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1 Introduction
Microperforated plates (MPPs) are simple systems conven-
tionally used as sound absorbers. In the linear acoustic regime,
models characterizing MPP acoustic absorption based on (i)
the work by Champoux and Stinson [1] and the Johnson-
Champoux-Allard model applied to perforated plates [2] along
with (ii) the Kirchhoff equations [3] have been proposed. Ex-
tensions to a nonlinear acoustic regime were performed using
the Forchheimer law [4] and showed a maximum acoustic
absorption for a specific value of fluid velocity. Recent works
by the authors in the context of linear dynamics have demon-
strated MPP added damping capacities in the low frequency
range [5]. The added damping results from the dissipation
of energy by viscous friction mechanisms in the boundary
layers of the microperforations. MPPs are also susceptible
to be implemented in hostile environments with strong fluid
displacements in the perforations. The present contribution
proposes to extend the MPP linear vibration model to the
nonlinear framework involving the nonlinear acoustic Forch-
heimer law.

2 Linear MPP model
2.1 Governing equations
The investigated MPP of dimension Lx × Ly × h is oriented
in the xy plane and excited by an external periodic driving
force fext(x, y, t). Using an alternative form of Biot’s the-
ory, the model developed in the framework of porous plates
in [6] is adapted to an MPP. An ad hoc homogenization proce-
dure is performed, leading to two coupled partial differential
equations (PDEs) presented in Equation (1) that govern the dy-
namics of a structural plate and a virtual fluid plate. Obtained
by identifying the MPP with a porous plate [2], they account
for the vibratory behavior of the MPP and read:

h(ρẅs + ρfẅ) +D∇4ws = fext, (1a)

ρfẅs +
ρfα∞

φ
ẅ + σ0ẇ + αMf∇2ws = 0, (1b)

where ws(x, y, t) is the solid motion and w(x, y, t) corre-
sponds to the relative fluid-solid motion. The density of the
fluid-solid mixture ρ = (1−φ)ρs +φρf where ρs and ρf are the
densities of solid and fluid, respectively, depends on the per-
foration ratio φ. Equation (1a) represents the elastic response
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of the homogeneous solid plate while Equation (1b) describes
the relative fluid-solid motion. The parameters α and Mf are
elastic coefficients defined by Biot [7]. The coefficient D is
the bending stiffness. In order to consider the influence of the
microperforations in the MPP stiffness, it becomes

D =
Eh3

12(1− ν2)

(1− φ)2

1 + (2− 3ν)φ
. (2)

All Johnson-Champoux-Allard (JCA) parameters defined for
a porous medium can be rewritten for an MPP as functions
depending on φ and the diameter of the perforations d. For
instance, the resistivity and the tortuosity are defined by

σ0 =
32µf

φd2
and α∞ = 1 +

2ε

h
(3)

with µf the fluid dynamic viscosity and ε = 0.24
√
πd2(1 −

1.14
√
φ) [2] is a correction factor used to consider the interac-

tion between the perforations and the distortion of the flow at
the perforation orifices.

2.2 Added damping
For an MPP, the existence of a substantial added damping in
the low frequency range could be exhibited [5]. The added
damping reaches a maximum at the characteristic frequency

fc(d) =
32µf

2πα∞ρfd2
(4)

defined from the Biot frequency for porous materials [6]. In
Equation (4), fc(d) depends on fluid parameter, µf and ρf and
on d, which can be tuned to induce maximum added damping
at the resonance frequency, i.e. to make fc(d) coincide with a
resonance frequency of the microperforated plate.

3 Nonlinear MPP model
3.1 Governing equations
When the fluid velocity in the microperforations becomes
sufficiently large, the inertial effects occurring in the microp-
erforations become significant. It is then necessary to consider
them by using the Forchheimer law σ = σ0(1 + ε|ẇf|), where
ε is the Forchheimer coefficient and |ẇf(x, y, t)| is the abso-
lute value of the fluid velocity. This law was used for rigid
MPPs with a high fluid flow in microperforations [4]. In
the context of a vibrating microperforated plate, the relative
fluid-solid velocity corresponds to the fluid velocity for a rigid



MPP. Accordingly, the resistivity is expressed as a function of
ẇ(x, y, t) = φ(ẇf(x, y, t)− ẇs(x, y, t))

σ(ẇ(x, y, t)) = σ0(1 + ε|ẇ(x, y, t)|). (5)

Inserting Equation (5) in Equation (1) provides the following
nonlinear system with a quadratic damping term:

h(ρẅs + ρfẅ) +D∇4ws=fext, (6a)

ρfẅs +
ρfα∞
φ

ẅ+σ0 ẇ+σ0εẇ|ẇ|+ αMf∇2ws=0. (6b)

The resulting nonlinear governing equations are space semi-
discretized and projected onto the non-perforated plate mode.
The solid motion is expanded as

ws(x, y, t) =

N∑
i

ws
i(t)Ψi(x, y), (7)

where ws
i(t) represents the generalized coordinate of eigen-

mode i of shape Ψi(x, y); N is the number of degrees-of-
freedom in the plate spacial discretization. A similar for-
mulation is used for w(x, y, t). After spacial discretization,
Equation (6) is solved in the steady state regime by using
the Harmonic Balance Method, which consists in the use of
truncated Fourier series to describe the problem’s unknowns.

3.2 Results
The model is used to study the vibratory behavior of a simply
supported MPP in the nonlinear acoustic regime. An MPP
of dimension 490 mm× 570 mm× 1 mm with d = 2.2 mm
and φ = 10 % is excited at one point by an external force
of magnitude Fext. The corresponding mobility of the plate,
i.e. displacement divided by Fext, is plotted as a function of
dimensionless forcing frequency for three values of Fext in
Figure 1. The frequencies f0 and f correspond respectively to
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Figure 1: Mobility of the first linear microperforated plate mode for
three magnitudes of external excitation: ( ) Fext = 0.5mN; ( )
Fext = 20mN; ( ) Fext = 110mN.

the resonance frequency obtained in the linear case and to the
forcing frequency. The Forchheimer nonlinearity parameter
ε = 0.8 s/m is obtained by experimental measurement. It can
be observed that increasing the nonlinearity softens the system
and that the added damping reaches a maximum for a specific
value of Fext, i.e. for a characteristic value of the magnitude
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Figure 2: Added damping for the first linear MPP mode: ( ) the
nonlinear case; ( ) the constant value of the linear case.

of the relative fluid-solid velocity as shown in Figure 2. A
theoretical development provides an expression for a critical
relative fluid-solid velocity

Vc =
I
(3)
1

I
(4)
1

ωρfα∞ − σ0φ
σ0φε

(8)

for which the added damping is maximum, where I(3)1 and I(4)1

are spacial integrals associated with the beam functions in the
spacial projection of the coupled equations for the first linear
plate mode. I(4)1 carries the Forchheimer acoustic nonlinear
physical mechanism.

4 Conclusions
The vibratory response of a fluid-saturated MPP in a nonlin-
ear acoustic regime is presented. The inertia effect due to
the high velocity of the airflow in the microperforations is
captured analytically by the Forchheimer law, which yields
a system of coupled PDEs with a nonlinear damping term.
The results show that the nonlinear damping introduced by
the Forchheimer law softens the system. In addition, a criti-
cal relative fluid-solid velocity is found for which the added
damping reaches a maximum.
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