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Abstract—The increasing connectivity and autonomy of ve-
hicles has led to a growing need for dynamic and real-time
adjustments to software and network configurations. Software
Defined Vehicles (SDV) have emerged as a potential solution
to adapt to changing user needs with continuous updates and
onboard reconfigurations to offer infotainment, connected, and
background services such as cooperative driving. However, net-
work configuration management in SDVs remains a significant
challenge, particularly in the context of shared Ethernet-based
in-vehicle networks. Traditional worst-case static configuration
methods cannot efficiently allocate network resources while
ensuring Quality of Service (QoS) guarantees for each network
flow within the physical topology capabilities. In this work, we
propose a configuration generation methodology that addresses
these limitations by dynamically switching between pre-computed
offboard configurations downloaded to the vehicle. Simulation
results are presented and future work is discussed.

Index Terms—Software Defined Vehicle (SDV), Dynamic net-
work configuration, Service Oriented Architecture (SOA), Time
Sensitive Networking (TSN), In-vehicle networks (IVN).

I. INTRODUCTION

In the last few years, automotive OEMs have started to
develop a range of complex features such as dedicated in-
fotainment app stores, automated driving, and Vehicle-to-
Everything (V2X) services. This shift invites OEMs to con-
tinuously deliver these features through seamless Over-the-Air
(OTA) updates, which contributes to longer lasting vehicles
in the hope to bring the industry closer to sustainable trans-
portation systems. As a result, future vehicles may resemble
’Smartphones on Wheels’ where users can dynamically request
services throughout the vehicle lifetime while OEMs continu-
ously integrate background services such as autonomous and
cooperative driving, smart grid algorithms, and more [1], [2].

To support this paradigm shift, the automotive industry
is undergoing a rapid transformation toward Software De-
fined Vehicles (SDV) [3]. Previously, Electric and Electronic
(E/E) architectures were hardware-defined by integrating many
single-function Electronic Control Units (ECU) into domain-
centric networks. However, the increasing number of ECUs as
well as more demanding network and OTA requirements are
reaching the limits of current architectures [4]. These changes
are motivating a global shift towards Zonal Oriented Archi-
tectures (ZOA), where fewer High Performance Computing
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(HPC) ECUs are expected to group and manage multiple het-
erogeneous functions. ZOA allows for a centralized and there-
fore cost-effective reservation of computational resources for
future updates and features. In addition, Ethernet introduces
service-oriented communications and increased bandwidth [5].

This new hardware approach must be controlled by a soft-
ware stack capable of applying OTA updates and dynamically
switching the onboard software context to provide relevant ap-
plications. A common solution is to deploy a Service Oriented
Architecture (SOA) which handles high-level communications
through publish-subscribe protocols and the orchestration of
services based on user requests, vehicle context, and available
updates, allowing for dynamic reconfigurations of software
and network resources [6]. However, SOA does not address
the guarantee of Quality of Service (QoS) constraints such
as hard real-time latency and jitter for safety-critical flows.
Hence, the onboard architecture also relies on an embedded
infrastructure based on technologies such as Software Defined
Networking (SDN) and Time Sensitive Networking (TSN) that
can be used to handle dynamic routing and hard real-time
scheduling of network resources on a per-flow basis.

Such an architecture depends on configurations to describe
the behavior of physical and virtual network components.
These configurations determine how traffic shapers, priorities,
buffers, routes, firewalls, sleep modes, and others are allocated
to meet all mixed QoS constraints. However, generating these
configurations is a complex and often NP-hard task [7] as it
requires generating a coherent global configuration across all
network components despite their heterogenous implementa-
tions and parameters. For instance, some components such as
802.1Qbv for TSN rely on SAT-based solvers to generate valid
configurations (e.g. TSNsched [8]). It would thus be infeasible
to generate configurations onboard due to limited resources.

We believe that current methods for determining network
configurations using worst-case static approaches are no longer
sufficient for SDVs due to the potential presence of thousands
of diverse applications and the need for frequent updates.
Therefore, it is necessary to find new approaches to manage
the dynamic nature of network configurations. In this work, we
propose a novel methodology for generating these configura-
tions, which dynamically reconfigures the in-vehicle network
using pre-computed offboard configurations downloaded to the
vehicle. We aim to improve the flexibility and efficiency of real
time embedded networks while minimizing onboard resources.



II. RELATED WORK

Traditionally, network configurations have been determined
using static worst-case approaches, where the network is
configured to handle the worst possible scenario in terms of
traffic and QoS requirements for the entire vehicle lifetime
[9], [10]. There has been a considerable amount of research
conducted on the generation of network configurations that
varies based on the technologies and components used, such
as statistical checks to validate CAN networks signal timing
ranges, TSN configurators for various traffic shapers [8], or
SDN orchestrators with dynamic routing engines [11].

However, these methods assume that the input set of flows
will produce a feasible configuration. Nonetheless, with the
rise of SDVs and the potential for thousands of applications
with diverse flow requirements, the traditional static approach
becomes inadequate as it may not be able to allocate all
flows into the physical in-vehicle bandwidth-limited links [12].
Furthermore, with a continuously evolving offering of applica-
tions in the app store and ever-improving background services,
network configurations will need to be updated regularly.

On the other hand, traditional reconfiguration methods used
to apply new configurations are also limited. These methods
rely on infrequent updates through OTA updates and often
require reflashing ECUs and network components. This pro-
cess takes time [13] and consumes onboard energy resources,
making it impractical to make real-time adjustments to flow al-
locations. As a result, these traditional methods fail to meet the
dynamic requirements of SDVs. To address this limitation, new
approaches that can handle the complexity and dynamic nature
of network configurations are currently being developed. For
instance, research initiatives by CoRE-RG seek to provide
network reconfiguration capability at runtime for maximum
orchestration flexibility [14]. However, these methods only
apply configurations produced by other components.

We believe that the unique challenges posed by an environ-
ment with thousands of available services are not addressed by
existing research. Our work aims to bridge this gap by leverag-
ing existing network schedulers and dynamic reconfiguration
frameworks to support (1) a large number of applications, (2)
dynamic reconfigurations, and (3) minimal onboard overhead.

III. PROBLEM FORMULATION

We propose a new configuration generation methodology
that allows for dynamic switching between pre-computed
offboard and pre-downloaded onboard configurations. Our
approach is based on the assumption that a vehicle will not
require all services to be active simultaneously. We believe
this to be a reasonable assumption in the context of app
stores, as a large part of the available services (such as
infotainment and cooperative V2X services) are functionally
mutually exclusive depending on the vehicle and user contexts.
We can thus generate smaller configurations that consider only
subsets of applications that may be enabled simultaneously,
thus extending the physical capabilities of the vehicle.

Let A = {a1, ..., an} be the set of applications available
in the app store, including background services, along with
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Fig. 1. Block diagram of the configuration methodology. Our goal is to
orchestrate the selection of network flows to produce a set of feasible
configurations, using an off-the-shelf in-vehicle network scheduler for all
available applications within the onboard E/E physical capacities.

S = {s1, ..., sm} a finite set of states where each state si ⊂ A
is a set of applications that could be activated concurrently.
Each state may require a residual free bandwidth for unallo-
cated best-effort streams in advance, and it is assumed that all
application dependencies are respected. For each pair of states
si and sj , let IP(i, j) be the probability of transition from state
i to state j and PS = {IP(i, j), si, sj ∈ S} the transition
probability matrix linking all states of S. Therefore, we can
define the vehicle state graph G = {S, PS}, illustrated with
an example in Figure 2A, as a strongly connected Markov
chain which represents the different combinations of active
applications that the vehicle may encounter at runtime. The
state of the vehicle thus evolves as a random-walk on G.

The problem is to find the set of feasible configurations C,
each generated by an architecture-dependent global network
scheduler, that meets industry-relevant priorities defined below.

First, we minimize computing overhead by reducing the fre-
quency of transitions between configurations. This optimizes
resources dedicated to functional features, reduces hardware
costs and energy usage, and minimizes user wait times when
using traditional re-flashing reconfiguration methods (e.g. for
legacy ECUs). Secondly, we mitigate the amount of data
transmitted and stored onboard by minimizing the number of
configurations that need to be generated. While the car will
likely often have WiFi available while parking, this may not be
true all the time which would require paid mobile data usage.

Note that these two objectives are only sufficient to guar-
antee safe reconfigurations while parked, meaning no active
flows remain active during transitions. While driving, some
packets from previously active applications might still be in
transit inside the network, which would potentially lead to lost
packets as configurations are generated independently with
separated buffer usage estimates. In this work, we focus on
orchestrating the generation of independent configurations by
building on top of existing network schedulers for parked
reconfigurations, as current schedulers do not support the
generation of multiple coherent configurations.

Finally, we minimize the number of calls to the network
scheduler as it might take a considerable amount of time to
check the validity of a particular set of flows. The configu-
rations depend on the E/E physical topology which includes
the set of ECUs available in the vehicle E, as well as the list
of all potential flows F required by applications as inputs for
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Fig. 2. Illustration of our predictive configuration methodology. (A) represents a vehicle state graph G modelled as Markov chain with nodes defined as sets
of active applications and weighted edges representing reconfiguration probabilities. (B) shows the 2-dimensional spectral embedding of G, and (C) points to
the generated tree structure called dendrogram using hierarchical clustering. (D) shows our iterative search algorithm, which explores the tree from the root
downwards and calls the network scheduler at each branch to get its validity (green/red icons) until the final set of configurations C = {c1, ..., ck} is found.

the network scheduler. Hence, each application is defined as
ai = {e, f} with e ∈ E the predetermined host ECU for its
execution and f ⊂ F the set of QoS-dependent flows required.
This serves as the input data for the global network scheduler.
The diversity of parameters and flow types can vary depending
on the capabilities of the selected scheduler, which can be
considered as as a black box in this work.

In an industrial context, the vehicle state graph G can be
generated based on expert system modelling, vehicle sim-
ulation, and real-world observation feedback. However, we
assume that G might contain thousands of states, some of
which could be subsets of other states. Hence, our objective
is to process this input graph such that the final set of pre-
computed configurations remains minimal. Therefore, finding
C can be done by solving the following optimization problem:

argmin
C

g(C) with g(C) = k +W + h (1)

such as k = |C| and W =
∑

si,sj∈C

PC(i, j)

where C is the final set of generated configurations, k is
the number of configurations, W is the sum of transition
probabilities between configurations with PC the transition
matrix constructed from the subgraph of G clustered using C,
and h is the number of calls to the global network scheduler.

IV. METHODOLOGY

The purpose of the State orchestrator, illustrated in Figure 1,
is to orchestrate the selection of flow sets to achieve the
previous optimization goal. Our methodology, illustrated in
Figure 2, consists of the following steps.

Initialization (Figure 2A). First, it is possible to filter G
by running the scheduler on each state to remove unfeasible
states. Similarly, it is possible to filter out states already
included in others based on the remaining bandwidth and
energy consumption goals of the vehicle.

Projection (Figure 2B). Next, we apply the spectral
embedding method [15] where d is the destination dimen-
sion to be calibrated in the industrialization phase such that

2 ≤ d � |S|. Thus, the relative coordinates of each state in
the embedded space correspond to their probabilistic relations.
This has the effect of moving states with high transition
frequencies closer together. Since G is directed, we use the
asymmetric Laplacian matrix as the similarity matrix between
nodes to account for irregular probabilities [16].

Hierarchical Clustering (Figure 2C). We then apply
the agglomerative hierarchical clustering method [15] using
the embedded space by merging the states in pairs following
the increasing order of Euclidean distance (Y axis in Figure
2C) between states, which groups states with high transition
probabilities first. This results in a tree structure according
to their probabilistic relationships. At this point, we obtain a
dendrogram where each branch represents a candidate cluster
of states. Each branch can be seen as a new state coming from
the merging of the applications contained in the children states.

Each time two states si and sj are clustered, the following
occurs: first, the number of clusters k decreases by 1, which
invites us to select the highest branches in the tree. Second, the
transitions PS ij or PS ji become null as both states are merged
into si ∪ sj and the vehicle does not need to reconfigure its
network as long as the active set of applications remains within
this new set. Finally, it is necessary to execute the scheduler
to know the validity of each branch.

Iterative search (Figure 2D). It follows from the three
preceding remarks that g(C) can only increase as we explore
the dendrogram starting at the root downward by running
the scheduler at each branch encountered. The algorithm
thus consists in finding the branches of maximum height in
the dendrogram producing valid configurations by exploring
the topology from top to bottom. Since the algorithm stops
at the first combination of valid branches found and g(C)
increases during the exploration, the solution corresponds
to the minimum of g while constrained to return a set of
valid configurations. In the end, all states si obtain a valid
configuration generated at one of the parent branches.

The algorithm starts with the root of the topology cr which
corresponds to the ideal solution that minimizes all objectives.
It is also equivalent to the worst case static scheduling methods
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Fig. 3. Simulation results. We generate a simple scenario with (A) a zonal-oriented E/E architecture topology, (B) a random set of flows with parameters
supported by the scheduler model, and (C) a heatmap that represents the PS transition matrix of a random strongly connected Markov chain G. (D) shows
the 2-dimensional spectral embedding of G, and (E) presents the generated dendrogram with the final set of iteratively searched configuration clusters.

found in the state of the art. We run the network scheduler
on this single merged state and return C = {cr} if the
scheduler generates a valid configuration. Otherwise, we repeat
the procedure independently for all children of the node until
the first valid branches are found. This later case is more
probable in the context of thousands of available applications.
Thus, we obtain C = {c1, ..., ck} solution of the optimization
problem posed in Equation 1.

The overall algorithm is of polynomial complexity. The
complexity of the setup stage (corresponding to steps A, B,
and C in Figure 2) is O(n2) with n = |S| (e.g. see [15]). This
phase only needs to be performed once with a given set of
applications. Then, the iterative search (Figure 2D) is reduced
to O(n) since at most the 2n − 1 nodes of the cluster tree
topology need to be explored, which allows for an efficient
generation of configuration sets for multiple physical vehicle
topologies using a single dendrogram. Note that each scheduler
call for a candidate branch ci has a complexity that varies with
the chosen model, such as O(|ci|2) for TSNsched [8].

V. SIMULATION SETUP

To test the performance of our approach, we designed
a simulation setup with a simple but representative sched-
uler model using randomly generated inputs. First, the E/E
physical topology shown in Figure 3A follows a standard
zonal-oriented star topology connected with Ethernet links of
different datarates. Then, we generate a random dependency
graph of n = 500 applications to represent an app store
as a binomial directed graph. Each application is randomly
assigned to one of the ECUs, which we assume is provided
by an external onboard service orchestrator.

We selected a simple scheduler model that considers a
unique bandwidth parameter and checks if the sum of the
active flows in each link does not exceed its physical capacity.
Then, we generate a random number of 1 to 5 flows for each
edge in the dependency graph, with each being assigned a
randomized bandwidth requirement between 0.1 and 5 Mbit/s
(see Figure 3B). Additional constraints such as latency and
jitter could be added when using a more complex scheduler.

These inputs are sufficient to run traditional worst case
methods. To compare these methods with our dynamic ap-

proach, we also generate the random strongly connected
Markov chain G shown in Figure 3C. This is done by taking
the largest strongly connected subgraph of a random directed
graph with m = 500, which produces a graph of m = 433
states. We then produce a random combination of active
applications such that s ⊆ A by sampling a random set
of 5 to 500 applications and adding their dependencies. We
also replaced existing states until the union set of all states
contained all applications in A to produce a coherent input set.

Then, we filter G by removing states with unfeasible con-
figurations for this particular E/E topology. Note that these
invalid states may become valid for higher-end topologies.
This methodology produces a final graph G of size m = 150.
Edges are valued using random transition weights. Our al-
gorithm does not assume any similarity between the sets of
active apps between neighbor states in G, since its goal is to
minimize the frequency of reconfigurations. Finally, we define
rA as the ratio of applications in A that have been allocated
in at least one valid configuration for each scenario.

We study three simulation scenarios. Firstly, we attempt to
schedule all flows at once by calling the scheduler once, which
is equivalent to the worst case strategies (worst-case scenario).
If the scheduler does not return a valid configuration, we
sample random combinations of applications using the same
methodology to generate S in order to estimate the perfor-
mance of this strategy in an app store environment. Secondly,
we generate one configuration for each state si in the state
graph (unfiltered scenario). Lastly, we run our clustering strat-
egy to reduce the number of final states (reduced scenario).

To evaluate the performance of each scenario, we compare
each part of the objective function g, namely the number of
produced configurations k, the sum of transition probabilities
between states W , and the total number of scheduler calls h.

VI. RESULTS

The simulation results are summarized in Table I. They
indicate that the worst-case static approach is insufficient for
allocating all flows in a single configuration. When sampling
1000 random feasible application combinations, the maximum
amount of apps that can be allocated to a single configuration



TABLE I
EVALUATION METRICS FOR THE SIMULATION RESULTS

Worst case
cr

Unfiltered
S

Reduced
C

Gains
S → C

rA 13% (mean) 100% 100% 0%
k 1 150 39 74%
W 0 3411.5 413.7 87.9%
h 1 150 57 62%

using the worst-case approach was found to be only 28% with
a mean of 13%. Even though g(cr) is minimal, this implies
that the worst-case approach cannot guarantee an efficient
allocation of all flows in a single configuration.

On the other hand, generating one configuration for each
state s ∈ S in the initial state graph resulted in 100% of valid
configurations as expected by design. However, this approach
generated a large number of configurations k = 150, which
makes it impractical to be used in real-world scenarios due
to the increased complexity and storage requirements. This
solution also requires frequent onboard reconfigurations.

The proposed approach achieved better performance, gen-
erating 39 configurations while maintaining 100% valid con-
figurations with transition probabilities reduced by 87.9% and
scheduler calls by 62%. This suggests that our approach is
efficient in allocating all flows with valid configurations, which
makes it more practical for real-world deployment.

Our results demonstrate the effectiveness of our proposed
methodology in reducing the number of configurations re-
quired while achieving a 100% success rate in valid config-
urations. This approach can be used in real-world scenarios
where the number of ECUs and applications can be much
larger, and hence the proposed methodology can provide an
effective solution for dynamic configuration allocation.

Our results highlight the importance of a dynamic approach
to configuration allocation, and the proposed approach can
help improve the efficiency and scalability of automotive
networks while ensuring a high level of QoS for all flows.

VII. CONCLUSION

We have presented a methodology for generating a set of
offline network configurations to cover the dynamic use cases
of vehicles. The configurations are generated with the aim to
minimize the frequency of reconfigurations in the vehicle and
storage requirements while reducing the number of network
scheduler calls. Finally, the vehicle dynamically selects the
correct pre-downloaded configuration on context changes.

This approach applies classical clustering strategies in an
industrial environment to enable a large number of applications
despite limited onboard hardware capabilities. Additionally,
it is possible to optimize the offboard execution times in an
industrial context by starting the exploration at an intermediate
level in the dendrogram or by skipping multiple descendants
at once, depending on calibration. Furthermore, the branches
are independent and can therefore be evaluated in parallel.

This scenario can be particularly useful in the context of
shared vehicles, where the vehicle reconfigures itself before a

user reservation period based on their preferences, profile, and
subscriptions. Moreover, the same state graph G can be used
for several vehicle models with different topologies. However,
one major limitation remains: this algorithm is independent
from the network scheduler, which makes it impossible to
construct multiple coherent configurations based on QoS guar-
antees to ensure safe reconfigurations on running vehicles.

Future work will aim to (1) test the network performance of
our solution in a realistic automotive environment using more
complex schedulers such as TSNsched [8] along with realistic
input applications and flows, (2) improve current schedulers
to consider transition safety and enable reconfigurations while
driving, (3) extend the current architecture with an onboard
configuration generator based on heuristics for non-critical
flows, and (4) study the impacts of different configuration
orchestration strategies on onboard energy consumption.
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