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Key ideas and perspectives

A motivation : dispersion and anisotropy in 2D elasticity [START_REF] Rosi | Continuum modelling of frequency dependent acoustic beam focusing and steering in hexagonal lattices[END_REF] λc

1 λc ≈ 1 6
Effective (strain-gradient) model.

Optimized effective model =⇒ "de-homogenization" ?
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Strategy : optimization using an intermediate effective model Second-order homogenization: two-scale expansion [START_REF] Sanchez-Palencia | Comportements local et macroscopique d'un type de milieux physiques heterogenes[END_REF][START_REF] Bensoussan | Asymptotic Analysis for Periodic Structures[END_REF][START_REF] Cioranescu | An introduction to homogenization[END_REF] ...

1 m = (ρ, µ) λ Unit cell Y ℓ
Antiplane shear waves:

ρ X ∂ 2 u (X, t) ∂t 2 -∇ • µ X ∇u (X, t) = 0
(ρ, µ): Y -periodic density and shear modulus

Long-wavelength assumption: ε = /λ 1 "Slow" and "fast" variable: x = X/λ and y = X/ = x/ε Double scale dependency: u (X, t) → û(x, y; t) (Y -periodic in y)

Differential operator split:

∇ X → λ -1 (∇x + ε -1 ∇y) Ansatz: û(x, y; t) = j≥0 ε j u j (x, y; t)
Cascade of equations for the u j , separated variables solution:

u 0 (x, y; t) = U 0 (x; t), u 1 (x, y; t) = U 1 (x; t) + P 1 (y)•∇U 0 (x; t), u 2 (x, y; t) = U 2 (x; t) + P 1 (y)•∇U 1 (x; t) + P 2 (y) : ∇ 2 U 0 (x; t),

Macroscopic fields U j

Cell functions: 

P 1 = (P (1) 1 , P (2) 

Cell problems and FFT-based algorithms

Classical RVE problem for P 1 :

∇ • S 0 = 0 in Y, S 0 = µ(∇P 1 + I) P 1 is Y -periodic, P 1 = 0,
Second cell problem for P 2 :

∇ • S 1 + [S 0 -(ρ/ 0 )µ 0 ] = 0 in Y, S 1 = µ(∇P 2 +I ⊗ P 1 ) P 2 is Y -periodic, P 2 = 0, With: 0 = ρ = mean of ρ on Y µ 0 = S 0 = µ(I + ∇P 1 ) sym .
Numerical strategy: Fourier-based approach Regular grid of pixels for the discretisation of (ρ, µ).

(P 1 , P 2 ) discretised on a Fourier basis.

Iterative solvers relying on Fast Fourier Transforms (FFT) to go back and forth between space and wavenumbers domains.

Original "basic scheme" by [START_REF] Moulinec | A FFT-based numerical method for computing the mechanical properties of composites from images of their microstructures[END_REF], many other schemes since then [START_REF] Schneider | A review of nonlinear FFT-based computational homogenization methods[END_REF]. Second-order homogenization: effective wave equation [START_REF] Andrianov | Higher order asymptotic homogenization and wave propagation in periodic composite materials[END_REF][START_REF] Wautier | On the second-order homogenization of wave motion in periodic media and the sound of a chessboard[END_REF][START_REF] Bonnet | Microstructural topological sensitivities of the second-order macroscopic model for waves in periodic media[END_REF] Mean field equations:

O(1) : 0 ∂ttU 0 -∇ • (µ 0 • ∇U 0 ) = 0, 0 = ρ µ 0 = µ(∇P 1 + I) sym O(ε) : 0 ∂ttU 1 -∇ • (µ 0 • ∇U 1 ) = 0,
Vanishing first-order contribution (for 1D and antiplane 2D)

O(ε 2 ) : 0 ∂ttU 2 -∇ • (µ 0 • ∇U 2 ) + 2 : ∇ 2 ∂ttU 0 -µ 2 :: ∇ 4 U 0 = 0, 2 = ρP 2 µ 2 = 2 0 ⊗ µ 0 sym + M (P 1 , P 2 )
Effective wave equation for the macroscopic field U = U 0 + εU 1 + ε 2 U 2 :

0 + ε 2 2 : ∇ 2 ∂ 2 U ∂t 2 -∇ • µ 0 + ε 2 µ 2 : ∇ 2 • ∇U = 0
Second-order displacement approximation: (coming back to y = x/ε)

u (x, t) ≈ U (x, t) + εP 1 x ε •∇U (x, t) + ε 2 P 2 x ε : ∇ 2 U (x, t)
For elastodynamics: C. Boutin, J.L. Auriault. Rayleigh scattering in elastic composite materials.

International Journal of Engineering Science, Elsevier, 1993

Effective dispersion (and anisotropy)

Plane wave mean field U (x, t) = exp [i(kd • x -ωt)] =⇒ dispersion relation ω = ω(k, d).
Phase velocity for the second-order homogenized model: 

c(k, d) = ω(k, d) k = c 0 (d) limit velocity + ∆c(k, d) dispersion = c 0 (d) + 1 2 γ(d) c 0 (d) (kε) 2 + o (kε) 2 as kε → 0 c 0 (d) = µ 0 0 : (d ⊗ d) and γ(d) = 2 ⊗ µ 0 -0 µ 2 ( 0 ) 2 :: (d ⊗ d ⊗ d ⊗ d) ρ = 1 µ = 1 ρ = 1 µ = 1 ρ = 1.2 µ = 7 ρ = 1.2 µ = 7 c 0 (d) ≈ 1.55 (isotropic) 0 0.

Cost functionals and optimization problem

Cost functionals: evaluate the medium performance through its effective properties:

J (m) = J(m eff ) here: m = (ρ(y), µ(y)), y ∈ Y m eff = ( 0 , µ 0 , 2 , µ 2 ) (or c 0 (d), γ(d))
Optimization problem

Find mopt that minimizes J (m).

With the dependencies

m → cell problems → m eff → J(m eff ) = J (m)
Extremal effective properties:

J (m) = 1 2 γ(d + ) -2
(to maximize the dispersion in direction d + )

Fitting "target" data: (e.g. phase velocity)

J (m) = 1 2 N k i=1 N d j=1 |c eff (k i , d j ) -c target ij | 2
General strategy:

Constraints and parametrization of m, e.g. piecewise uniform materials Iterative "material update" algorithms

m (n+1) = m (n) + ∆m (n) such that J (m (n+1) ) < J (m (n) )
Main tool: sensitivity of J to a material update ∆m to choose a "good" ∆m (n) .

Rémi Cornaggia Topological optimization 06/2023

Parameter and shape sensitivities -Examples Topological sensitivity of a cost functional [START_REF] Sokolowski | On the topological derivative in shape optimization[END_REF][START_REF] Garreau | The topological asymptotic for pde systems: The elasticity case[END_REF][START_REF] Amstutz | Analysis of a level set method for topology optimization[END_REF][START_REF] Bonnet | Microstructural topological sensitivities of the second-order macroscopic model for waves in periodic media[END_REF] . . . If DJ (z) < 0, then J (ma) < J (m) and therefore z is a good choice for a phase change !

Chain rule for J (m) = J(m eff ):

DJ = ∂J ∂m eff Dm eff
For m eff = ( 0 , µ 0 , 2 , µ 2 ), Dm eff computed in [START_REF] Bonnet | Microstructural topological sensitivities of the second-order macroscopic model for waves in periodic media[END_REF].
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One tools, two functionalities Asymptotic approximations of perturbed quantities:

B a (z) =z+aB a (µ(y), ρ(y)) (∆µ, ∆ρ) 1 f (ma) ≈ f (m) + a 2 Df (m; z, B, ∆m) for any function f of m
Indicator function / "map" to find interesting points z: Also used as an imaging function in qualitative inverse scattering e.g. [START_REF] Tokmashev | Experimental validation of the topological sensitivity approach to elastic-wave imaging[END_REF] Rémi Cornaggia
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Topological derivatives of effective properties, polarization tensor

The topological derivatives are [START_REF] Bonnet | Microstructural topological sensitivities of the second-order macroscopic model for waves in periodic media[END_REF]Bellis, 2020] :

0 = ρ ⇒ D 0 = |B|∆ρ, µ 0 = S 0 = µ(I + ∇P 1 ) ⇒ Dµ 0 = (I + ∇P 1 (z)) • A • (I + ∇P 1 (z)), = 1 µ 2 (z) S 0 (z) • A • S 0 (z) D 2 = (ugly) Dµ 2 = (even uglier)
All depend on (i) the cell solutions at perturbation point P j (z) (or S j (z)), (ii) the polarization tensor A(z) = A(B, µ(z), ∆µ)

Polarization tensor A :

used in [Cedio-Fengya et al., 1998, Ammari and[START_REF] Ammari | Polarization and moment tensors: with applications to inverse problems and effective medium theory[END_REF]... in similar context, also called localization or concentration tensor, related to Eshelby and Hill tensors in elasticity/micromechanics [START_REF] Eshelby | The determination of the elastic field of an ellipsoidal inclusion, and related problems[END_REF][START_REF] Parnell | The Eshelby, Hill, moment and concentration tensors for ellipsoidal inhomogeneities in the Newtonian potential problem and linear elastostatics[END_REF],

symmetric, known analytically for elliptic shapes of semiaxes lengths (1,γ), and directions (n 1 , n 2 ):

A ellipse (µ(z), ∆µ) = πγ(γ + 1) ∆µ µ(z)   n 1 ⊗ n 1 1 + γ + γ ∆µ µ(z) + n 2 ⊗ n 2 1 + γ + ∆µ µ(z)   . Rémi Cornaggia Topological optimization 06/2023
Fast computation of approximate homogenized coefficients Error in O(a 4 ) instead of a priori expected O(a 3 ): it should be the case for any centrally symmetric inclusion [START_REF] Bonnet | Inverse acoustic scattering by small-obstacle expansion of a misfit function[END_REF]. Pixel-by-pixel two-directions optimization

Directions of interest d -= e 1 (horizontal), d + = e 2 (vertical). Computational remarks:

J (ρ, µ) = 1 2 γ(d -) 2 + 1 γ(d + ) 2 Two-phase unit cell: Y = Y 1 ∪ Y 2 ,
241 iterations 1205 cell and adjoint cell problems i.e. 2892 scalar cell problems on a 32 × 32 grid Moulinec-Suquet FFT method (tolerance on relative residual error: 10 -8 ) implemented using Python.

=⇒ ≈ 15-20s on a (good) laptop.
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Level-set representation and projection algorithm [Amstutz andAndrä, 2006, Amstutz, 2011] Material distribution at iteration n represented by a level-set function ψ n :

( )

ψ n > 0 in Y 1 ψ n < 0 in Y 2 and ψ n L 2 (Y ) = 1
Signed and normalized TD DJ : Maximizing horizontal and vertical and minimizing diagonal dispersions

DJ := DJ / DJ L 2 (Y ) in Y 1 -DJ / DJ L 2 (Y ) in Y 2 so that DJ L 2 (Y ) = 1 ( 
Recall : c(k, d) = c 0 (d) + 1 2 (k ) 2 γ(d) c 0 (d) + o (k ) 2
Cost functional:

J 4d = 1 2 2 j=1 γ(d j ) c 0 (d j ) -2 + 1 2 4 j=3 10 γ(d j ) c 0 (d j ) 2 d j = (cos θ j , sin θ j ), θ 1,2 = 0, 90 • , θ 3,4 = ±45 •
Material ratios: µ 2 /µ 1 = 6 and ρ 2 /ρ 1 = 1.5 Bloch-Floquet analysis of the optimal unit cell

Γ X M k 2π
Fit of the optimal inclusion by a quartic curve.

Finite element meshing using FreeFem++ [START_REF] Hecht | New development in freefem++[END_REF][START_REF] Laude | Phononic crystals[END_REF] Computation of the first two Bloch frequencies in the reduced Brillouin zone. 

Microstructred interfaces and effective transmission conditions

Frequency domain [START_REF] Marigo | Effective dynamic properties of a row of elastic inclusions: The case of scalar shear waves[END_REF] k = 0.5 ⇒ /λ ≈ 0.08 Time domain, rigid inclusions [START_REF] Lombard | Numerical modeling of the acoustic wave propagation across a homogenized rigid microstructure in the time domain[END_REF] Multiple frequency signal ⇒ /λ ∈ [0.1, 0.6] Is it possible to attenuate or enhance the transmitted wave in some specific direction ? Effective transmission conditions [START_REF] Marigo | Effective dynamic properties of a row of elastic inclusions: The case of scalar shear waves[END_REF][START_REF] Lombard | Numerical modeling of the acoustic wave propagation across a homogenized rigid microstructure in the time domain[END_REF]] Effective model for macroscopic fields (V, S):

ρm ∂V ∂t = ∇ • S |X 1 | > b 2 ∂S ∂t = µm∇V |X 1 | > b 2 V b = B • ∇V b S 1 b = S ∇ • S b -C • ∇S 2 b
Effective parameters computed from Φ, solution of a band problem on Y∞. =⇒ Error in O(a 4 ) and < 15% (even for "big" perturbations a = 0.25) (term in a 3 vanishes, should be true for any centrally-symmetric shape B [START_REF] Bonnet | Higher-order topological sensitivity for 2-d potential problems. application to fast identification of inclusions[END_REF])
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  , µ 0 , ρ 2 , µ 2 ) expansions Cell problems to capture the microstructural effects FFT-based solvers to address these problems (2) Optimization tools: Cost functionals based on effective properties Topological sensitivity to drive updating steps Level-set representation and iterative algorithm Outline Introduction Optimization for scalar waves in bi-periodic media Second-order homogenization, cell problems, FFT-based solver Optimization problem, cost functional, topological sensitivity Level-set algorithm on a first example Examples : anisotropic dispersion optimization and data fitting Microstructured interface optimization Effective model, cell/band problems and FFT-based solver Optimization problem, topological sensitivity Examples

[

  [START_REF] Vondřejc | Shape optimization of phononic band gap structures using the homogenization approach[END_REF]: High-contrast bulk periodic medium, band-gap optimization, B-spline parametrization of inclusion boundary =⇒ Parameters: positions of control points. [Allaire et al., 2019] (P. Geoffroy-Donders): Elastic media, static optimization, chosen unit cell =⇒ Parameters (fields): geometrical parameters (m 1 , m 2 ), cell orientation α

z

  Localized phase change in the unit cell: m → ma = m + χ Ba ∆m Expansion of J : J (ma) = J (m) + a 2 DJ + o(a 2 ) as a → 0 DJ (m; z; B, ∆µ, ∆ρ): topological sensitivity (or gradient, or derivative) of J .

  Reference "chessboard" unit cell with µ ∈ [1, 2]. Ellipsoidal inclusion with center z = (0.25, 0.25) axes (a, 0.2a), with a < 0.25 stiffness contrast ∆µ = 1

  with: material ratios ρ2 = 2ρ1 and µ2 = 2µ1 ⇒ uniform wavespeed equal phase ratio: |Y1| = |Y2| Pixel-by-pixel update step:

  Wikipedia) Optimality condition: If DJ satisfies the sign condition ( ) then DJ (z) > 0 ∀z ∈ Y then J reached a local minimum Update of ψ by projection onto DJ : ψ n+1 = anψ n + bnDJ (ψ n ) (an, bn) are chosen so that ψ n+1 L 2 (Y ) = 1 and J (ψ n+1 ) < J (ψ n ) optimization by projection algorithm (with phase ratio constraint |Y 1 | = |Y 2 |)

  waves in bi-periodic media Second-order homogenization, cell problems, FFT-based solver Optimization problem, cost functional, topological sensitivity Level-set algorithm on a first example Examples : anisotropic dispersion optimization and data fitting Microstructured interface optimization Effective model, cell/band problems and FFT-based solver Optimization problem

  µ): density and shear modulus, 1-periodic along the interface Long-wavelength assumption: ε = /λ 1 Double scale dependency and matched asymptotic expansions. b m eff = (B, C, S)

  Sa = S + a 2 ∆ρ ρm |B|DSHere DS does not depend on z nor on the shape B (not the general case). approximation of homogenized coefficients e.g.Ba = B + a 2 DB(z) + o(a 2 )Computation of relative error e.g. :B 1,a -[B 1 + a 2 DB 1 ] |B 1,a |(should be o(a 2 ), expected at least O(a 3 ))
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Fitting an objective anisotropic phase velocity c obj Goal: fitting phase velocity: c obj (kp, d j ) = c obj 0 (d j ) + ∆c obj (kp, d j ), p = 1..N k , j = 1..N θ Quasistatic and dispersive least-square cost functionals:

Weighted total cost functional: J = αJ stat + J dyn

Example: chessboard reconstruction

Data and constraints: Original problem in infinite band:

Computations in artificially bounded domain:

Effective coefficients [START_REF] Marigo | Effective dynamic properties of a row of elastic inclusions: The case of scalar shear waves[END_REF] B = lim

Reformulation as a cell problem [START_REF] Cornaggia | FFT-based computation of homogenized interface parameters[END_REF] b

Original problem in infinite band:

Equivalent cell problem: 

Cost functionals and optimization problem

Cost functionals: evaluate the medium performance through its effective properties:

Examples : cost functionnals on effective reflexion and transmission coefficients for incident direction θ I :

Optimization problem

Find mopt that minimizes J (m).

With the dependencies m → cell problems → m eff → J(m eff ) = J (m)

General strategy:

Constraints and parametrization of m, e.g. piecewise uniform materials

Iterative "material update" algorithms

Main tool: sensitivity of J to a material update ∆m to choose a "good" ∆m (n) .
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Topological sensitivity of a cost functional [START_REF] Sokolowski | On the topological derivative in shape optimization[END_REF][START_REF] Garreau | The topological asymptotic for pde systems: The elasticity case[END_REF][START_REF] Amstutz | Analysis of a level set method for topology optimization[END_REF][START_REF] Bonnet | Microstructural topological sensitivities of the second-order macroscopic model for waves in periodic media[END_REF] . . . 

Topological derivatives

The topological derivatives are (see [Touboul, PhD thesis, Chap. 4, 2021]) : A first test [Touboul, Ph.D. Thesis, 2021 (Chap. 4)]

Goal : minimization of the effective reflexion coefficient R for an incident angle θ I = π/4

Define R(m eff , θI) with m eff = (B, C, S) Compute the sensibilities (DB, DC, DS)

Two-phase material: (1) matrix and ( 2) inclusion.

Volume constraint on inclusion phase Y 2 in the unit cell: V C = 0.6

Perimiter penalization following [START_REF] Amstutz | Regularized perimeter for topology optimization[END_REF] to get smooth final configurations 

Attenuated scattered field

Numerical experiments : for a pulse emitted at a source point, measure the energy of the scattered field by the interface:

"Attenuated direction" linked to the effective transmission coefficient T computed for a plane wave with wavenumber k and incident angle θ I :

"Attenuated direction" at θ min when T 1 (m eff , θ I ) changes sign at θ I = θ min .

Main cost functional:

Results for θ min = 0, V C = 0.2, perimeter penalisation

Initialisations:

ellipse at 45 The procedure is applied to various cost functionals to achieve Maximization of dispersion in given directions "De-homogenization" of a chessboard from phase velocity data. Attenuation of scattered energy in chosen direction.

Perspectives / ongoing

Time-domain simulations of waves in the designed materials Extensions to other other physics and regimes:

1. Elasticity: links with strain/stress gradient models [START_REF] Auffray | A complete description of bi-dimensional anisotropic strain-gradient elasticity[END_REF][START_REF] Rosi | Continuum modelling of frequency dependent acoustic beam focusing and steering in hexagonal lattices[END_REF]. 2. High frequencies [START_REF] Craster | High-frequency homogenization for periodic media[END_REF][START_REF] Guzina | A rational framework for dynamic homogenization at finite wavelengths and frequencies[END_REF] to optimize band-gaps ... 3. Resonant interfaces with high-contrast inclusions [START_REF] Pham | Two scale homogenization of a row of locally resonant inclusionsthe case of anti-plane shear waves[END_REF][START_REF] Touboul | Effective resonant model and simulations in the time-domain of wave scattering from a periodic row of highly-contrasted inclusions[END_REF] 4. Graded / quasi-periodic interfaces [Noguchi andYamada, 2021a, Pham et al., 2023] Improve the optimization algorithm

Couple shape and topological derivative [START_REF] Allaire | Structural optimization using topological and shape sensitivity via a level set method[END_REF][START_REF] Amstutz | A consistent relaxation of optimal design problems for coupling shape and topological derivatives[END_REF] Use optimized FFT solvers ⇒ go to 3D