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Control of wave propagation using periodic structures

[Celli and Gonella, 2015]

... to design waveguides

with resonators for long wavelengths / low frequencies

with Bragg effects for medium wavelengths / frequencies

... to design seismic protections (with resonators)

[Palermo et al., 2016]

... and more (negative effective properties, cloaking ...)

How to obtain desired properties ?

Known design (cylinders, spheres, cones, Lego bricks ...) =⇒ parameter optimization
[Huang et al., 2016, Palermo et al., 2016] ...

Given materials, unknown design =⇒ topological optimization
[Vonďrejc et al., 2017, Kook and Jensen, 2017, Allaire and Yamada, 2018] ...

This work: long wavelengths, no resonances, “toolbox” to address topological optimization of
periodic materials.
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A motivation : dispersion and anisotropy in 2D elasticity [Rosi and Auffray, 2019]

`

λc
� 1

`

λc
≈

1

6
Effective (strain-gradient) model.

Optimized effective model =⇒ “de-homogenization” ?
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Strategy : optimization using an intermediate effective model

Microstructured medium (1) Effective model (2) Optimized microstructure

1

m = (ρ, µ)

λ

Unit cell Y

ℓ

meff =

(ρ0,µ0,ρ2,µ2)

0.0 0.5 1.0
0.0

0.5

1.0
3 × 3 unit cells

(1) Homogenization process:

Double-scale expansions

Cell problems to capture the microstructural effects

FFT-based solvers to address these problems

(2) Optimization tools:

Cost functionals based on effective properties

Topological sensitivity to drive updating steps

Level-set representation and iterative algorithm
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Outline

1 Introduction

2 Optimization for scalar waves in bi-periodic media
Second-order homogenization, cell problems, FFT-based solver
Optimization problem, cost functional, topological sensitivity
Level-set algorithm on a first example
Examples : anisotropic dispersion optimization and data fitting

3 Microstructured interface optimization
Effective model, cell/band problems and FFT-based solver
Optimization problem, topological sensitivity
Examples

4 Key ideas and perspectives
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Second-order homogenization: two-scale expansion
[Sanchez-Palencia, 1974, Bensoussan et al., 1978, Cioranescu and Donato, 1999] ...

1

m = (ρ, µ)

λ

Unit cell Y

ℓ

Antiplane shear waves:

ρ

(
X

`

)
∂2u`(X, t)

∂t2
−∇ ·

[
µ

(
X

`

)
∇u`(X, t)

]
= 0

(ρ, µ): Y -periodic density and shear modulus

Long-wavelength assumption: ε = `/λ� 1

“Slow” and “fast” variable: x = X/λ and
y = X/` = x/ε

Double scale dependency: u`(X, t)→ û(x,y; t)
(Y -periodic in y)

Differential operator split:
∇X → λ−1(∇x + ε−1∇y)

Ansatz: û(x,y; t) =
∑
j≥0

εjuj(x,y; t)

Cascade of equations for the uj , separated variables solution:

u0(x,y; t) = U0(x; t),

u1(x,y; t) = U1(x; t) + P 1(y)·∇U0(x; t),

u2(x,y; t) = U2(x; t) + P 1(y)·∇U1(x; t) + P 2(y) :∇2U0(x; t),

Macroscopic fields Uj

Cell functions:
P 1 = (P

(1)
1 , P

(2)
1 )

P 2 = (P
(11)
2 , P

(12)
2 , P

(22)
2 )
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Cell problems and FFT-based algorithms

Classical RVE problem for P 1:∣∣∣∣∣∣∣∣∣
∇ · S0 = 0 in Y,

S0 = µ(∇P 1 + I)

P 1 is Y -periodic,

〈P 1〉 = 0,

Second cell problem for P 2:∣∣∣∣∣∣∣∣∣
∇ · S1 + [S0 − (ρ/%0)µ0] = 0 in Y,

S1 = µ(∇P 2 +I ⊗ P 1)

P 2 is Y -periodic,

〈P 2〉 = 0,

With:

{
%0 = 〈ρ〉 = mean of ρ on Y

µ0 = 〈S0〉 = 〈µ(I + ∇P 1)〉sym.

Numerical strategy: Fourier-based approach

Regular grid of pixels for the discretisation of (ρ, µ).

(P 1,P 2) discretised on a Fourier basis.

Iterative solvers relying on Fast Fourier Transforms (FFT) to go back and forth between
space and wavenumbers domains.

Original “basic scheme” by [Moulinec and Suquet, 1995], many other schemes since then
[Schneider, 2021].
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Examples for a circular inclusion

µinc/µmat = 6, ρinc/ρmat = 1.5, 256× 256 pixels
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Second-order homogenization: effective wave equation
[Andrianov et al., 2008, Wautier and Guzina, 2015, Bonnet et al., 2018]

Mean field equations:

O(1) : %0∂ttU0 −∇ · (µ0 ·∇U0) = 0,

∣∣∣∣∣ %0 = 〈ρ〉
µ0 = 〈µ(∇P 1 +I)〉sym

O(ε) : %0∂ttU1 −∇ · (µ0 ·∇U1) = 0,

∣∣∣∣∣ Vanishing first-order

contribution (for 1D and antiplane 2D)

O(ε2) :
%0∂ttU2 −∇ · (µ0 ·∇U2)

+%2 : ∇2∂ttU0 − µ2 :: ∇4U0 = 0,

∣∣∣∣∣∣∣
%2 = 〈ρP 2〉

µ2 =

[
%2

%0
⊗ µ0

]
sym

+M(P 1,P 2)

Effective wave equation for the macroscopic field U = U0 + εU1 + ε2U2:[
%0 + ε2%2 :∇2

]∂2U

∂t2
−∇ ·

[[
µ0 + ε2µ2 : ∇2

]
·∇U

]
= 0

Second-order displacement approximation: (coming back to y = x/ε)

u`(x, t) ≈ U(x, t) + εP 1

(x
ε

)
·∇U(x, t) + ε2P 2

(x
ε

)
:∇2U(x, t)

For elastodynamics: C. Boutin, J.L. Auriault. Rayleigh scattering in elastic composite materials.

International Journal of Engineering Science, Elsevier, 1993
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Effective dispersion (and anisotropy)

Plane wave mean field U(x, t) = exp [i(kd · x− ωt)] =⇒ dispersion relation ω = ω(k,d).

Phase velocity for the second-order homogenized model:

c(k,d) =
ω(k,d)

k
= c0(d)︸ ︷︷ ︸

limit velocity

+ ∆c(k,d)︸ ︷︷ ︸
dispersion

= c0(d) +
1

2

γ(d)

c0(d)
(kε)2 + o

(
(kε)2

)
as kε→ 0

c0(d) =

√
µ0

%0
: (d⊗ d) and γ(d) =

[
%2 ⊗ µ0 − %0µ2

(%0)2

]
:: (d⊗ d⊗ d⊗ d)

ρ = 1
µ = 1

ρ = 1
µ = 1

ρ = 1.2
µ = 7

ρ = 1.2
µ = 7

c0(d) ≈ 1.55 (isotropic) 0 0.5 1 1.5 2
-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

0

: Bloch-Floquet
: Homogenization

` = 1 :
`

λ
∈
[
0,

1

3

]
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Cost functionals and optimization problem
Cost functionals: evaluate the medium performance through its effective properties:

J (m) = J(meff) here:

{
m = (ρ(y), µ(y)), y ∈ Y

meff = (%0,µ0,%2,µ2) (or c0(d), γ(d))

Optimization problem

Find mopt that minimizes J (m).

With the dependencies m→ cell problems→meff → J(meff) = J (m)

Extremal effective properties:

J (m) =
1

2

[
γ(d+)

]−2

(to maximize the dispersion in direction d+)

Fitting “target” data: (e.g. phase velocity)

J (m) =
1

2

Nk∑
i=1

Nd∑
j=1

|ceff(ki,dj)− ctarget
ij |2

General strategy:

Constraints and parametrization of m, e.g. piecewise uniform materials

Iterative “material update” algorithms

m(n+1) = m(n) + ∆m(n) such that J (m(n+1)) < J (m(n))

Main tool: sensitivity of J to a material update ∆m to choose a “good” ∆m(n).
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Parameter and shape sensitivities – Examples

[Vonďrejc et al., 2017]: High-contrast bulk periodic medium, band-gap optimization,
B-spline parametrization of inclusion boundary
=⇒ Parameters: positions of control points.

[Allaire et al., 2019] (P. Geoffroy-Donders): Elastic media, static optimization, chosen unit cell
=⇒ Parameters (fields): geometrical parameters (m1,m2), cell orientation α
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Topological sensitivity of a cost functional
[Sokolowski and Zochowski, 1999, Garreau et al., 2001, Amstutz, 2011, Bonnet et al., 2018] . . .

b

Ba(z) =z+aB

a

(∆µ,∆ρ)

1
ℓ

Unit cell Y Inclusion

z

Localized phase change in the unit cell: m→ma = m+ χBa∆m

Expansion of J : J (ma) = J (m) + a2DJ + o(a2) as a→ 0

DJ (m;z;B,∆µ,∆ρ): topological sensitivity (or gradient, or derivative) of J .

If DJ (z) < 0, then J (ma) < J (m) and therefore z is a good choice for a phase change !

Chain rule for J (m) = J(meff):

DJ =
∂J

∂meff
Dmeff

For meff = (%0,µ0,%2,µ2), Dmeff computed in [Bonnet et al., 2018].
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One tools, two functionalities
Asymptotic approximations of perturbed quantities:

b

Ba(z) =z+aB

a(µ(y), ρ(y))

(∆µ,∆ρ)
1

f(ma) ≈ f(m) + a2Df(m;z,B,∆m) for any function f of m

Indicator function / “map” to find interesting points z:

Also used as an imaging function in qualitative inverse scattering e.g. [Tokmashev et al., 2013]
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Topological derivatives of effective properties, polarization tensor

The topological derivatives are [Bonnet et al., 2018, Cornaggia and Bellis, 2020] :

%0 = 〈ρ〉 ⇒ D%0 = |B|∆ρ,
µ0 = 〈S0〉 = 〈µ(I + ∇P 1)〉 ⇒ Dµ0 = (I + ∇P 1(z)) ·A · (I + ∇P 1(z)),

=
1

µ2(z)
S0(z) ·A · S0(z)

D%2 = (ugly) Dµ2 = (even uglier)

All depend on (i) the cell solutions at perturbation point P j(z) (or Sj(z)),
(ii) the polarization tensor A(z) = A(B, µ(z),∆µ)

Polarization tensor A :

used in [Cedio-Fengya et al., 1998, Ammari and Kang, 2007]... in similar context,

also called localization or concentration tensor, related to Eshelby and Hill tensors in
elasticity/micromechanics [Eshelby, 1957, Parnell, 2016],

symmetric,

known analytically for elliptic shapes of semiaxes lengths (1,γ), and directions (n1,n2):

Aellipse(µ(z),∆µ) = πγ(γ + 1)
∆µ

µ(z)

 n1 ⊗ n1

1 + γ + γ ∆µ
µ(z)

+
n2 ⊗ n2

1 + γ + ∆µ
µ(z)

 .
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Fast computation of approximate homogenized coefficients
Reference “chessboard” unit cell with µ ∈ [1, 2].
Ellipsoidal inclusion with

I center z = (0.25, 0.25)
I axes (a, 0.2a), with a < 0.25
I stiffness contrast ∆µ = 1

Error in O(a4) instead of a priori expected O(a3): it should be the case for any centrally
symmetric inclusion [Bonnet, 2008].

Rémi Cornaggia Topological optimization 06/2023 17 / 58



Outline

1 Introduction

2 Optimization for scalar waves in bi-periodic media
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Pixel-by-pixel two-directions optimization

Directions of interest d− = e1 (horizontal), d+ = e2 (vertical).

J (ρ, µ) =
1

2

[[
γ(d−)

]2
+

1[
γ(d+)

]2
]

Two-phase unit cell: Y = Y1 ∪ Y2, with:
I material ratios ρ2 = 2ρ1 and µ2 = 2µ1 ⇒ uniform wavespeed
I equal phase ratio: |Y1| = |Y2|

Pixel-by-pixel update step:

While (min
Y1

DJ + min
Y2

DJ ) < 0, exchange the two pixels where the minima are reached
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Pixel-by-pixel two-directions optimization - cost functional and dispersions

0 50 100 150 200 250

104

105

106

107

Cost functional value

0 50 100 150 200 250

0.0150

0.0125

0.0100

0.0075

0.0050

0.0025

0.0000

1
2

Computational remarks:

241 iterations

1205 cell and adjoint cell problems i.e. 2892 scalar cell problems on a 32× 32 grid

Moulinec-Suquet FFT method (tolerance on relative residual error: 10−8) implemented
using Python.

=⇒ ≈ 15-20s on a (good) laptop.

Rémi Cornaggia Topological optimization 06/2023 20 / 58



Level-set representation and projection algorithm
[Amstutz and Andrä, 2006, Amstutz, 2011]

Material distribution at iteration n represented by a level-set
function ψn:

(?)

{
ψn > 0 in Y1

ψn < 0 in Y2
and ‖ψn‖L2(Y ) = 1

Signed and normalized TD DJ :

DJ :=

{
DJ /‖DJ ‖L2(Y ) in Y1

−DJ /‖DJ ‖L2(Y ) in Y2

so that ‖DJ ‖L2(Y ) = 1

(Wikipedia)

Optimality condition: If DJ satisfies the sign condition (?) then DJ (z) > 0 ∀z ∈ Y
then J reached a local minimum

Update of ψ by projection onto DJ :

ψn+1 = anψ
n + bnDJ (ψn)

(an, bn) are chosen so that ‖ψn+1‖L2(Y ) = 1 and J (ψn+1) < J (ψn)
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Two-directions optimization by projection algorithm
(with phase ratio constraint |Y1| = |Y2|)

0.0 0.5 1.0
0.0

0.5

1.0
Unit Cell, it. 0

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.5 1.0
0.0

0.5

1.0
J, it. 0

0.08

0.06

0.04

0.02

0.00

0.02

0.04

0.0 0.5 1.0
0.0

0.5

1.0
Unit Cell, it. 1

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.5 1.0
0.0

0.5

1.0
J, it. 1

0.05

0.04

0.03

0.02

0.01

0.00

0.01

0.02

0.03

0.0 0.5 1.0
0.0

0.5

1.0
Unit Cell, it. 2

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.5 1.0
0.0

0.5

1.0
J, it. 2

0.05

0.04

0.03

0.02

0.01

0.00

0.01

0.02

0.03

0.0 0.5 1.0
0.0

0.5

1.0
Unit Cell, it. 3

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.5 1.0
0.0

0.5

1.0
J, it. 3

0.05

0.04

0.03

0.02

0.01

0.00

0.01

0.02

0.03
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One-by-one pixels vs level-set
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One-by-one pixels vs level-set
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Maximizing horizontal and vertical and minimizing diagonal dispersions

Recall : c(k,d) = c0(d) +
1

2
(k`)2 γ(d)

c0(d)
+ o

(
(k`)2

)
Cost functional:

J4d =
1

2

2∑
j=1

(
γ(dj)

c0(dj)

)−2

+
1

2

4∑
j=3

10

(
γ(dj)

c0(dj)

)2

dj = (cos θj , sin θj), θ1,2 = 0, 90◦, θ3,4 = ±45◦

Material ratios: µ2/µ1 = 6 and ρ2/ρ1 = 1.5 0.0 0.5 1.0
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Other initializations with the same result

Initial cell Final cell Dispersion indicator
γ(d)

c0(d)
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Initializations leading to sub-optimal results

Initial cell Final cell Dispersion indicator
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Bloch-Floquet analysis of the optimal unit cell

Γ X

M

k2π

`

Fit of the optimal inclusion by a quartic curve.

Finite element meshing using FreeFem++ [Hecht, 2012, Laude, 2015]

Computation of the first two Bloch frequencies in the reduced
Brillouin zone.

M X M
0

0.2

0.4

0.6

0.8

1

1.2

1.4
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Fitting an objective anisotropic phase velocity cobj

Goal: fitting phase velocity:

cobj(kp,dj) = cobj
0 (dj) + ∆cobj(kp,dj), p = 1..Nk, j = 1..Nθ

Quasistatic and dispersive least-square cost functionals:

J stat =
1

2

Nθ∑
j=1

[
c0(dj)− cobj

0 (dj)
]2
, J dyn =

1

2

Nθ∑
j=1

Nk∑
p=1

[
∆c(kp,dj)−∆cobj(kp,dj)

]2
Weighted total cost functional:

J = αJ stat + J dyn

Example: chessboard reconstruction

ρ = 1
µ = 1

ρ = 1
µ = 1

ρ = 1.2
µ = 7

ρ = 1.2
µ = 7 Data and constraints:

cobj = cchess (Floquet-Bloch, Nθ = 7, Nk = 10)

Exact material ratios

Exact phase ratio |Y1| = |Y2| = 1/2
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Chessboard reconstruction from phase velocity data

α = 0 (J = J dyn)
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Chessboard reconstruction from phase velocity data

α = 0.1
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Chessboard reconstruction from phase velocity data

α = 0.2
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Microstructred interfaces and effective transmission conditions

Frequency domain [Marigo et al., 2017]

k` = 0.5 ⇒ `/λ ≈ 0.08

Time domain, rigid inclusions
[Lombard et al., 2017]

Multiple frequency signal ⇒ `/λ ∈ [0.1, 0.6]

Is it possible to attenuate or enhance the transmitted wave in some specific direction ?
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An example from [Noguchi and Yamada, 2021b]

Noguchi, Y. & Yamada, T. Topology optimization of acoustic metasurfaces by using a two-scale

homogenization method Applied Mathematical Modelling, 2021
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Optimization based on an effective model

Periodic interfaces Effective transmission conditions Optimized microstructure

1

m = (ρ, µ)

λ

ℓ

Unit band Y∞

b`

meff = (B,C,S)

(1) Homogenization process toward effective transmission conditions:

Double-scale expansions and matched asymptotics

Band problems to capture the microstructural effects

FFT-based solvers to address these problems

(2) Optimization strategy:

Cost functionals based on effective transmission properties

Topological sensitivity to drive updating steps

Level-set representation, regularization and iterative algorithm

Initialisation with optimal elliptic inclusions.
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Effective transmission conditions [Marigo et al., 2017, Lombard et al., 2017]

1

m = (ρ, µ)

λ

ℓ

Unit band Y∞

Antiplane shear waves:

ρ

(
X

`

)
∂2u`(X, t)

∂t2
−∇·

[
µ

(
X

`

)
∇u`(X, t)

]
= 0

(ρ, µ): density and shear modulus, 1-periodic along
the interface

Long-wavelength assumption: ε = `/λ� 1

Double scale dependency and matched asymptotic
expansions.

b`

meff = (B,C,S)

Effective model for macroscopic fields (V,S):∣∣∣∣∣∣∣∣∣∣∣∣∣

ρm
∂V

∂t
= ∇ · S |X1| >

b`

2
∂S

∂t
= µm∇V |X1| >

b`

2

JV Kb` = `B · 〈∇V 〉b`
JS1Kb` = `S 〈∇ · S〉b` − `C · 〈∇S2〉b`

Effective parameters computed from Φ, solution of a band problem on Y∞.
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Band problem

b

µ = 1 µ(y) µ = 1

Original problem in infinite band:
(normalized “fast” coordinate y = x/`)∣∣∣∣∣∣∣∣

∇ · (µ [I + ∇Φ]) = 0 in Y∞

Φ is periodic in the y2 variable

lim
y1→±∞

∇Φ = 0

Computations in artificially bounded domain: Effective coefficients [Marigo et al., 2017]

B = lim
y1→+∞

Φ− lim
y1→−∞

Φ + f(b)

C =

∫
Y∞

µ(y)∂2Φ(y) dy + g(b, µ)

S = h(b, ρ)
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Reformulation as a cell problem [Cornaggia et al., 2022]

b

µ = 1 µ(y) µ = 1

Original problem in infinite band:∣∣∣∣∣∣∣∣
∇ · (µ [I + ∇Φ]) = 0 in Y∞

Φ is periodic in the y2 variable

lim
y1→±∞

∇Φ = 0

b

DtN DtN

Equivalent cell problem:∣∣∣∣∣∣∣
∇ · (µ [I + ∇Φ]) = 0 in Yb

Φ is periodic in the y2 variable

∂nΦ (±b/2, ·) = Λ [Φ (±b/2, ·)]

Λ: Dirichlet-to-Neumann (DtN) operator.
(B,C) have expressions implying only integrals on Yb

Numerical strategy: decomposition Φ = Φper + Φbound (periodic + corrector)

Λ and Φbound have an explicit expression in Fourier basis.

Φper satisfies ∇ · (µ [I + ∇Φbound + ∇Φper]) = 0
=⇒ iterative FFT-based solvers [Moulinec and Suquet, 1995]

Rémi Cornaggia Topological optimization 06/2023 41 / 58



Examples for an elliptic inclusion

µinc/µmat = 6, 129×129 pixels:
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Cost functionals and optimization problem
Cost functionals: evaluate the medium performance through its effective properties:

J (m) = J(meff) here:

{
m = (ρ(y), µ(y)), y ∈ Yb

meff = (B,C,S)

Examples : cost functionnals on effective reflexion and transmission coefficients for incident
direction θI :

J(meff) = F (R(meff , θI), T (meff , θI))

Optimization problem

Find mopt that minimizes J (m).

With the dependencies m→ cell problems→meff → J(meff) = J (m)

General strategy:

Constraints and parametrization of m, e.g. piecewise uniform materials

Iterative “material update” algorithms

m(n+1) = m(n) + ∆m(n) such that J
(
m(n+1)

)
< J

(
m(n)

)
Main tool: sensitivity of J to a material update ∆m to choose a “good” ∆m(n).
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Topological sensitivity of a cost functional
[Sokolowski and Zochowski, 1999, Garreau et al., 2001, Amstutz, 2011, Bonnet et al., 2018] . . .

z

a

(∆µ,∆ρ)

Ba = z + aB

Localized phase change in the cell: m→ma = m+ χBa∆m

Expansion of J : J (ma) = J (m) + a2DJ + o(a2) as a→ 0

DJ (m;z;B,∆µ,∆ρ): topological sensitivity (or gradient, or derivative) of J .

If DJ (z) < 0, then J (ma) < J (m) and therefore z is a good choice for a phase change !

Chain rule for J (m) = J(meff):

DJ =
∂J

∂meff
Dmeff

=⇒ Need to compute (DB,DC,DS)
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Example : topological derivative of S

z

a

(∆µ,∆ρ)

Ba = z + aB

By definition : ∣∣∣∣∣∣∣∣
S = b+

ρi − ρm

ρm
|Ωi|

Sa = b+
ρi − ρm

ρm
|Ωi|+

∆ρ

ρm
|Ba|

Exact expansion:

Sa = S + a2 ∆ρ

ρm
|B|︸ ︷︷ ︸
DS

Here DS does not depend on z nor on the shape B (not the general case).
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Topological derivatives

The topological derivatives are (see [Touboul, PhD thesis, Chap. 4, 2021]) :

DS(m,z,B,∆m) =
∆ρ

ρm
|B|,

DB(m,z,B,∆m) = −(∇Φ1(z) + e1) ·A(z) · (∇Φ(z) + I),

DC(m,z,B,∆m) = (∇Φ2(z) + e2) ·A(z) · (∇Φ(z) + I).

depend on

the cell solution gradient at perturbation point ∇Φ(z),

the polarization tensor A(z) = A(B, µ(z),∆µ)
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Numerical validation
Leading-order approximation of homogenized coefficients e.g.

Ba = B + a2DB(z) + o(a2)

Computation of relative error e.g. :∣∣B1,a − [B1 + a2DB1]
∣∣

|B1,a|

(should be o(a2), expected at least O(a3))

-0.5 0 0.5

-0.5

0

0.5

x

z

0.15 0.2 0.25
10-6

10-4

10-2

=⇒ Error in O(a4) and < 15% (even for “big” perturbations a = 0.25)
(term in a3 vanishes, should be true for any centrally-symmetric shape B [Bonnet, 2009])
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Approximative effective coefficients for elliptic inclusions

Particular case: one inclusion Ba in an homogeneous cell (Φ = 0)

S = b+a2 ∆ρ

ρm
|B|, B1 = b−a2A11 +o(a2), B2 = −a2A12 +o(a2), C2 = b+a2A22 +o(a2).

Analytical expressions when A is known

Example : ellipse tilted at 40◦, semi-axes (a, 0.2 a):

-0.5 0 0.5
-0.5

0

0.5

0.2 0.25 0.3 0.35 0.4 0.45 0.5
10-6

10-4

10-2

Case a = 0.5 Relative error : < 15% for a ≤ 0.5
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A first test [Touboul, Ph.D. Thesis, 2021 (Chap. 4)]

Goal : minimization of the effective reflexion coefficient R for an incident angle θI = π/4
I Define R(meff , θI) with meff = (B,C,S)
I Compute the sensibilities (DB,DC,DS)

Two-phase material: (1) matrix and (2) inclusion.

Volume constraint on inclusion phase Y2 in the unit cell: VC = 0.6

Perimiter penalization following [Amstutz, 2013] to get smooth final configurations

J = |R|2 + λ

(
|Y2|
VC
− 1

)2

+αperPer(Y2) (λ: iteratively chosen weight)

Initial unit cell Final unit cell with perimeter penalization Microstructure
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Attenuated scattered field

Numerical experiments : for a pulse emitted at a source point, measure the energy of the
scattered field by the interface:

“Attenuated direction” linked to the effective transmission coefficient T computed for a
plane wave with wavenumber k and incident angle θI:

T (θI) = 1 + i(k`)T1(meff , θI) +O((k`)2)

“Attenuated direction” at θmin when T1(meff , θI) changes sign at θI = θmin.

Main cost functional:

Jmain(meff) =

(
T1(meff , θmin)

∂θT1(meff , θmin)

)2

with ∂θT1 =
∂T1
∂θI
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Results for θmin = 0, VC = 0.2, perimeter penalisation

Initialisations:

ellipse at 45◦

Random distribution

“Optimal” ellipse
(almost) analytical
optimisation based on
approximative meff
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Performances for for θmin = 0, VC = 0.2

Niter V end J init. J end Jmain init. Jmain end
ellipse 103 0.15 1.21 2.24 · 10−1 9.72 · 10−1 1.4 · 10−2

random 82 0.16 5.23 · 103 1.93 · 10−1 5.23 · 103 7.2 · 10−3

optimal ellipse 60 0.14 1.02 · 10−1 6.76 · 10−2 3.61 · 10−1 2.1 · 10−3
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Results for θmin = π/4, VC = 0.3, perimeter penalisation

Initialisations:

ellipse at 45◦

Random distribution

“Optimal” ellipse
(almost) analytical
optimisation based on
approximative meff
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Performances for θmin = π/4, VC = 0.3 :

Niter V end J init. J end Jmain init. Jmain end
ellipse 49 0.30 1.51 2.84 · 10−2 1.40 9.72 · 10−5

random 52 0.24 2.03 · 10−1 1.35 · 10−1 2.11 · 10−4 7.99 · 10−4

optimal ellipse 28 0.28 6.27 · 10−2 2.96 · 10−2 3.30 · 10−3 8.76 · 10−5
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Key ideas

A topological optimization procedure is proposed, combining
I Effective models obtained via two-scale asymptotic homogenization
I FFT-based algorithms to solve cell problems
I Topological derivatives to propose initialisations and guide the updating steps
I Level-set projection algorithm (with volume and perimeter constraints)

The procedure is applied to various cost functionals to achieve
I Maximization of dispersion in given directions
I “De-homogenization” of a chessboard from phase velocity data.
I Attenuation of scattered energy in chosen direction.

Perspectives / ongoing

Time-domain simulations of waves in the designed materials

Extensions to other other physics and regimes:
1. Elasticity: links with strain/stress gradient models [Auffray et al., 2015, Rosi and Auffray, 2019].
2. High frequencies [Craster et al., 2010, Guzina et al., 2019] to optimize band-gaps ...
3. Resonant interfaces with high-contrast inclusions [Pham et al., 2017, Touboul et al., 2020]
4. Graded / quasi-periodic interfaces [Noguchi and Yamada, 2021a, Pham et al., 2023]

Improve the optimization algorithm
I Couple shape and topological derivative [Allaire et al., 2005, Amstutz et al., 2018]
I Use optimized FFT solvers ⇒ go to 3D
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Thank you for your attention !
And thanks to Bruno, Bojan, all lecturers and CISM for this fantastic school !
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Rémi Cornaggia, Cédric Bellis

International Journal for Numerical Methods in Engineering, 2020

FFT-based computation of homogenized interface parameters
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Rémi Cornaggia Topological optimization 06/2023 58 / 58



SIAM Journal on Applied Mathematics, 78(4):2057–2082.

Cedio-Fengya, D. J., Moskow, S., and Vogelius, M. S. (1998).

Identification of conductivity imperfections of small diameter by

boundary measurements. continuous dependence and

computational reconstruction.

Inverse Problems, 14(3):553.

Celli, P. and Gonella, S. (2015).

Manipulating waves with lego bricks: A versatile experimental

platform for metamaterial architectures.

Applied Physics Letters, 107(8).

Cioranescu, D. and Donato, P. (1999).

An introduction to homogenization, volume 17 of Oxford Lecture

Series in Mathematics and its Applications.

Oxford University Press.

Cornaggia, R. and Bellis, C. (2020).

Tuning effective dynamical properties of periodic media by

FFT-accelerated topological optimization.

International Journal for Numerical Methods in Engineering,

121(14):3178–3205.

Cornaggia, R., Touboul, M., and Bellis, C. (2022).

FFT-based computation of homogenized interface parameters.
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