A preliminary example : 1D statics Two-scale asymptotic homogenization in a 1D periodic medium

ℓ E 1 ρ 1 E 2 ρ 2 λ
Wave equation in a -periodic medium

ρ X ∂ 2 u ∂t 2 - ∂ ∂X E X ∂u ∂X = 0
Reference wavelength λ [START_REF] Sanchez-Palencia | Comportements local et macroscopique d'un type de milieux physiques heterogenes[END_REF][START_REF] Bensoussan | Asymptotic Analysis for Periodic Structures[END_REF][START_REF] Cioranescu | An introduction to homogenization[END_REF] ...

Scale separation ε = /λ 1 Slow variable x = X/λ and fast variable y = X/ = x/ε Look for u as a function of both variables: u (X, t) = û(x, y, t), 1-periodic in y

∂ ∂X → 1 λ ∂ ∂x + ε -1 ∂ ∂y
Ansatz: û(x, y, t) = j≥0 ε j u j (x, y, t) =⇒ cascade of equations for the u j Separated variable solution featuring mean fields U j (x, t) and cell functions P j (y):

u 0 (x, y, t) = U 0 (x, t) u 1 (x, y, t) = U 1 (x, t) + U 0,x (x, t)P 1 (y) u 2 (x, y, t) = U 2 (x, t) + U 1,x (x, t)P 1 (y) + U 0,xx (x, t)P 2 (y) Rémi Cornaggia
Waves in 1D periodic media 20/06/2023

Effective wave equations

Equations satisfied by the mean fields: [START_REF] Fish | Non-local dispersive model for wave propagation in heterogeneous media: one-dimensional case[END_REF][START_REF] Lamacz | Dispersive effective models for waves in heterogeneous media[END_REF][START_REF] Wautier | On the second-order homogenization of wave motion in periodic media and the sound of a chessboard[END_REF] Effective properties:

0 U 0,tt -E 0 U 0,xx = 0 0 = ρ E 0 = E(1 + P 1,y ) 0 U 1,tt -E 0 U 1,xx = 0 E 1 = 1 0 E 0 ⇒ no first-order contribution 0 U 2,tt -E 0 U 2,xx + 2 U 0,xxtt -E 2 U 0,xxxx = 0 2 = ρP 2 E 2 = E(P 2 + P 3,y ) Second-order total mean field U = U 0 + εU 1 + ε 2 U 2 : 0 U,tt -E 0 U,xx + ε 2 ( 2 U 0,xxtt -E 2 U 0,xxxx ) = 0 "Boussinesq trick": using (i) 0 U 0,tt = E 0 U 0,xx and (ii) U 0 = U + o(1) : 1 c 2 0 U,tt -U,xx -ε 2 βxU,xxxx - βm c 2 0 U,xxtt - βt c 4 0 U,tttt = 0, with βx -βm -βt = β [
c 2 0 = E 0 0 and β := E 2 E 0 - 2 0
2 degrees of freedom to choose (βx, βm, βt).

Cell functions: displacement/velocity and stress correctors Velocity-stress system:

   ∂tv - 1 ρ ∂xσ = 0 ∂tσ -E ∂xv = 0 with v = ∂tu and σ = E ∂xu .
Displacement/velocity correctors (P 1 , P 2 , P 3 ) using V = ∂tU :

u (x, t) ≈ U (x, t) + εU,x(x, t)P 1 (x/ε) + ε 2 U,xx(x, t)P 2 (x/ε) v (x, t) ≈ V (x, t) + εV,x(x, t)P 1 (x/ε) + ε 2 V,xx(x, t)P 2 (x/ε) Stress correctors (Σ 1 , Σ 2 ) using macroscopic stress S := E 0 ∂xU : σ (x, t) ≈ S(x, t) + εS,x(x, t)Σ 1 (x/ε) + ε 2 S,xx(x, t)Σ 2 (x/ε)
Static equilibrium problems posed in the unit cell Y = [0, 1] for (P j , Σ j )

∂yΣ j = f j [E, ρ, P j-1 , Σ j-1 ]
E 0 Σ j = E (P j + ∂yP j+1 ) (P j , Σ j ) are 1-periodic, 

P j = 0 1/4 3/4 E 1 ρ 1 E 2 = 6E 1 ρ 2 = 1.5ρ 1 0 0.5 1 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0 0.

Reciprocity identities on effective coefficients

Classical expression of effective coefficients:

ρ j = ρP j , E j = E(P j + P j+1,y ) = E 0 Σ j , β := E 2 E 0 - 2 0
⇒ a priori needs P j , j = 1, 2, 3 for second-order effective properties.

Weak form of cell problems:

Find P j ∈ H 1 0 , 1 0 E(∂yP j )(∂yw) dy = F j (w) ∀w ∈ H 1 , j ∈ {1, 2, 3},
Reciprocity identities are obtained by "testing" one cell problem with another. [Fish et al., 2002, Abdulle and[START_REF] Abdulle | Effective models and numerical homogenization for wave propagation in heterogeneous media on arbitrary timescales[END_REF] ...

First reciprocity identity: using F 1 (P 2 ) = F 2 (P 1 ),

E 1 E 0 - 1 0 = 0 ⇒ No need for P 2 to compute E 1 .
Cancels first-order contribution in effective wave equation.

Second reciprocity identity: using F 1 (P 3 ) = F 3 (P 1 ) (and after some work):

β = E 2 E 0 - 2 0 = 1 2 P 1 -Σ 1 2 E 0 E + ρ 0 ⇒ No need for P 3 to compute β (or E 2 ).
Important positivity property: β ≥ 0. Choosing a model : link with gradient elasticity models

1 c 2 0 1 + ε 2 βm∂xx + ε 2 βt c 2 0 ∂tt U,tt = 1 + ε 2 βx∂xx U,xx, with βx -βm -βt = β >

Gradient elasticity

Two-scale homogenization Properties (see [START_REF] Askes | Gradient elasticity in statics and dynamics: An overview of formulations, length scale identification procedures, finite element implementations and new results[END_REF]) (x) [START_REF] Mindlin | Micro-structure in linear elasticity[END_REF] "natural" result when ρ = 1 unstable if βx > [Fish andChen, 2001] [Allaire et al., 2016] (m) [START_REF] Fish | Non-local dispersive model for wave propagation in heterogeneous media: one-dimensional case[END_REF][START_REF] Lamacz | Dispersive effective models for waves in heterogeneous media[END_REF] stable if βm < 0 (t) ? ? ? (xm) [START_REF] Mindlin | Micro-structure in linear elasticity[END_REF] "natural" result for ρ = 1

Used to stabilize (x) (mt) [START_REF] Pichugin | Asymptotic equivalence of homogenisation procedures and fine-tuning of continuum theories[END_REF] [ [START_REF] Cornaggia | Second-order homogenization of boundary and transmission conditions for one-dimensional waves in periodic media[END_REF] stable if βm < 0 [START_REF] Forest | Finite-deformation second-order micromorphic theory and its relations to strain and stress gradient models[END_REF]Sab, 2017] [Cornaggia andLombard, 2023] and βt > 0 (xmt) [START_REF] Dontsov | A physical perspective of the length scales in gradient elasticity through the prism of wave dispersion[END_REF] [ [START_REF] Wautier | On the second-order homogenization of wave motion in periodic media and the sound of a chessboard[END_REF]Guzina, 2015] [Schwan et al., 2021] [ [START_REF] Schwan | Extended stress gradient elastodynamics: Wave dispersion and micro-macro identification of parameters[END_REF] βx = 0 =⇒ additional boundary conditions for bounded domains

Well-posedness of the problem ? [Askes et al., 2008, Kaplunov and[START_REF] Kaplunov | On rational boundary conditions for higher-order long-wave models[END_REF] Difficult to deal with in homogenization theory (proofs when ε → 0 ?)

Not very useful to fit dispersion curves [START_REF] Schwan | Extended stress gradient elastodynamics: Wave dispersion and micro-macro identification of parameters[END_REF].
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Choosing a (mt) model from dispersion relations in layered media

ℓ E1 ρ1 E2 ρ2 λ Bloch wave u (X, t) = ũ(x)e i(κx-ωt) =⇒ dispersion relation ω = f (κ).
About (ω, κ) = (0, 0) (on the acoustic branch):

ω c 0 = κ   1 - β 2 (κε) 2 + β 2 -27β -8β 40 (κε) 4 + O(ε 6 )   ,
(β known for layered media) κx-ωt) in the (mt) homogenized model:

Plane wave U (x, t) = Ũ e i(
ω c 0 = κ 1 + βm + βt 2 (κε) 2 + (βm + βt)(3βm + 7βt) 8 (κε) 4 + O(ε 6 ) .
Second-order approximation of ω/c 0 obtained for any (βm, βt) satisfying -βm -βt = β. Also true in 2-3D [START_REF] Allaire | A comparison between two-scale asymptotic expansions and Bloch wave expansions for the homogenization of periodic structures[END_REF].

Fourth-order approximation for βm = -1 -4β + 4β 10 and βt = 1 -6β -4β 10 Similar approximation for spring-mass lattice in [START_REF] Pichugin | Asymptotic equivalence of homogenisation procedures and fine-tuning of continuum theories[END_REF] Choosing a (mt) model by fitting dispersion curves

ℓ E 1 ρ 1 E 2 ρ 2 λ Material contrasts: E 2 E 1 = 6, ρ 2 ρ 1 = 1.5
Phase ratio:

2 1 = 3
(≈ maximal dispersion [START_REF] Santosa | A dispersive effective medium for wave propagation in periodic composites[END_REF])

1 2 3 Bloch wave: u(x, y, t) = φ(y)e i(κx-ωt) =⇒ Dispersion relation κ = f (ω) 0th-order: U,tt -c 2 0 U,xx = 0 =⇒ non-dispersive 2nd-order (m): =⇒ O((κε) 2 ) approximation Optimized (mt): =⇒ O((κε) 4
) approximation [Pichugin et al., 2008, Cornaggia and[START_REF] Cornaggia | Second-order homogenization of boundary and transmission conditions for one-dimensional waves in periodic media[END_REF] Recap: second-order homogenization in one slide From a given microstructure ... 

1/4 3/4 E 1 ρ 1 E 2 = 6E 1 ρ 2 = 1.5ρ 1 ... 1 -Compute cell solutions (P 1 , Σ 1 ) and (P 2 , Σ 2 ) 0 0.5 1 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0 0.
1 c 2 0 U,tt -U,xx + ε 2 βm c 2 0 U,xxtt + βt c 4 0 U,tttt = 0,
-Solve the effective wave equation to find the macroscopic field U -Add bulk correctors to obtain approximations : Model problem and leading-order approximation Time-harmonic model problem:

u (x, t) ≈ U (x, t) + εU,x(x, t)P 1 (x/ε) + ε 2 U,xx(x, t)P 2 (x/ε) σ (x, t) ≈ S(x, t) + εS,x(x, t)Σ 1 (x/ε) + ε 2 S,xx(x, t)Σ 2 (x/ε) with S = E 0 U,x
E(x/ε)u,x ,x + ρ(x/ε) ω 2 u = 0 x ∈ Y L :=]0, L[ u = 0 x = 0 σ = E(x)u,x = σ L x = L Leading-order homogenization: (u, σ) → (U, E 0 U,x) U,xx + k 2 0 U = 0 x ∈ Y L , k 0 := ω/c 0 U = 0 x = 0 U,x = σ L /E 0 x = L
Boundary correctors using full-field approximations [START_REF] Cornaggia | Second-order homogenization of boundary and transmission conditions for one-dimensional waves in periodic media[END_REF] First-order approximations of displacement and stress (u, σ):

     ũ(1) (x) = U (x) + εP 1 x ε U,x(x) σ(1) (x) = E 0 U,x(x) + εΣ 1 x ε U,xx(x)
Using cell stress functions:

Σ j := (E/E 0 ) [P j + P j+1,y ]
Boundary-value problem for the mean field U :

U,xx + k 2 0 U = 0 x ∈ Y L ũ(1) = 0 x = 0 σ(1) = σ L x = L U,xx + k 2 0 U = 0 x ∈ Y L U + εP 1 (0)U,x = 0 x = 0 U,x + εΣ 1 (0)U,xx = σ L /E 0 x = L U,xx + k 2 0 U = 0 x ∈ Y L U + εP 1 (0)U,x = 0 x = 0 U,x -εΣ 1 (0)k 2 0 U = σ L /E 0 x = L

Second-order approximation

Approximations of the displacement and stress (u, σ):

ũ(2) (x) = U (x) + εP 1 x ε U,x(x) + ε 2 P 2 x ε U,xx(x), σ(2) (x) = E 0 U,x + εΣ 1 x ε U,xx(x) + ε 2 Σ 2 x ε U,xxx(x)      U = U 0 + εU 1 + ε 2 U 2
Boundary-value-problem for the second-order mean field U :

U,xx + k 2 mt U = 0 x ∈ Y L 1 -ε 2 k 2 mt P 2 (0) U + εP 1 (0)U,x = 0 x = 0 1 -ε 2 k 2 mt Σ 2 (0) U,x -εk 2 mt Σ 1 (0)U = σ L /E 0 x = L.
using the (mt) dispersive model:

k 2 mt := k 2 0 1 -ε 2 βtk 2 0 1 + ε 2 βmk 2 0 Lemma 2: ∃C > 0 u -ũ(2) H 1 Cε 2 U H 1 . Theorem 1: ∃C > 0 u -ũ(1) L 2 u -ũ(2) L 2 + ũ(2) -ũ(1) L 2 Cε 2 U H 2 .
No need for 2nd order BC to prove these results BCs surely needed for the next step : we hope that uũ(2)

L 2 = O(ε 3 )
Example for a layered material -mean fields Errors for fixed ω and → 0 Second-order homogenization, (mt) model:

U ε = /λ 0 ≈ 0.
1 c 2 0 1 + ε 2 βm∂xx + ε 2 βt c 2 0 ∂tt U,tt = U,xx,
"Stress gradient" system [START_REF] Forest | Finite-deformation second-order micromorphic theory and its relations to strain and stress gradient models[END_REF]:

σ = E∂x(u + φ) r = Dφ ρ∂ttu = ∂xσ ρJ∂ttφ = ∂xσ -r So that: ρ E 1 - E(1 + J) D ∂xx + ρJ D ∂tt u,tt = u,xx ⇒                      ∂tV - a 0 ∂xS = - a -1 0 r ∂tS -E 0 ∂xV = 0 ∂tϕ - a -1 0 ∂xS = - a -1 0 r ∂tr = E 0 ε 2 β ϕ Macroscopic fields V = ∂t(u + φ) and S = σ
Auxiliary fields ϕ = ∂tφ and r

Parameter a = -βm/βt to select a (mt) model.

Well-posedness (hyperbolicity, stability, conserved positive energy) for:

β ≥ 0 ( ), βm < 0 and βt > 0

Hyperbolicity and stability (See B. Lombard's first lecture) Matricial form of system:

∂tU + A • ∂xU = S • U , where U := (V, S, ϕ, r) T A =     0 -a/ 0 0 0 -E 0 0 0 0 0 -(a -1)/ 0 0 0 0 0 0 0     and S =     0 0 0 -(a -1)/ 0 0 0 0 0 0 0 0 -(a -1)/ 0 0 0 E 0 /(ε 2 β) 0     .
Hyperbolicity : real eigenvalues of A Sp(A) = 0, 0, ±c 0 √ a Stability : imaginary eigenvalues of S Sp(S) = 0, 0, ±c 0 / ε -βt

Hyperbolicity: a > 0 Stability: βt > 0 =⇒      - βm βt > 0 βt > 0 =⇒ βm < 0, βt > 0.
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Symmetrizer and energy conservation for

∂ t U + A • ∂ x U = S • U Symmetrizer matrix: M =     0 0 -0 0 0 1/E0 0 0 -0 0 a 0 /(a -1) 0 0 0 0 ε 2 β/E0     ,
So that:

M • A =    0 -1 0 0 -1 0 0 0 0 0 0 0 0 0 0 0    and M • S =    0 0 0 0 0 0 0 0 -1 0 0 0    ,
Multiplying the system by U T • M : First-order transmission conditions Fields of interest:

∂t 1 2 (U T • M • U ) + 1 2 ∂x(U T • M • A • U ) = 0. Integrating over Ω × [0, T ], (large Ω so that U (•, T ) = 0 on ∂Ω) Energy conservation: E vol (T ) = E vol (0). E vol = 1 2 Ω U T • M • U dx = 1 2 Ω 0 v 2 + βt β ϕ 2 + 1 E 0 σ 2 + ε 2 βr 2 dx ≥ 0 if β ≥ 0 (with v = V -ϕ)
(V, S) = (∂tU, E -∂xU ) x < 0 (V, S, ϕ, r) x > 0
Transmission conditions from total fields continuity:

V (0 -) = V (0 + ) + εP 1 (0)V,x(0 + ) S(0 -) = S(0 + ) + εΣ 1 (0)S,x(0 + )
Energy analysis : interface terms when integrating

∂x(U T • M • A • U ) over Ω -∪ Ω + ∂t(E vol -+ E vol + ) + D int = 0, D int = V 0 S 0 + V 0 S 0 = -ε P 1 (0)(∂xV ) + S 0 + Σ 1 (0)(∂xS) + V 0 = ???
We would like D int = ∂tE int with E int 1 ≥ 0 -dε dε

V I d = εA 1 ∂t S I d A 1 = -P 1 (0)E -1 0 + d(E -1 -+ E -1 0 ) S I d = εB 1 ∂t V I d B 1 = -Σ 1 (0) 0 + d(ρ -+ 0 )
New expression of interface term: 

∂t(E vol -+ E vol + ) + D int d = 0, D int d = ∂tE int d with E int d = ε 2 A 1 S 2 I d + B 1 V 2 I d Stability of {Hyperbolic system + transmission conditions} for A 1 ≥ 0 and B 1 ≥ 0 ⇒ Choice of d ≥ d min := max E -P 1 (0) E -+ E 0 , 0 Σ 1 (0) ρ -+ 0 , 0 
(v h -v j )(xr, •) L 2 (0,T ) v h (xr, •) L 2 (0,T ) (σ h -σ j )(xr, •) L 2 (0,T ) σ h (xr, •) L 2 (0,T ) 10 -2 3.10 -2 10 -1 3.10 -1 Parameter ε c = /λ c -3 -2 -1 10 0 Relative error on velocity v v 0 O(ε) v 1 O(ε 2 ) v 2 O(ε 2 ) 10 -2 3.10 -2 10 -1 3.10 -1 Parameter ε c = /λ c 10 -3 10 -2 10 -1 10 0 Relative error on stress σ σ 0 O(ε) σ 1 O(ε 2 ) σ 2 O(ε 2 )
(v 1 , σ 1 ): Adding 1st-order bulk correctors (P 1 , Σ 1 ) and 1st-order TC (v 2 , σ 2 ): "Hybrid" dispersive system (but still 1st-order TC) In 1D, source points ⇔ interfaces with stress jumps

   ∂tv - 1 ρ ∂xσ = δsg(t) x ∈ R ∂tσ -E ∂xv = 0 x ∈ R ⇐⇒              ∂tv - 1 ρ ∂xσ = 0 x < xs and x > xs, ∂tσ -E ∂xv = 0 x < xs and x > xs, v s = 0 x = xs, σ s = -ρs g x = xs, × f s (x, t) = δ(x -x s )g(t)
x s Already given by [START_REF] Capdeville | 1-D non-periodic homogenization for the seismic wave equation[END_REF] with another argument.

Equivalent system with Dirac notation: Velocity fields in a slab with a source point f c = 12 Hz, ε c = 0.17 

                    

  Two-scale problem : L (macro) and (micro)Scale factor ε = /L -periodic properties E (X) = E(X/ ) = E(x/ε) : E is 1-periodic Normalized coordinate x = X/L ) = 0 x ∈ [0, 1] equilibrium σ(x) = E(x/ε)∂xu x ∈ [0, 1] constitutive law u

  asymptotic homogenization for waves in 1D domains Second-order models Corrector functions and reciprocity identities Choosing a model Boundary and transmission correctors for time-harmonic motion Extension to transient waves Hyperbolic system Transmission conditions and first-order "hybrid" model Application to point sources Conclusions and perspectives Equivalent hyperbolic system for the (mt) model (βx = 0 because we don't want U,xxxx and additional BC/TC it brings)

  transmission conditions -stabilization Spring-mass conditions across a thin interface I d = [-dε, dε] (additional o(ε) error):

  Well-posed "hybrid" model: dispersive system from 2nd-order bulk homogenization transmission conditions (1st-order for now)Rémi CornaggiaWaves in 1D periodic media 20/06/2023Transmission conditions for ε = /λ c ≈ 0.04 (Numerics by B. Lombard)E -ρ -= E 0 0 =⇒ reflected wave is a 1st-order effectTransmission conditions, errors on velocity and stress fields Fields emitted at source xs < 0, measured at receiver xr > 0 during time T . Increasing frequency f , constant microstructure periodicity . Positions (xs, xr) and time T accordingly rescaled for each frequency.

[

  |σ|] s = -ρ(x s )g(t) [|V |] s = ?, [|S|] s = ? -ρs g,First-order corrector on V involving ∂tg and the local values ρs and P1(xs/ε).
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Slab with a source point -errors at several frequencies receiver in left homogeneous domain 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 
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Key ideas

The second-order asymptotic homogenization accounts for dispersive effects.

Reciprocity identities between cell problems are a big help.

Boundary and transmission conditions can be designed to complement the inner expansion.

(including in 2-3D [START_REF] Vinoles | Interface problems with metamaterials : modelling, analysis and simulations[END_REF][START_REF] Maurel | Sensitivity of a dielectric layered structure on a scale below the periodicity: A fully local homogenized model[END_REF][START_REF] Cakoni | Scattering by a bounded highly oscillating periodic medium and the effect of boundary correctors[END_REF][START_REF] Beneteau | Modèles homogénéisés enrichis en présence de bords : Analyse et traitement numérique[END_REF] ...)

For transient waves, stability can be adressed using (i) hyperbolic formalism and (ii) enlarged interfaces (in 1D for now).

Source points can be addressed using the same tools (specific to 1D).

Perspectives

Pursue the transient case up to full second-order model (as done in the time-harmonic case [START_REF] Cornaggia | Second-order homogenization of boundary and transmission conditions for one-dimensional waves in periodic media[END_REF])

Apply the built framework to other 1D configurations:

High-frequency homogenization [START_REF] Craster | High-frequency homogenization for periodic media[END_REF], Guzina et al., 2019[START_REF] Assier | High-frequency homogenization in periodic media with imperfect interfaces[END_REF] Solids with inner imperfect interfaces [START_REF] Assier | High-frequency homogenization in periodic media with imperfect interfaces[END_REF] Non-linearities [START_REF] Bellis | Effective dynamics for low-amplitude transient elastic waves in a 1d periodic array of non-linear interfaces[END_REF] Reciprocity identities for higher dimensions and elasticity [START_REF] Boutin | Rayleigh scattering in elastic composite materials[END_REF] (ongoing).

Hyperbolic formalism for higher dimensions and other models ? (2D acoustics, elasticity ...)