteria, algae ...) differ from multicellular animals by their intracellular structure and a rigid wall that reinforces the extracellular membrane and can sustain quite high turgor pressure (from 0.5 MPa in exponential growth phase to 1.5 MPa in the stationary phase for yeast) 1 . These cells regulate their volume, depending on the drop of pressure between the intracellular (Π i ) and the extracellular media (Π e ), the dif- † Electronic Supplementary Information (ESI) available:
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ference ∆P = Π i -Π e is defined as the turgor pressure. In order to maintain their volume, the water activity of their cytosol and organelles has to be lower than that of the surrounding medium, which requires a constant flow to drive water into the cell. This water inflow increases the turgor pressure which is counteracted by the expansion of the cell wall (increase of its tension). If yeast cells are exposed to higher external pressure (Π e increasing, for example by hyperosmotic shock), this implies a decrease of their turgor pressure. To recover their initial turgor pressure the cells can expel some water and decrease their volume, increasing in turn their internal pressure. To avoid a dehydration collapse they may also accumulate in their cytosol harmless solutes or osmolytes 2 . In the other hand, yeast cells submitted to lower external pressure (hypoosmotic shock for example) use the inverse solution by letting water in and increasing their volume, decreasing their internal pressure and recovering their initial turgor pressure.

Even if yeast cells have rather simple geometries, their mechanical behavior integrates different mechanical forces; compressive (or tensile), and shear forces from their environment and turgor pressure derived forces. Saccharomyces cerevisiae, also called the budding yeast, that is investigated here, has often been approximated by spherical shells. Actually its shape is more elliptic than spherical, leading to a preferential position (polarization) of its bud which is driven by turgor pressure during mitosis 3 . Thanks to its β -glucan and titin cross-linked chains 4 , the cell wall primary role is to balance of the tensional stress generated by turgor pressure. Assuming that the wall thickness is negligible versus the cell radius, for a typical cell radius R of 2.5 µm, the tension T created by a turgor pressure of ∆P = 1MPa would be 5 T = PR/2 = 1.25N/m. This wall tension could be considered as a homeostatic wall tension required for cell division and survival. Compression experiments that exceed this wall tension may lead to cascades of local ruptures or unbinding of the wall glucan chains and finally cell wall failure 6 . These cascades of local fracture events were described with one-dimensional catastrophe models following lognormal statistics [7][8][9] .

Since the early nineties, the atomic force microscope (AFM) emerged as a powerful tool for its ability to probe biomaterials from nanometer (biomolecules) up to several tens of micron scales (subcellular organelles, cells, multicellular organisms) with forces in the range of tens to hundreds of nanoNewtons, under near physiological conditions [START_REF] Jena | Atomic Force Microscopy in Cell Biology[END_REF] . The enthusiasm of the scientific community for this technique never faded away, and it is now a gold standard for cellular imaging and visco-elasticity measurements at molecular and cellular scales [START_REF] Dufrene | Life at the Nanoscale[END_REF][START_REF] Rebelo | [END_REF] . Whereas AFM was immediately and predominantly used as a surface imaging technique for micro-organisms (see chapter 3 of 11 and 13 ), different imaging protocols were tested with liquid or with dried samples, facilitated by the robustness of these microorganisms thanks to their wall. The measurement and interpretation of short and long range forces involved in AFM indentation on microorganisms, such as bacteria was not straighforward 14 , since it required to consider both surface interaction forces and submolecular mechanical (viscoelasticity, hyperelasticity, damages) responses of the cells to external stresses or strains. The discrepancy of sharp indenter experiments (small deformations) with micromanipulations (large deformations) remained a source of confusion. However, some publications could combine the two approaches and propose original ideas about the double layer structure of S. cerevisae wall 15 .

Mathematical models for plant cells with walls must include not only the characteristics of yeast, such as turgor pressure, wall tension 16 but also the possibility of a dynamical wall chain network reorganization (poroelasticity) and/or water flowing through it. This could imply considering the complex and heterogeneous macromolecular structure of the wall with intertwined glucan fibrils. Physical modeling of the mechanics of microcapsules and shells as elastic membranes provided the theoretical formalism for rigorous identification of mechanical parameters from single cell experiments on yeast 17 . Because these preliminary models did not include the impact of turgor pressure they were therefore limited to explain the cases of large deformations 18 . More recently, the turgor pressure was also introduced in these models [19][20][21] and compared to single cell compression on yeast cells.

In this work, we combine AFM experimental compression of single yeast cells with flat cantilevers and non-linear analysis of force-indentation curves, based on a multiscale methodology. In section 2 we describe experimental methods, AFM force curves calibration, their filtering and correction for further analysis are discussed in section 3. The force versus displacement curves are corrected by cantilever stiffness, filtered, and derivated to extract different characteristics such as scaling law exponents, effective tension, dissipative loss. This study required a very large number of force curves to reach a statistical relevance of the mechanical parameters that were extracted from them. Comparing different compression velocities, we conclude that for the depth of compression performed in this study (limit of small deformations), these cells behave as essentially elastic shells 19 . Thanks to a multi-scale analysis of the force curves, we reveal that the force curves do not follow simple power laws but that the force curve scaling exponent is not constant but change continuously with the compression distance. Interestingly, this exponent crosses a maximum value at a specific distance which can be compared to a characteristic scale of the cell wall sub-layers. Inspired from the different models proposed in the literature for elastic spheres and shells, we generalize Bonilla and co-authors approach 22 by considering in section 3 the possibility of non-integer scaling laws for the force curves and proposing simple bi-component elastic models that reproduce fairly well the experimental behavior. A large set of compression experiments were performed simultaneously to the proliferation of yeasts in different culture media (using different carbon sources), and at different stages of the proliferation (exponential, intermediary, and final, stationary stage). The comparison of the distribution of mechanical parameters defined from our multi-scale analysis in these different cases reveals that the cell wall mechanics mirrors the metabolic changes during growth.

In the last section 4, we revisit our experimental results under the light of the bi-component elastic models introduced in section 3, in particular those including a self-cancelling sub-layer, and we corroborate the fact that interconnected β -glucan chains could confer to the wall a soft-glassy or power-law behavior (nonlinear elasticity) 23 . Actually, in S. cerevisiae, the cell wall makes up 15 to 30% of the dry weight of the cell and mostly contains mannoproteins and fibrous β -1,3 glucans 4 . We discuss also the impact of the different carbon sources on the yeast wall composition and mechanical behavior.

Materials and Methods

Yeast cell cultures and growth survey

The Saccharomyces cerevisiae strain BY4742 (WT) ((MATα; his3∆1; leu2∆0; lys2∆0; ura3∆0) 24 (Euroscarf) was used in this study. Cells were grown aerobically at 23 o C in the synthetic minimum medium (SMM): yeast nitrogen base 0.175% (BD Difco SKU 233520) without amino-acids 25 , KH 2 PO 4 0.1% (WMR), (NH 4 ) 2 SO 4 0.5% (WMR), Casein hydrolysate 0.2% (Merk) with different carbon sources, respectively Sodium-Llactate 2% (Sigma-Aldrich) and Bactopeptone 1% (Difco) for SMMLAC medium, D-(+)-Glucose 2% (VWR) for SMMGLU medium, D-(+)-Galactose 2% (Sigma-Aldrich) for SMMGAL medium. Importantly, we tested also enriched media, such as yeast extract-peptone-dextrose with lactate and we observed a drastic reduction of the adhesion of yeast cells on poly-L-lysine treated surfaces, probably due to the saturation of the positive charges of this layer by negatively charged polypeptides chains dispersed in the culture media, hence our systematic choice of synthetic media. The media were systematically sterilized by autoclaving at 120 o C with 1 bar pressure for 20 minutes. Three amino acids (adenine, uracil and tryptophan) filtered at 0.2 µm were added to SSM after autoclaving.

Growth was recorded continuously with a home-designed optofluidic (600 nm wavelength) batch reactor 26 . This opto-fluidic system * was calibrated at the same wavelength (600 nm) with a Shimadzu UV-300 spectrophotometer with both 1 mm and 10 mm cuvettes at each stage of the preparation of the yeast sample (two precultures followed by the real time culture recording in the batch reactor). The two precultures are respectively (i) a first growth on solid agar gel in a petri dish, containing YPD (rich glucose medium: KH 2 PO 4 0.1% (WMR), (NH 4 ) 2 SO 4 0.12% (WMR), yeast extract 1% (Difco), glucose 2% (Sigma-Aldrich) and (ii) incubation for 12 to 24 hours at 30 o C under constant stirring of two CFUs sampled from the first preculture (i) and diluted in 4 mL of the selected culture medium. Prior to each spectrophotometric measure of absorbance before and after cultures, the solution was homogenized (vortexed) for 30 s at 2100 rpm.

Typical proliferation curves recorded with the opto-fludic batch reactor in different culture media are reported in Fig. 1. The three culture media chosen for these AFM experiments give very different proliferation dynamics, that can be estimated from the occurrence of the maximum of growth (inflexion point of the curve N(t), corresponding to the maximum of dN/dt (see Fig. 1)).

Surface preparation Coverslip roughening and poly-L-lysine coating

Because walled cells such as yeast are non motile and do not have an adhesion machinery equivalent to mammal cells, it is necessary to prepare adhesive and structured surfaces to facilitate their immobilization on glass, based on different surface treatments previously reported such as filter membrane pores 27 , negatively charged groups (imide, lysine, silanes) 28 , microstructured PDMS stamps 29 or glycoproteins (concanavaline (ConA) 30,31 ).

The goal of our surface treatment protocol is two-fold. The first step is to prevent any lateral slip of the yeasts during their compression while preserving the optical visualization of the yeasts under the cantilever. It is solved by creating a controlled roughness of the coverslip surface. The second step is to avoid any movement of the yeast due to the liquid flow induced by the displacement of the sensing cantilever. This is done by depositing a poly-L-lysine glue on the surface.

Glass grinding Round coverslips (diam. 18 mm, Marienfeld ref: 0111580) are first ground with a Buehler EcoMet 250 grinding machine. A grinding disc with a grit of 360 was magnetically maintained on the rotating platen. The grinding operation consists in applying on each coverslip with thickness 1.3 to 1.6 mm, a constant and gentle force with finger tips (one finger per coverslip except the little finger) for 5 minutes at 120 RPM under a constant lubricating water flow. Then the coverslips are rinsed with ultrapure water flow for several seconds, then with ethanol. Finally, the coverslip is let to bathe in a 2% Hellmanex (Hellma) solution overnight and rinsed in ultrapure water then ethanol the next day.

Coverslip coating with poly-L-lysine The roughened coverslip is plasma treated for 20 minutes to ensure the hydrophilicity of its surface. It is positioned on the bottom glass of a 35 mm diameter petridish (Fluorodish FD35-100). A drop of poly-L-Lysine (0.01% in water -Sigma-Aldrich 25988-63-0) is deposited on its ground surface in such amount that it covers almost entirely this surface (approx. 50 µL). An incubation time of at least 1h at 37 • C is then fulfllled. All the following steps are performed at room temperature (23 • C). The coverslip is rinsed with a PBS solution, the PBS is removed and the petri dish is filled with 3 mL of the synthetic minimal medium (SMM) with the corresponding carbon source for yeast culture.

AFM operation

AFM experiments were performed on a JPK CellHesion 200 (now commercialized by Bruker Corp. MA -USA). Tipless HQ-NSC36 cantilevers (MikroMasch -Estonia, commercialized by Nanoand-more) with Au/Cr (30-20 nm layers) coating) (n-type silicon tip, full tip cone angle: 40 • , tip height: 12-18 µm, tip radius after coating < 35nm) were used. On each AFM probe, three cantilevers (width 32.5µm, thickness 1 ± 0.5 µm) with different nominal spring constants are available (respectively: A: k=1 N/m ± (0.1 -4.6 N/m), L=110µm, f R = 90± 60 kHz, B: k=2 N/m ± (0.2 -9 N/m) L=90µm, f R = 130± 90 kHz C: k=0.6 N/m ± (0.06 -2.7 N/m), L=130µm, f R = 65± 40 kHz. We used the stiffer cantilevers (B) for single yeast cell compression experiments.

AFM calibration

The calibration of the AFM tips was performed in two steps: (i) a sensitivity and (ii) a spring constant calibration 32 . The sensitivity step (i) was measured by performing loading-unloading force curves on a hard surface, here a clean glass surface was used. Detailed protocols can be found in 32 . Typical sensitivity values were estimated for HQ-NSC36 cantilevers of 18 ± 0.5 nm/V. The second step (ii) used the thermal noise measurement method, based on the equipartition theorem, and the dynamic spring constants were corrected as described 33,34 to get the static spring constants (correction factor chosen for rectangular cantilevers: 0.8197), which are relevant to force curve experiments. Interestingly, in reference 35 cantilevers of arbritrary shapes and their impact on spring constant are reported. Mean spring constants that we estimated in air for NSC36 cantilevers were 2.5 N/m (tip A), 5 N/m (tip B) and 1.2 N/m (tip C). In liquid, the spring constants estimated for the same cantilevers differ little for the longer ones (A and C), whereas our estimation for tips B in liquid could give quite different spring constants. This discrepancy is probably due not only to the wide range of spring constants reported by the fabricant, but also to the difficulty for AFM diode laser focusing at the edge of this smaller cantilever with reproducibility. Fortunately, even though the cantilever was deliberately targeted to individual yeast cells for force curve collection, some of them escaped the zone, leaving instead a measure on the glass surface. We thereby get for each cantilever a few force curves on glass from which we estimate the maximum slope dF/dZ (static spring constant correction), that we use to rescale and homogenize the cantilever spring constant for each series of compression experiments.

Yeast cell imaging under the AFM cantilever

The JPK CellHesion 200 scanner head was coupled to an inverted microscope (Olympus IX71). Two imaging modes were implemented on this device, respectively a transmission and a reflexion mode [START_REF] Harte | Technical report: Imaging micronsize objets under AFM cantilevers[END_REF] . We note in Fig. 2(c,d) that the cantilever looks as if it were transparent. Amazingly, we distinguish also the yeast bodies below the cantilever tip. In our setup, the reflected light from the bottom of the cantilever plane serves as a secondary light source, from which we recover the image of the yeast cell that is underneath the cantilever (pointed by a red arrow in Fig. 2(d)). Most correlative imaging investigations for AFM based cell mechanics concentrated on fluorescence microscopy [START_REF] Galluzzi | [END_REF] . However, fluorophore labelling of cellular components often introduces artifacts, for instance instability and temporal decay of the staining by photobleaching, limitation of the labelling to specific fractions (targeted proteins, membrane elements, DNA ...) of the cells or tissues, laser degradation for longer examinations. Fluorescence staining may also have a potential impact on the cell energetic metabolism and consequently on cell mechanics which consumes large amounts of ATP 38 . In this study the cells are directly extracted from the culture batch reactor, diluted in the same culture medium and rapidly transfered to the AFM device for mechanical tests. The issue in this work is actually to compare the mechanical behavior of yeast wall at different stages of their proliferation, namely exponential, transitory (if any) and stationary.

Force curve collection from living yeast samples

A sample volume ranging between 20 to 80 µL was pipetted from the yeast batch reactor and diluted in a 3 mL volume of SMM culture medium with the same source of carbon (GLU, LAC, GAL) inside the petri dish. This amount of yeasts was chosen to give in average one single yeast below the AFM cantilever probing surface (30x30 =900 um2). It corresponds approximately to 10 6 yeasts on the 9 cm 2 surface of the glass coverslip. The solution was gently agitated by pipetting a few times back and forth. The yeasts were let 10 minutes to sediment and to attach onto the coverslip surface. The sample was then introduced in the AFM microscope.

Constant velocity Z ramps were performed with AFM, for both loading (red line) and unloading (green line) curves without delay interval (Figs 2 and3). Note that for simplicity we use the term force curve in place of force-displacement curve. Six scan velocities were used for each cell : 0.1µm/s (2), 0.5µm/s (5), 1µm/s (5), 5µm/s (5), 10µm/s (5) and 16µm/s (5), giving a total of 27 force curves for each cell. Samples were extracted from the batch reactor at different proliferation stages for transfer to the AFM, namely (i) exponential growth phase (first part of the curve before it reaches its inflexion point), (ii) intermediate stage and (iii) stationary phase (corresponding to a plateau or a slowly increasing behavior) (Fig. 1). For each growth stage, 3 different times were selected for sampling the yeast cells, and for each time sample, 13 cells were tested, applying the same velocity ramps protocol for each, giving: 3*13*27= 1053 force curves. Since three growth stages were chosen for each culture condition, we got a total of 3159 force curves for each proliferation experiment. Three carbon sources were tested (GLU, LAC and GAL), and each experiment was repeated four times, giving a total number of 37908 force curves that were corrected, filtered and parametrized, as explained below. The sampling frequency of the force curves was adjusted for each velocity to keep δ Z close to 0.1 nm ± 0.003. This required therefore a greater sampling frequency for larger scan velocities, from 1 kHz (0.1 µm/s) to 160 kHz (16 µm/s). This choice was done to keep the same spatial resolution for the force curves and for the computation of their derivatives dF/dZ.

Force curves pre-treatment for further computations

Force curves correction for the cantilever stiffness

When the stiffness of the cantilever is not much larger that the rigidity of the tested material, its bending also contributes to the displacement, and it is therefore necessary to perform a correction of the force curves. We rapidly evoke the formalism which has been proposed in previous literature pieces 39 and we also provide analytical expressions for the corrected force curve derivatives (first and second derivatives). In the section 3, we discuss a generalization of this approach to mechanical systems with multiple elements in series or in parallel, with generalized force scaling laws. The black force curve shown in Fig. 3(a) was recorded on glass (stiff, non deformable surface) with a scan velocity of 1µm/s. Except on the very first nanometers after tip-surface contact, this curve is linear (the derivative of this curve shown in Fig. 3(b) is constant). This means that the force-deflection relation follows the Hooke's law:

F d = k(d -d 0 ),
where k is the spring constant of the cantilever and dd 0 its deflection. We put d 0 = 0, since there may be a residual stress on the cantilever. The indentation or deformation δ of a soft sample upon compression with the AFM tip reads as the difference between the cantilever displacement Z -Z 0 and the relative deflection of the cantilever dd 0 :

δ = Z -Z 0 -(d -d 0 ) = Z -Z 0 - F k . ( 1 
)
Z 0 correspond to the contact point where F = 0 and δ = 0. Except when F(Z) is linear in Z, the new coordinate δ is a nonlinear function of Z and the transformation of F(Z) to F(δ ) is also nonlinear. Taking the derivative of Eq. ( 1) with F, the corrected first derivative of F: dF/dδ is obtained:

dF dδ = 1 (dF/dZ) -1 -1/k . (2) 
The second order derivatives d 2 F/dδ 2 can also be computed,

d 2 F dδ 2 = d 2 F/dZ 2 ((dF/dZ) -1 -1/k). dF dZ 2 . ( 3 
)
dF/dZ and d 2 F/dZ 2 are first estimated from the experimental force curves with the wavelet transform (see below) choosing a wavelet width large enough to limit the local fluctations. A set of uncorrected (red) and corrected (blue) force curves are shown in Fig. 4. After correction, the shape of the force curves and their increase rate may change drastically if the force derivative values become too close to the cantilever stiffness, hence some bias can be introduced by the correction itself. Using stiffer cantilevers implies also a loss of sensitivity, since the cantilever deflexion (range of its deformation) is inversely proportional to its stiffness. These curves were captured on two different cells with the same cantilever (with the same 'static' stiffness estimated from glass substrate ∼ 6.4 N/m). We will further discuss the specificities of these force curves and their derivatives in section 3.

Time-frequency decomposition

The continuous wavelet transform (CWT) is a mathematical technique introduced in signal analysis in the 1980s 40,41 and since then applied in many contexts, from sound and vibrations in physics and engineering, economics, finance, earthquakes to music or physiological signals. With the norm L 1 , the onedimensional wavelet transform of a signal F(x) reads:

W ψ [F](b, s) = 1 s +∞ -∞ F(x)ψ * x -b s dx, (4) 
with b the position and s (> 0) the scale parameter, ψ the analysing wavelet, x is a dummy variable representing Z or δ according to our interests. In the frequency domain, the expression of the CWT reads:

W ψ [F](b, s) = +∞ -∞ F( f ) ψ(s f )e 2iπ f b d f . (5) 
We compute the derivatives from the formula:

W ψ [ dF dx ](b, s) = 1 s W ψ [F](b, s) , (6) 
W ψ [ d 2 F dx 2 ](b, s) = 1 s 2 W ψ [F](b, s) , (7) 
We choose here the Gaussian function and its derivative for this analysis [41][42][43] . The interest of this wavelet transform is to perform simultaneously the derivation of F and a filtering with a smooth function (the mother wavelet). The wavelet analysing window size w o is chosen properly to limit the noise introduced by the derivation. These derivatives are shown in Fig. 3. We show the corrected first and second order derivatives of the force curve in Fig. 4. to limit the noise amplification due to a second derivation, the inverse of ((dF/dZ) -1 -1/k) 2 required a further increase of the analyzing window width w 0 to about 30-50 nm, and could reach one sixth of the total yeast deformation δ (∼ 150 nm) (Fig. 4(e) and (f)).

Work dissipation loss from loading-unloading force curves

Loading and unloading force curves collected from soft glassy materials (including living materials) are rarely superimposed, reflecting that a fraction of the loading (input) work W is lost and not recovered in the unloading (output) work W u . The dissipation of mechanical work can be written as the ratio [START_REF] Rebelo | [END_REF]44 :

D l = W -W u W (8) with W = e c F (δ )dδ and W u = u e F u (δ )dδ , (9) 
c, e and u are the contact (red), end (black) and unloading (green) points respectively and are marked with color dots in Fig. 3. The coefficient D l measures the reversibility of the force curves, when D l is close to zero the load-unload curves can be considered as superimposed and the system behaves as symmetric. When D l approaches 1 all the input work is transfered to the sample and not recovered upon unloading, the process is fully asymmetric. With mammalian cells, typical values of D l are > 0.3 for prestressed cells with high rigidity stress fibers, with less adherent unwalled cells, larger values of D l can be encountered [START_REF] Rebelo | [END_REF] . If dissipation or loss of mechanical work is involved, the coefficient D l increases with the scan velocity. With single yeast cell compression, as will be shown further in next sections, the fact that D l values remain in the interval 0.1 to 0.2 and that D l changes little with the scan velocity is a strong evidence that in the small deformation regime the yeast cells behave as quasireversible systems, with little loss of the mechanical work.

Results

Force curve decomposition

The force curves, collected from yeast cells with typical diameter 4-6µm, are quite different from those observed on larger eukaryote cells, not simply because they have a wall driven by internal turgescence but also because they do not use focal adhesion machineries and are more sensitive to solutes and metabolites intercell exchanges 45 . The ability of yeast cells to adapt to osmotic or mechanical stress is also dependent on the available source of carbon 46 . The careful observation of the force curve derivatives (Fig. 4(b-f)) show that they do not follow simple powerlaws and that standard pressurized shell models (including or not turgescence) are not relevant for fitting. Such difficulties were originally discussed by Oliver and Pharr 47 and more recently reported in 22 with illustrations on AFM indentations of Lolium multiflorum cells (walled plant cells) and PDMS layers. Bonilla and co-authors 22 proposed an original theoretical framework for a multi-regime analysis (MRA) which uses a general multi-resistor mechanical system for fitting the experimental data. Definitely, standard methods, based on predefined power laws (related to cell and indenter geometries) that we developed for living cells in the past decade shows limitations for yeast cell compression with flat cantilevers 7,42,43,[48][49][START_REF] Laperrousaz | AIP Conference Proceedings[END_REF][START_REF] Milani | [END_REF] . However, we take advantage here of our previous expertise on multi-scale analysis for computing force derivatives and, based on analytical argumentations, we generalize the MRA approach 22 to design models of minimal dimension that reproduces fairly well the force curves.

If we come back to Fig. 4, we observe two regimes in these corrected force curves, a first regime with a fast increase of the force derivative, corresponding to a greater curvature of F(δ ) and a second regime with a slower increase of the force derivative. Rarely, we could observe that dF/dδ converges to a horizontal plateau. Interestingly, the correction of the force curves (Eqs (1) (2) and (3)) does not cancel completely this slowing down (Fig. 4(b,d)), the force derivative remains much below the cantilever stiffness. There must be another mechanism, hopefully due to the cell wall, which produces this change during the compression process. We use the maxima of d 2 F/dδ 2 to identify numerically these transitions points (filled colored disks in Fig. 4). The value of the first derivative of the force at this transition point corresponds to a turnover tension undergone by the cell wall before switching to a second compression regime. We will call this quantity an effective surface tension. At larger deformation, beyond this transition, different mechanisms can contribute to the 11)). (d) log 10 F vs log 10 δ . (e) α eq (δ ) computed from linear fitting the ratio F(δ )/(dF/dδ ). (f) α eq (δ ) computed from loglog fitting F(δ ). Scan velocity 1µm/s. The points corresponding to the local maxima of α eq (δ ) and d 2 F/dδ 2 are reported with red stars and blue circles respectively. slowing down of the force derivative increase; (i) a local distension of the wall fibers producing a shear thining of the wall, (ii) a perfusion of liquid out of the cell that could deflate progressively the cell and decrease its internal pressure (poro-elasticity of the cell wall). All these processes occur beyond a given deformation, which however remains below the wall thickness typical value (100 to 150 nm). The position of this transition δ T will be used together with the force derivative dF/dδ | δ T as mechanical markers for these cells. Noticeably, these experiments were performed in the very small deformation limit, purposely to avoid any large scale rupture and to keep the cells alive. We define dF/dδ | δ T as an effective tension of the cell wall at which this switch occurs.

Identification of scaling exponents from force curves

The log(F) versus log(δ ) plot shown in Fig. 5(d) highlights the mechanical transition suggested in previous section. Clearly, it is necessary to characterize the local slopes of these curves and their change with the deformation variable δ . Assuming that the force scales in a finite range of δ as: F(δ ) ∝ δ α eq , then the local derivative of F should scale as dF/dδ ∝ α eq δ α eq -1 , which gives a simple scaling law for F/(dF/dδ ):

F/(dF/dδ ) = α -1 eq δ . ( 10 
)
It can be easily deduced that:

α eq = (dF/dδ )δ /F . ( 11 
)
We have therefore two possibilities for computing the local exponent α eq , (i) fitting the log(F) versus log(δ ) curves or (ii) fitting F/(dF/dδ ) versus δ curves. Both methods were tested in parallel. The second representation offers the advantage to perform a linear fit with equally spaced δ data points, giving the same weight to all the points. For the log(F) versus log(δ ) fits, we had to perform an interpolation of the log δ points to get them equally spaced.

If there exists a range of scale in which the force curve F(δ ) scales with a single exponent, as suggested by the experimental bi-logarithmic force curves (Fig. 5(d)), we should get this exponent value with either of these fitting procedures. However, comparing the α eq (δ ) plots obtained with these two methods (Fig. 5(e,f)), we observe that the bilogarithmic fits give much more noisy estimations than the F(δ )/(dF/dδ ) ratio. This discrepancy comes from the difficulty of selecting homogeneously distributed log(δ ) intervals for the bilogarithmic fit, since the δ points are not equally spaced. The curve interpolation to fill the empty intervals with points implies systematically more uncertainty on the local slope estimation. Note also that dF/dδ is computed through the wavelet transform filtering (Eq. ( 6)) which smooths the computation of F/(dF/dδ ).

We will therefore prefer the extraction method based on the F(δ )/(dF/dδ ) ratio for its greater robustness in the sequel. The shape of α eq (δ ) is very interesting, since it highlights the fact that α eq is not constant; in a first stage α eq increases sharply from 1 and reaches a plateau (more or less flattened) and in a second stage it decreases more softly. α eq (δ ) is asymmetric, the two regimes which are involved before and after the transition are therefore expected to be of different nature. We note δ α m the abscissa are which α eq (δ ) is maximum. It can be estimated from each force curve, in Fig. 5(e), its position is marked by red stars on the 5 consecutive force curves recorded from the same cell with the same scan velocity (1µm/s). The local maxima of d 2 F/dδ 2 , δ T are also marked by blue circles. These two transition points seem to differ in this example.

Looking for the origin of the transition point in the compression experiments

Surprisingly the force curves captured from these compression experiments are very different from the theoretical predictions which can be found in previously published works as will be briefly reported below.

If the yeast cells were made of plain and homogeneous material, the compression force would be expressed from the Hertz theory as:

F(δ ) = 4E 3(1 -ν 2 ) R 0 δ 2 3/2 = 4E 3(1 -ν 2 ) R 2 0 δ 2R 0 3/2 , ( 12 
)
R 0 is the radius of the sphere before compression, ν is the Poisson coefficient, E is the Young modulus. ε = δ /(2R 0 ) is the relative deformation of the sphere. The scaling exponent α eq would be 3/2. Except in the very first part of the compression where α eq (δ ) increases from 1 to α m , in a very limited interval of δ values, this scaling does not appear in our measures. At the very beginning of the compression (for δ 10nm), the force curves could perharps be approximated by Eq. ( 12) and a 'small-regime' Young modulus could be estimated. At larger compression this approximation is no longer valid.

The implication of different regimes was mentioned quite early for spherical shallow shells compression. When the compression force is radially localized and points inwards two regimes were suggested by Landau and Liftzhitz [START_REF] Landau | Theory of Elasticity[END_REF] and formalized by Pogorelov [START_REF] Pogorelov | [END_REF] . Pogorelov demonstrated that when the force is small, the deformation is localized near the point of application and grows linearly with the force, whereas when the force is large, a circular fold around the point of application appears and the displacement becomes quadradic with the applied force (buckling of the shell). The transition between the two regimes is continuous [START_REF] Audoly | Elasticity and Geometry: From Hair Curls to the Non-linear Response of Shells[END_REF] :

F ∼ Eh 2 R 0 δ , for δ h , F ∼ Eh 5/2 R 0 δ 1/2 , for δ h . ( 13 
)
More recently, Lulevich and co-authors 17 proposed another model for microcapsule deformation that includes two contributions respectively an elastic stretching energy and a bending energy. They did not consider the limit where buckling may be involved. They modelled the deformation of microcapsules (radius R 0 ) with solid spheres (R S ), and obtained the total reaction force (load) for R S R 0 :

F(ε) = λ B Eε 1/2 + λ S Eε 3 , (14) 
where the two prefactors

λ b = π 2 √ 2
h 2 for the bending energy and λ S = 4πhR 0 for the stretching energy, with h is the thickness of the microcapsule, E its Young modulus, ε its relative deformation ε = δ /(2R 0 ) scaled by the radius of the microcapsule with no dimension, δ being the total compression displacement.

Eq. ( 14) provides a quantitative argumentation for the change of the scaling exponent which could be produced by two mechanical components placed in parallel (we will come back to this aspect in the next sections). Importantly, this calculation is correct only in the limit of ε 1, for the smaller ε values the 1/2 scaling exponent should be observed, whereas for larger deformations the scaling exponent 3 should be expected. The ε co value corresponding to the cross-over ε co of these two regimes is estimated from the relation:

ε co = (1 -ν)h 2 √ 2R 0 2/5 . ( 15 
)
Lately, Vella and coauthors proposed another modelling for pressurized (including turgor pressure) spherical shell compression [19][20][21] , based on nonlinear equations of shallow shell theory [START_REF] Ventsel | Thin Plates and Shells: Theory, Analysis, and Applications[END_REF] . They demonstrated both formally and numerically that the force versus deformation crosses over between two limit regimes, both with exponent 1:

F ∼ k 1 δ , for δ h , F ∼ k 2 δ , for δ h , (16) 
with k 1 π pR 0 / log(2τ), k 2 π pR 0 , τ = 1 2 3(1ν 2 )pR 2 0 /(Eh 2 ), p the pressure drop. Amazingly, their calculation suggests that in the intermediate regime the effective exponent α is no longer 1, we conclude that it must make a nonlinear incursion between these two limits. This model is actually proposing the closest representation of our experimental configuration, because not only it considers planar compression but it also includes the pressurization of the shell. It would be interesting to compute from their simulated data the α eq introduced here and to compare with our experimental estimations.

We have pointed out three types of models, a model (Eq. ( 12)) with a constant exponent, a model with two exponents giving the force as the sum of two power laws (Eq. ( 14)) and two models with two limit regimes with a different effective scaling exponent at very small deformation than at large deformation (Eqs ( 13) and ( 16)). We propose here simple models constructed by the combination of two mechanical components. Two configurations are considered, a system with two components in series (Fig. 6(a)) and a system with two components placed in parallel (Fig. 6(b)).

Association of two standard elastic elements

Parallel association

The 'parallel' system involves two mechanical components placed in parallel (Fig. 6(b)). Each element follows a generalized stressto-strain relation. We have:

F 1 = R 1 δ 1,0 α 1 , F 2 = R 2 δ 2,0 α 2 , F = F 1 + F 2 , δ = δ 1 = δ 2 . ( 17 
)
F is the compression force, R 1 and R 2 are scaling factors with the dimension of forces, 1,0 and 2,0 are scaling lengths, δ 1 and δ 2 are the displacement of each component. δ i = 0 when F = 0. We have introduced factors R i and i,0 , i = 1, 2 for each component, not only to keep the homogeneity of Eqs ( 17) whatever the exponents α 1 and α 2 , but also to introduce the characteristic size and strength of each component.

The computation of dF/dδ is immediate: α eq introduced in Eq. ( 11) can be computed as:

dF dδ = dF 1 dδ + dF 2 dδ = α 1 δ F 1 + α 2 δ F 2 . ( 18 
)
α eq = α 1 F 1 + α 2 F 2 F 1 + F 2 = α 1 + α 2 F 2 /F 1 1 + F 2 /F 1 . ( 19 
)
Given that

F 2 F 1 = R 2 ( 1,0 ) α 1 R 1 ( 2,0 ) α 2 δ α 2 -α 1 = Aδ α 2 -α 1 with A = R 2 ( 1,0 ) α 1 R 1 ( 2,0 ) α 2 , (20) 
we obtain:

α eq = α 1 + Aα 2 δ α 2 -α 1 1 + Aδ α 2 -α 1 . (21) 
If we assume that 1 ≤ α 1 < α 2 , from Eq. ( 21) we get the limit values:

lim δ →0 (α eq ) = α 1 and lim δ →+∞ (α eq ) = α 2 . ( 22 
)
With the parallel association of two mechanical components, α eq increases monotonously from the smallest exponent (α 1 ) to the largest one (α 2 ) (see Fig. 7(d)).

Series association

The 'series' system is the sum of two mechanical components placed in series (Fig. 6(a)). The generalized stress-to-strain relations are:

F 1 = R 1 δ 1 1,0 α 1 F 2 = R 2 δ 2 2,0 α 2 F = F 1 = F 2 , δ = δ 1 + δ 2 (23) 
The parameters R 1 , R 2 , 1,0 and 2,0 are defined as above for the parallel model. F is the compression force.

From Eqs (23), we compute the total displacement δ and the derivative of the force dF/dδ :

δ = δ 1 + δ 2 = 1,0 F R 1 1/α 1 + 2,0 F R 2 1/α 2 . ( 24 
)
and

dF dδ = F/ 1,0 α 1 F R 1 1/α 1 + 2,0 α 2 F R 2 1/α 2 (25) 
α eq can then be computed from Eq. ( 10):

δ α eq = F dF dδ = δ 1 α 1 + δ 2 α 2 , (26) 
If we replace δ 1 = δδ 2 , we get the relation:

1 α eq = 1 α 1 + δ 2 δ 1 α 2 - 1 α 1 . ( 27 
)
It is possible in that case of series association to express δ 2 /δ in function of F:

δ 2 δ = 2,0 F R 2 1/α 2 1,0 F R 1 1/α 1 + 2,0 F R 2 1/α 2 , ( 28 
)
or equivalently

δ 2 δ = 1 1 + 1,0 2,0 1 R 1 1/α 1 1 R 2 -1/α 2 F (1/α 1 -1/α 2 ) . ( 29 
)
Assuming that 1 ≤ α 1 < α 2 , then 1 ≥ 1/α 1 > 1/α 2 ; or 1/α 1 -1/α 2 ≥ 0. We can calculate the following limits:

If F → 0 then δ 2 δ → 1 and 1 
α eq → 1 α 2 , (30) 
If F → +∞ then δ 2 δ → 0 and 1

α eq → 1 α 1 . ( 31 
)
We observe in the exemple of Fig. 8(d) that α eq decreases monotonously from the largest exponent (here α 2 ) to the smallest one (α 1 ). With the series mechanical model of Eq. ( 23), this decrease of α eq is observed for any couple of exponents (α 1 , α 2 ). We can conclude that this model cannot either reproduce the bell shape of α eq extracted from the experiments (such as those of Fig. 5(e)).

Self-canceling component

The previous parallel and series two mechanical component systems are not adequate for reproducing the experimental α eq curves. We were therefore interested in a component that could not be deformed beyond a thickness h (we take h = 30 nm as exemple in Fig. 9). In other words, when the displacement δ gets close to the value h, the force diverges and the corresponding mechanical component no longer deforms:

F(δ ) = R δ 0 α 1 h -δ , for δ < h . ( 32 
)
Mathematically speaking F can be expressed in the sense of distributions as:

F(δ ) = F δ 0 α 1 h -δ [H(δ ) -H(δ -h)] , (33) 
where H(δ ) is the Heaviside function. This expression is more rigorous from a mathematical point of view, particularly with regard to discontinuity points of the function δ and/or its successive derivatives (δ = 0, δ = h). However, its use leads to more complex calculations, especially with its successive derivatives and with its logarithm, which require Cauchy principal values (see chap. 4 of [START_REF] Tenoudji | Analog and Digital Signal Analysis: From Basics to Applications[END_REF] ). We will therefore restrict the following calculations to the case where δ ∈]0, h[, for the sake of simplicity. The first derivative of F reads:

dF dδ = αh + (1 -α)δ (h -δ )δ F . (34) 
From Eq. ( 11), we get the relation for α eq :

α eq = αh + (1 -α)δ h -δ . ( 35 
)
and for the limits at the edges of the interval ]0, h[

lim δ →h - (α eq ) = +∞ , lim δ →0 + (α eq ) = α . ( 36 
)
We observe that the plot of α eq versus δ 1 in Fig. 9(d) diverges when δ → h -, in the same way as F(δ ) and dF/dδ (δ ). This selfcancelling mechanical component is particularly interesting in a formal aspect since if we place it in series with another component, after a given deformation its should no longer contribute to the mechanical response, whereas if we place it in parallel with another component it should impede a further compression for the whole mechanical association. In the first case, it 'disappears' from the response and in the second case it monopolizes the mechanical response. We analyse these two situations in the next sections.

Self-canceling element in parallel

We consider first the association in parallel of a self-cancelling element with a standard nonlinear elastic mechanical component (Fig. 10). We replace the first relation of Eq. ( 17) by a selfcancelling element and we get:

F 1 (δ 1 ) = R 1 δ 1 1,0 α 1 1 h-δ 1 , for 0 < δ 1 < h , F 2 (δ 2 ) = R 2 δ 2 2,0 α 2 , for 0 ≤ δ 2 , F = F 1 + F 2 , δ = δ 1 = δ 2 . ( 37 
)
The derivative dF/dδ can be easily deduced:

dF dδ = dF 1 dδ + dF 2 dδ = α 1 h + (1 -α 1 )δ (h -δ ) F 1 δ + α 2 F 2 δ . ( 38 
)
As above, from Eq. ( 11), α eq can be obtained:

α eq = dF dδ δ F = α 1 h+(1-α 1 )δ (h-δ ) F 1 + α 2 F 2 F 1 + F 2 . ( 39 
)
Given that Previous Eq. ( 39) can be written:

F 2 F 1 = Aδ α 2 -α 1 (h -δ ) with A = R 2 ( 1,0 ) α 1 R 1 ( 2,0 ) α 2 , ( 40 
)
α eq = (α 1 + δ h-δ ) + Aα 2 δ α 2 -α 1 (h -δ ) 1 + Aδ α 2 -α 1 (h -δ ) . ( 41 
)
Assuming that 1 ≤ α 1 < α 2 , (α 2α 1 ) > 0, we can easily calculate the following limits:

lim δ →h - (α eq ) = +∞ and lim δ →0 + (α eq ) = α 1 . (42) 
α eq increases monotonously from the smallest exponent (here α 1 ) to infinity when δ tends to h.

We then examine the value of δ , noted δ α 2 for which α eq = α 2 . From Eq. ( 41), we can deduce:

α 1 + δ α 2 h -δ α 2 = α 2 , (43) 
leading to

δ α 2 = (α 2 -α 1 )h 1 + α 2 -α 1 . ( 44 
)
In Fig. 10, F, dF/dδ , log 10 (F) and α eq are plotted as function of

δ for δ ∈]0, 30[. If h = 30 nm, δ = δ α 2 = 11.25 nm, α eq = α 2 = 1.8.
When two components are associated in parallel, the total displacement is dictated by the stiffer one, in particular if one of the component no longer deforms (such as the self-cancelling component) the whole system will not either. This association of a self-cancelling element with a nonlinear elastic one in parallel cannot reproduce what has been observed in the compression experiments on single yeast cells.

Self-canceling element in series

We consider now the association in series of a self-cancelling element with a standard nonlinear elastic mechanical component. We replace the first relation of Eq. ( 23) by a self-cancelling element and we get:

F 1 (δ 1 ) = R 1 δ 1 1,0 α 1 1 h-δ 1 , for δ 1 < h F 2 (δ 2 ) = R 2 δ 2 2,0 α 2 , for 0 ≤ δ 2 , F = F 1 = F 2 , δ = δ 1 + δ 2 . ( 45 
)
The first derivatives of F reads:

dF dδ 1 = R 1 α 1 1,0 δ α 1 -1 1 (α 1 h + (1 -α 1 )δ 1 ) (h -δ 1 ) 2 = α 1 δ 1 + 1 (h -δ 1 ) F (46) and dF dδ 2 = R 2 α 2 2,0 α 2 δ α 2 -1 2 = α 2 δ 2 F . ( 47 
)
From Eq. ( 11) and previous Eqs ( 46) and ( 47), we can obtain:

α eq = δ F dF dδ = δ 1 + δ 2 δ 1 α 1 +δ 1 /(h-δ 1 ) + δ 2 α 2 , ( 48 
)
with δ = δ 1 + δ 2 , δ 1 ≤ h.
Importantly, in the limit of δ → +∞ h, δ 1 is bounded by h and

δ = δ 1 + δ 2 . It corresponds to δ 2 → +∞, then α eq ∼ δ 2 δ 2 /α 2 = α 2 . Therefore α eq → α 2 when δ → +∞, independently of α 2 > α 1 or α 2 < α 1 .
The limit for δ → 0, δ 1 h and δ 1 h-δ 1 "small", as compared to α 1 :

α eq ∼ δ 1 + δ 2 δ 1 α 1 + δ 2 α 2 = 1 + δ 2 δ 1 1 α 1 + δ 2 α 2 δ 1 . ( 49 
)
In the limit δ → 0, either δ 2 /δ 1 → 0 and then α eq → α 1 or δ 1 /δ 2 → 0 and then α eq → α 2 . The transition regime is obtained for intermediate values of δ 1 becomes close to h and δ = δ 1 + δ 2 > h remains finite, we can write δ 1 = h(1ξ ) with ξ 1 and δ = δ 1 + δ 2 = hhξ + δ 2 . From Eq. ( 48) we get:

α eq = h -hξ + δ 2 h(1-ξ ) α 1 +(1-ξ )/ξ + δ 2 α 2 ∼ α 2 δ δ -h when ξ → 0 . ( 50 
)
It can be noted that when δ → h + (δ 1 ∼ h and δ 2 → 0 + ), α eq increases rapidly.

In Fig. 11 we use α 1 = 1.2 and α 2 = 1.8, as with previous twomechanical component systems. With the introduction of the selfcancelling element, we observe a similar behavior as the one observed on experimental force curves. The local exponent α eq (δ ) goes through a maximum value α m for δ α m , and the position of this maximum is not precisely h but is slightly larger than h. Again this is only an exemple for which we have chosen realistic values for α 1 , α 2 and h. The asymmetry of the α eq (δ ) curves is well reproduced also, and from the range of δ values reported here we may anticipate that it will converge to the exponent α 2 of the sublayer (2). We can also conclude that the fact that one of the layer introduces a strong nonlinearity in the compression response of the whole system that we would never obtain by a simple combination of standard power-law mechanical components. The real situation is probably more complex than what we have described in Eq. ( 45), however it highlights the possibility to use these compression measures not only to validate the existence of mechanical sublayers of the yeast wall with very different behaviors but also the requirement that one of the layer could undergo a drastic change in its response, leading to highly nonlinear behavior, where its original scaling law would break. The scale of the transition phenomena observed in our AFM experiments could correspond the compression limit value of this outer layer of the yeast wall.

Similitude of α eq (δ ) and d 2 F/dδ 2 curves

In most force curves that were recorded during AFM compression of single yeast cells we have observed that the local maximum of α eq (δ ) seems to correspond also to a local maximum of d 2 F/dδ 2 (see Figs 5(b) and 12(e,f)). Remarkably, this transition occurs in the quasi-majority of AFM compression experiments of yeast cells with flat cantilevers, independently of culture media and scan velocities. The fact that the curvature of the first order derivative of the force changes from positive below ∼ 50 nm to negative above (Fig. 12(b)) corresponds to a local maximum of d 2 F/dδ 2 (Fig. 12(d)). We conclude from our observations that the two points δ T and δ α m (corresponding respectively to a local maxima of d 2 F/dδ 2 (δ ) and α eq (δ )) can be considered as similar and that we can choose either methods (second derivative of the force or computation of α eq (δ ) curve) to identify them from the force curves. A more rigorous demonstration of this similarity will α eq (δ ) computed from linear fitting the ratio F(δ )/(dF/dδ ). (f) Comparison of the averaged α eq (δ ) (blue line) and d 2 F/dδ 2 (orange line) curves. Scan velocities (5 force curves for each): 500 nm/s (green lines), 1000 nm/s (read lines) and 5000 nm/s (blue lines). The averaged curves are plotted with thick orange lines in (b), (d) and (e). The points corresponding to the local maxima of α eq (δ ) and d 2 F/dδ 2 are reported with red stars and black circles respectively.

be given in a future publication. Fig. 12(f) compares the profiles α eq (panel (e)) and the second derivative of the force d 2 F/dδ 2 (panel (d)) as functions of δ for the same experiment as that shown in Fig. 5, for three different scan velocities (500, 1000 and 5000 nm/s). We observe that the detection of the local maxima of d 2 F/dδ 2 (δ ) is strongly impaired and biased by the fluctuations produced by the derivation method combined to the intrinsic data noise, the black empty circles (maxima of d 2 F/dδ 2 (δ )) are systematically slightly larger than the red stars (maxima of α eq (δ )) in Fig. 12(e).

Importantly, we note that the shape of these α eq (δ ) curves does not change much with the scan velocity, which allows us to average these curves to minimize the noisy fluctuations. These averages are plotted with thicker orange lines in Fig. 12(e) for α eq (δ ) and 12(d) for d 2 F/dδ 2 (δ ) and assembled in a same plot in Fig. 12(f). In the following section devoted to the reconstruction of statistical distributions from AFM experiments, we concentrate on the α eq (δ ) curves, averaged for a group of velocities [500, 1000 and 5000 nm/s]. The difficulty is to identify correctly the maxima of α eq (δ ) remains, even if averaging α eq (δ ) curves recorded for different velocity diminished the fluctuations. To solve this issue, we introduce an analytical function Φ(δ ) that facilitates this identification (dashed black line plotted in Fig. 12(e)). The definition and illustration of Φ(δ ) can be found in the electronic supplementary information (EIS) file † : section 1.1: Modeling and fitting α eq (δ ) curves. This function Φ(δ ) is a sum of two well documented functions f (δ ) and g(δ ) and is used as a support for the local maximum of α eq identification; it is not intended here to bear any mechanical signification. The black dashed line of Fig. 12(e) is computed by fitting the average α eq (δ ) curve (thick orange line) with Φ(δ ). The local maximum is then estimated numerically from the fitted function Φ(δ ). Once the δ position δ α m corresponding to the maximum of α eq has been estimated, δ α m and α m value are stored, and the corresponding force derivative dF/dδ | α m is interpolated from the average curve dF/dδ as function of δ and stored. These three parameters are joined to the dissipation loss coefficient D l for each cell. Finally, we group the experiments depending on the culture media carbon source and the stage of the growth and we reconstruct probability distributions from them in the next section.

Statistical distributions of the mechanical parameters

We need to stress the difficulty of the experimental investigations which have been reported in this work. The long-term cultures are not straightforward, such very long experiments were difficult to perform without encountering unpredictable perturbations (spoilage of the samples by environmental agents, temperature drifts of the room air conditioning, temperature instabilities, tubing leaks, evaporation, contamination, loss of computer coupling with the system camera). Given that all these proliferations required a preliminary day for the preculture, the overall duration of one run could reach about 100 h. The AFM measures are also very much time consuming, since the collection of force curves could not be automatized since cells sometime escaped from the cantilever. The yeast cells are very small, much smaller that most eukaryotic cells which are usually characterized mechanically with this nano-mechanical tool. AFM has a very high sensitivity and can therefore capture even minute perturbations. The yeast cells are not adherent cells, their rounded shape makes their adhesion to a sticky layer more unstable, the experiments which were performed a low velocity (100 nm/s) often implied a small drift or a rocking of the cells, that we could not analyze properly. This work focused on the compression of yeast cells globally and they needed to keep sufficiently steady at their position to allow the measurements. The valid measures were not directly identifiable from a visual inspection of recorded signals but only after calibration and analysis. This may explain that to collect two full experimental runs for each carbon source, at least four runs for each condition were necessary.

We collect in Figs 13 to 15 the δ α m , α m , dF/dδ α m and D l distributions from the AFM compression experiments that were performed in three different growth media, respectively SMMGLU with glucose as carbon source (Fig. 13), SSMGAL with galactose as carbon source (Figs. 14) and SMMLAC with lactate carbon source (Fig. 15). We also provide in Figs. S2 to S7 all the data points which have been collected from the six experimental runs from which were constructed Figs 13, 14 and 15, and their respective positions in the proliferation curves (panels (i) of Figs S2 to S7). To group the AFM series depending on the stage of proliferation, we analyzed the proliferation curves and their derivatives with standard theoretical growth models such as Verhulst, Gompertz or rational fractions 26 .

Interestingly, the occurrence of a maximum of α, that we have highlighted in previous sections is observed independently of the source of carbon, it is therefore a very general characteristic of the yeast cell response to compression at low compression depth. δ α m corresponding to the maximum values α m remains in the interval from 60 nm to 100 nm. The values of the exponent α m do not look as normal and narrow distributions with means of integer or a simple rational value (such as 1, 2 or 3/2 for exemple). We realize that they can change a lot from cells to cells and depending on the culture medium. However, we observe that statistically, the greater α m values occur preferentially for larger δ α m and larger dF/δ α m . If we consider that this increase of α eq during the first part of the compression experiment corresponds to the self-cancelling of one part of the cell wall with reaches its compression limit, we could conclude that the stiffer cells with the largest effective tension could sustain greater compression forces. However, it is important to note that the range of δ α m values rarely extends beyond 100 nm, as if another deformation mechanism (the compression of the second sublayer for instance) would be systematically involved to release the mechanical stress and reverse the increase of the exponent α eq .

Glucose as source of carbon

Fig. 13 collects the mechanical parameters with glucose carbon source on the three different proliferation stages (exponential, intermediate and stationary (final) growth). The number of cells tested in the first exponential stage ( 29) is much smaller that the two other stages (69 and 103), we note that the corresponding probability distribution functions for δ α m , α m and D l are sparser in Fig. 13(a,d,j). We can however bring an important conclusion from the analysis of compression force curves in glucose based medium. As growth progresses, the effective tension dF/dδ α m distribution shifts to larger values, suggesting that the outer layer of the cell wall becomes more rigid. On the opposite the distribution range of δ α m does not change much, suggesting that if there is a reinforcement of the outer layer it would rather be a strengthening of the constituting fibers and not a thickening. We also note that the α m values are spread over the whole interval from 2 to 3. The dissipation coefficient D l remains in the interval 0.1 to 0.2 and does not vary much with the growth stage. Similar observations will also be done with other carbon sources. This means that all these experiments, given the scan velocities which have been worked with, address principally cell elasticity, the differences of the approach and retract force curves are not sufficient to be considered as relevant, the slight discrepancy between approach and retract curves could also be observed when performing the compression on glass surfaces. A combination of electronic (a delay in the curves upon reversal), hydrodynamic (damping effects on the cantilever depending on the direction of scan) or adhesion mechanisms may contribute to this slight difference.

Galactose as source of carbon

We switch now to the AFM compression experiments performed on single yeast cells grown with galactose as source of carbon (see Fig. 14). Without surprise, the distribution of δ α m values are rather similar to those obtained with glucose as carbon source and except for the first stage, they keep in the range from 50 to 100 nm. Interestingly, we must note that the range of δ α m values seems more restricted in the interval 50 to 75 nm. With galactose we observe that the distribution of α m values changes during the growth, in the first stage we have two separate groups of α m values (∼ 1.8 and ∼ 2.6), in the intermediate stage this separation is no longer visible, the α m values being spread in the 2 to 3 interval and finally in the stationary stage the α m is limited to the 2.5 to 3 interval. These experiments suggest that with galactose carbon source, the role of 'self-canceling' of the outer layer is enhanced as growth proceed. The shift of α m values from stage II to stage III is accompanied by weaker increase of the range of dF/dδ α m values. With galactose, the outer layer fibers are only slightly reinforced in stages II and III, contrarily to what was observed with glucose carbon source. The probability distributions of the dissipative loss D l remain in the range of 0.1 to 0.2, pointing again to the elastic character of the yeast walls. We nevertheless remark that the probability distributions of D l values are sparser and wider in stage II.

Clearly, from the distributions of α m and dF/dδ α m , we can again follow the progression of the cell across the three proliferation stages. With galactose as carbon source it seems that the α m exponent is changed more noticeably, meaning that the self-cancelling effect would be amplified with galactose. This could be explained by a modification of the fiber stratification or composition the wall, which would change the nonlinear exponent α corresponding to the outer wall layer.

Lactate as source of carbon

Finally, we report in Fig. 15 AFM experiments performed with lactate carbon source. We note that the range of δ α m values remains in the 50 to 100 nm interval, as for the other carbon sources. More interestingly, we note a slight increase of α m from the stage I to the stage II, and the fact that α m remain closer to 2.5 in stages II and III. Could this be interpreted by the fact that the outer layer mechanics does not evolve further after stage II? This also seems to be conforted by the probability distributions of dF/dδ α m which are restricted to the range 1 to 1.3. With lactate carbon source, these observations could lead to the conclusion that the composition of the outer layer of the wall would make it softer, and that the strength of this layer would not be reinforced during the growth progression. We note also that the probability distributions of D l values not only keep in the interval 0.1 but get narrower.

Discussion -Conclusion

The bi-component mechanical models that we have proposed here provided a quite satisfactory support for explaining which mechanism could produce the force curves that were recorded during compression of isolated yeast cells by flat cantilever. An element that plays a key-role with that respect is what we have called a 'self-cancelling' element, that describes a highly nonlinear and sudden change close to a given distance (h). Other mathematical forms could have been proposed, we do not argue that this formal model is mechanically relevant, but that it can reproduce in mathematical sense what occurs in the experiments. Definitely there is a regime transition during the compression that can be interpreted as a gradient in the composition and/or the structure of the cell wall. We do not have the possibility to perform further microscopic characterization of the yeast cell walls and we hope that our demonstration will stimulate other works.

A theoretical aspect that we choose not to discuss in detail here because it would have demanded much more mathematical and technical development concern the possibility to model the cell wall as a mechanical component with continuously varying mechanical parameters, for example with R(δ ) or α(δ ) forms. These functions are not simple constructions since they question the foundations of the convolution integrals, with mechanical kernels that would no longer be invariant with the deformation (Volterra's integrals). Since we limited our experiment to very small deformations we consider that our hypothesis of kernel invariance is correct. The advantage of the model which are proposed here is that they could be implemented on computers to extract the parameters R i , i,0 of each component and use them to compare different mutants of yeast through the mechanical properties of their wall.

We want also to discuss some links of these mechanical evidences with yeast cell metabolism and its implication in the cell wall biosynthesis with different carbon sources. To help the reader follow our discussion we reproduce in the ESI file † Fig. S2 all the proliferation curves recorded in parallel with the AFM experiments with the three different carbon sources. Knowing the composition of the cell wall and its multilayer structure is essential to interpret our measures. β -1,3 glucan-chitin complex is the major constituent of the inner wall. The minor component chitin contributes to the insolubility of the fibers. The minority branched β -1,6 glucans link the components of the inner and outer walls. On the outer surface of the wall we find essentially mannoproteins, which are extensively O and N glycosylated. They are densely packed and limit wall permeability to solutes. However, they are not strongly crosslinked as other glucan based polymers of the wall and give the outer layer of the cell wall a greater plasticity or deformability. The existence of this external mannoproteins layer could validates our hypothesis of a self-cancelling layer to interpret the shape of the AFM force curves.

The β -glucans that represent about 60% of the cell wall mass, serve as reinforcement of wall and can reach density up to 3.72 g/L. The biosynthesis of β -glucans has been shown to vary with of the growth media, especially with pH and glucose content [START_REF] Utama | [END_REF]58 . In particular, when yeast cells encounter high osmotic pressure, the β -glucan biosynthesis is strengthened and as a result, the wall may also be reinforced mechanically.

Yeast cell growth relies on an impressive mechanical machinery of the wall. These cells can support plastic deformations above a given stress threshold, involving plastic components that would allow much larger deformations upon stress 59 . More importantly, depending of their stage of growth, yeast cell walls may get thiner and softer to facilitate their local expansion. Even if this softening is limited to small fraction of the wall area, when compressing these cells these zones will likely be prone to plastic deformation and failure. These processes have been previously suggested 5 , actually, by endowing their weaker and softer wall components the ability to fluidize, yeast cells could become more resilient in critical environments. It has also previously been reported that the yeast wall structure and dynamics (mechanical behavior) change with the growth conditions, and in particular with its carbon source based metabolism. Depending on the carbon source, different mechanisms for ATP production are involved, their mass production efficiency changes, together with the rate of carbon source consumption. The faster system is obtained with glucose carbon source, then galactose and finally lactate. With glucose and galactose we observe a clear transition phase between the exponential and the stationary stages where dN/dt ∼ C cst (see Fig. S2 of the supplementary ESI file † ). Amazingly, the proliferation rate is much larger for glucose in the first stage and it is followed by a much longer transition phase than for galactose. In other words, the ratio of the transition phase duration over exponential phase duration is much shorter for the galactose source of carbon.

We conclude from the experiments with glucose carbon source that the rigidity of the yeast cell wall increases during the proliferation process, from exponential to transition and finally to stationary stages. Our study also reveals that the probability distributions of dF/δ α m do not simply drift in time, but rather that a finite percentage of the cell population acquire more rigid walls. If we could run this experiment for weeks we would perhaps reveal other populations with walls of even greater stiffness. The batch culture that was used in this experiment was chosen in purpose, such that the growth would encounter a progressive depletion of the initial carbon source and would switch from fermentation to respiratory metabolism. The diauxic shift occurs when glucose concentration decreases from the medium and when the cells switch progressively to respiratory metabolism. During post-diauxic phase (called transition phase here in more general terms), the growth slows down whereas the cells still produce biomass with respiration. Cells enter the stationary phase when other nonfermentable carbon sources are also depleted. When the cells progress to the stationary phase, it was shown previously that their wall become thicker and less porous, in outer layer mannoproteins which envelop the glucan polysaccharide matrix exhibit altered N-glycolysation and contain increased numbers of disulfide bridges 60,61 . These previous experimental studies of the yeast wall transformation during its starving transition to a stationary phase are not contradictory with our observations, since the disulfide bridges would stiffen the outer layer of the cell wall.

With galactose carbon, even if we find some similitude with glucose carbon source, the fact that α m increases more markedly than with glucose means that the glucan and mannoprotein stratification or cross-links in the cells wall could change during the growth progression. It was reported in previous literature data 58 that yeast from galactose cultures were less sensible to lytic enzyme (zymolyases) and that this resistance would be rather linked to an increased level of β -1,6-glucans. Whereas the mechanical strength and cohesion of the cell wall is mainly due to β -1,3glucan, the β -1,6-glucan matrix has a different role. Noticeably, the carbon source galastose is also composed of six carbon atoms, but cannot directly enter glycolysis without being converted to a derivative of glucose by the galactokinase enzyme (Leloir path-way) 62 . Whereas UDP-glucose transporter is necessary for β -1,6 glucan synthesis, it was shown that S. cerevisiae has also a UDP-Gal transporter 63 , since α-galactose residues were found on the cell surface. However, upon galactose starvation, the cells do not perform a diauxic shift.

Lactate has a very different role than glucose or galactose because it is a non-fermentable carbon source, in particular in regards to the hexose phosphates required for cell wall biosynthesis. These hexose phosphate must therefore be generated by the inverse process of glycolysis, by gluconeogenesis, which is a more energetically demanding process. The rate of growth is clearly reduced and moreover, less carbon source can be dedicated to cell wall biosynthesis with lactate carbon source, giving a thinner cell wall with a simpler architecture (less reinforcement by β -1,3glucan crosslinkings in particular). It was demonstrated on Candida albican that when glucose is replaced by lactate this small organism produces thinner cell walls with a composition in βglucan and chitin dramatically reduced 64 . The fact that the probability distributions of dF/dδ α m are narrower with lactate carbon source could corroborate a weaker variability of the composition of the cell wall when grown with lactate carbon source. The narrowness of the D l probability distribution is another confirmation of a simplification of the cell wall structure.

Remarkably, among the different biomacromolecules that constitute the cell wall, the β 1-3-glucans are the major β -glucans (85%) that constitute about 50% of the cell wall biomass, they are much longer and confer its elasticity and tensile strength of the inner part of the cell wall. The β 1-6-glucans which are in monority have however a central role in cross-linking β 1-3glucans together. Their are also connected to mannoproteins and chitin fibers. They form a backbone network that serves as anchorage points for the other constituents of the cell wall. Changes occurring in cell wall nanomechanical properties, such as cell surface stiffness, could rather be explained on the nature and complexity of the crosslinkings between β 1-6-glucans, mannans and chitin 30,[65][66][67] , rather than simply from the percentage of each of these polymers.

Finally, our traditional mechanistic view of yeast cells, which assumes that given a very rigorous and reproducible experimental protocol, we would get similar experimental response, happens to be incorrect and is strongly challenged nowadays. Not only multicellular organisms record the whole historical events they have encountered during the different life stage, but single cell organisms prove also to have history-dependent behavior [68][69][70] . One of them is well known among microbiologists, it is the phenomenon known as lag phase, which is a time delay that settles at the beginning of proliferation assays and delays the initiation of the exponential phase. In the work on S cerevisiae, Cerelus and co-authors 68 have shown that switching from one carbon source to another back and forth was not giving reproducible lag times. We also observed very different lag times even when the culture conditions were apparently the same (to the best of our experimental mastering), perhaps because we could not consider the whole history of the cells. These evidences point the question of transgenerational cellular inheritance, and is mostly important from both fundamental and practical issues, since industrial fer-mentation assays are elaborated on microorganism mixtures and transmitted between users. This would imply that on the mean or long term the mechanical properties of the cells would also change with their historical evolution. This interrogates ourselves seriously how we analyze the experiments and the models that we can construct. The statistical distributions that we reported were constructed assuming that the mechanical parameters changed during the growth progression, however we considered that all the experiments performed in strictly the same conditions and evolution time could be pooled and that all the cells selected from a given experiment followed the same metabolic regulation, which is probably inexact. Therefore this work paves the way for improving further the mathematical formalism that we have proposed, as we already suggested in the beginning of this section, to include memory effects in the mechanical kernels or scaling law exponents.

Fig. 1

 1 Fig. 1 (a) Temporal evolution of the yeast culture biomass N(t) in different culture media at room temperature (23 o C). (b) Derivative dN/dt of the biomass. (MMSGLU: red lines, MMSGAL: blue lines, MMSLAC: green lines).

Fig. 2

 2 Fig. 2 (a) Schematic of a tipless AFM cantilever in contact with a sphere (lateral view). Given the cantilever tilt angle (θ = 10 • ), good yeast cell candidates with typical diameter of ∼ 5µm must be close enough (typically < 28µm) from the cantilever edge. (b) Force curves on a flat glass surface. Red lines: loading scans, green lines: unloading scans. Scan velocity: 1 µm/s. (c) Image of the tipless AFM cantilever with yeast cells immobilized on a roughened glass plate coated with a poly-L-Lysine layer. (scale bar: 20µm). (d) zoom of (c) highlighting in red the yeast cell underneath the cantilever.

Fig. 3

 3 Fig. 3 (a) Force curves F(Z) recorded on a yeast cell with a tipless cantilever. (b) dF/dZ: Derivative of the force curves shown in (a). (c) d 2 F/dZ 2 : Second order derivative of the force curves shown in (a). The derivatives in (b) and (c) were computed from wavelet transforms of F(Z), using different Gaussian mother wavelet widths w o (see text): 14nm for the first derivative, 24.8nm for the second derivative. Red lines: loading scans, green lines: unloading scans. The color and black dots correspond to contact (Z c red), end (Z e green) and unload (Z u black) points. Scan velocity: 1µm/s. Black lines: loading scans on glass.

Fig. 4

 4 Fig. 4 Illustration of the correction of the force curves with the cantilever deflection. Two sets of force curves collected on two different cells of the same batch, with the same source of carbon (glucose) are shown in the two column panels. (a,d) F(Z) (red line) and its correction F(δ ) (blue line). (b,e) dF(Z)/dZ (red line) and its correction dF(δ )/dδ (blue line). (c,f) d 2 F(Z)/dZ 2 (red line) and its correction d 2 F(δ )/dδ 2 (blue line). Black lines: cantilever reference force curves recorded on glass. d 2 F(Z)/dZ 2 maxima are marked with filled disks. Scan velocity: 5µm/s.

Fig. 5

 5 Fig. 5 Extraction of the α eq exponent values from force curves. (a) Force curves F(δ ), after correction for cantilever deflexion. (b) dF/dδ . (c) Ratio F(δ )/(dF/dδ ) (Eq. (11)). (d) log 10 F vs log 10 δ . (e) α eq (δ ) computed from linear fitting the ratio F(δ )/(dF/dδ ). (f) α eq (δ ) computed from loglog fitting F(δ ). Scan velocity 1µm/s. The points corresponding to the local maxima of α eq (δ ) and d 2 F/dδ 2 are reported with red stars and blue circles respectively.

Fig. 6

 6 Fig. 6 Schematic of the system with two mechanical components (1) and (2) in series (a) and in parallel (b).

Fig. 7

 7 Fig. 7 Force curves predicted by the parallel model Eq. (17). We take α 1 = 1.2, R 1 = 8, 1,0 = 5, and α 2 = 1.8, R 2 = 0.08, 2,0 = 1, to mimick what is observed in experimental force curves. (a) Force displacement curves. (b) Derivatives of the force curves. (c) Force displacement curves in log-log scales. (d) α eq (δ ) curve computed from the local slope of (c). black lines: component (1), blue lines: component (2), red lines: sum of components.

J o u rFig. 8

 8 Fig. 8 Force curves predicted by series model Eq. (23). We take α 1 = 1.2, R 1 = 8, 1,0 = 5, and α 2 = 1.8, R 2 = 0.08, 2,0 = 1, to mimick what is observed in experimental force curves. (a) Force displacement curves. (b) Derivatives of the force curves. (c) Force displacement curves in log-log scales. (d) α eq (δ ) curve computed from the local slope of (c). black lines: component (1), blue lines: component (2), red lines: sum of components.

Fig. 9

 9 Fig. 9 Force curves computed for a single self-cancelling component Eq. (32). α = 1.2, R = 8, 0 = 5, h = 30. (a) Force displacement curves. (b) Derivatives of the force curves. (c) Force displacement curves in log-log scales. (d) α eq (δ ) curve computed from Eq. (35) (black line) and from the local slope of (c) (red dashed line).

Fig. 10

 10 Fig. 10 Force curves computed for a parallel association of a selfcancelling component and a nonlinear elastic component Eq. (37). α 1 = 1.2, R 1 = 8, 1,0 = 5 (black lines) and α 2 = 1.8, R 2 = 0.08, 2,0 = 1 (blue lines). (a) Force displacement curves. (b) Derivatives of the force curves. (c) Force displacement curves in log-log scales. (d) α eq (δ ) curve computed from Eq. (39) (green dotted line) and from the local slope of (c) (red line).

Fig. 11

 11 Fig. 11 Force curves computed for a series association of a self-cancelling component and a nonlinear elastic component Eq. (45). α 1 = 1.2, R 1 = 8, 1,0 = 5 (black lines) and α 2 = 1.8, R 2 = 0.08, 2,0 = 1 (red lines), h = 30 nm. (a) Force displacement curves. (b) Derivatives of the force curves. (c) Force displacement curves in log-log scales. (d) α eq (δ ) curve computed from Eq. (48) (green dotted line) and from the local slope of (c) (red line).

Fig. 12

 12 Fig. 12 Analyzing the change of the power law exponent α eq with parameter δ . (a) Corrected force curves F(δ ). (b) dF/dδ . (c) Ratio F(δ )/(dF/dδ ). (d) Second derivative of the force curve d 2 F/dδ 2 . (e)α eq (δ ) computed from linear fitting the ratio F(δ )/(dF/dδ ). (f) Comparison of the averaged α eq (δ ) (blue line) and d 2 F/dδ 2 (orange line) curves. Scan velocities (5 force curves for each): 500 nm/s (green lines), 1000 nm/s (read lines) and 5000 nm/s (blue lines). The averaged curves are plotted with thick orange lines in (b), (d) and (e). The points corresponding to the local maxima of α eq (δ ) and d 2 F/dδ 2 are reported with red stars and black circles respectively.

Fig. 13 Fig. 14

 1314 Fig. 13 Probability density functions reconstructed from the four parameters shown in Fig. S2 and S3 of ESI file † with glucose as carbon source and at different stages of proliferation. (a,b,c) PDFs of δ αm . (d,e,f) PDFs of α m . (g,h,i) PDFs of dF/dδ αm . (j,k,l) PDFs of D l . The three stages of the proliferation are distinguished in columns I (29 cells), II (69 cells), III (103 cells) (respectively exponential, intermediate and stationary).

Fig. 15

 15 Fig. 15 Probability density functions reconstructed from the four parameters shown in Fig. S6 and S7 of ESI file † with lactate as carbon source and at different stages of proliferation. (a,b,c) PDFs of δ αm . (d,e,f) PDFs of α m . (g,h,i) PDFs of dF/dδ αm . (j,k,l) PDFs of D l . The three stages of the proliferation are distinguished in columns I (103 cells), II (72 cells), III (25 cells) (respectively exponential, intermediate and stationary).
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