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Abstract
This paper presents an online data and knowl-
edge based diagnosis method. It leverages de-
cision trees in which decisions are made based
on diagnosis meta knowledge, namely knowledge
about the properties of diagnosis indicators. This
knowledge is used at the level of each node to
set a symbolic classification problem that brings
out discriminating functions. This results in a
multivariate decision tree that produces a compact
model for diagnosis. The use of decision trees in-
creases the explicability of the results found, all
the more so as one discovers the explicit formal
expressions of diagnosis indicators in the process.
The method has been tested on static systems. On
the well-known polybox, the three diagnosis indi-
cators known as analytical redundancy relations,
that are generally computed from the model, are
found.

1 Introduction
Diagnosis aims at finding when a system is behaving abnor-
mally, but also what causes a fault, i.e. what component is
faulty.

On one hand, model-based diagnosis, inferred from sys-
tem equations, leads to highly efficient solutions, but re-
quires extensive knowledge about the system [1] and of-
ten suffers from the uncertainty inherent to real systems.
On the other hand, data-based diagnosis, inferred from data
gathered on a system in operation and requiring no prior
knowledge of systems, rarely grants explanations as to what
causes a fault to occur [1]. Most data-based solutions do not
provide enough information on what causes the fault, they
are often black-box [2]. However, decision trees are data-
based methods that still give an explanation for their deci-
sion. In this article, we propose a diagnosis algorithm that
takes the form of a decision tree enhanced with meta knowl-
edge about the properties of diagnosis indicators. This solu-
tion will take advantage both of the data-based and model-
based techniques, being able to answer both the when and
what questions.

The most common version of decision trees is univari-
ate decision trees [3]. However, diagnosis of a system is
most often obtained by studying relations between exoge-
nous variables (the inputs of the system) and endogenous
observable variables (the outputs of the system). Thus, uni-
variate decision trees do not seem to fit diagnosis problems.

That is why we propose a multivariate approach that looks
for relations involving several observable variables to dis-
criminate the data in decision tree nodes as precisely as pos-
sible.

This paper main contribution is DT4X, an algorithm that
builds a multivariate decision tree that performs explicable
diagnosis. The second contribution is that discrimination in
the nodes of the tree is done by automatically finding rela-
tions between observable variables that correspond to diag-
nosis indicators used in model-based diagnosis. To sum up,
the new proposed algorithm finds diagnosis indicators of the
system diagnosed and uses them as discriminating relations
in a multivariate decision tree.

This paper first presents the related works and the back-
ground required to understand how DT4X works. Then, the
algorithm is detailed and its pseudo code is given. After that,
DT4X is applied to the polybox use case and the results are
discussed.

2 Related Work
Works such as [4] or [5] have shown that diagnosis can be
accurate and explicable when based on the full model of
the system. However, this model is not always accessible
and more often than not, only easy-to-obtain information
is available. For instance, which variables are measurable.
Sometimes, the whole structural model of the system is ac-
cessible.

Methods such as [6] or [7] try to exploit this easy-to-
obtain system information to perform model-based diagno-
sis. They perform structural analysis (an analytical redun-
dancy approach) and replace the step where full model of
the system is required. Instead, they use data-based algo-
rithms trained on data measured on the system. These al-
gorithms output residuals. They actually replace the model-
based residual generators.

On the other hand and despite the tremendous advances
in explicable AI [8], methods based on data only are accu-
rate but rarely explicable [9], one exception being decision
trees when their size remains small enough. Only then can
decision trees be considered intrinsically explicable. We can
split decision trees into two categories, univariate and mul-
tivariate [10]. Univariate decision trees do not fit our prob-
lem (see Sections 3.1 and 5.2) because it is known that, in
a diagnosis problem, the classes are characterized by multi-
variate relations [11]. Multivariate decision trees [12] allow
to study the joint influence of multiple system variables. To
the best of our knowledge, there is no paper focusing on
applying multivariate decision trees to diagnosis.



Hence, this paper looks to apply multivariate decision
trees to diagnosis, but also to add easy-to-obtain model-
based information into the tree, while also using meta-
knowledge about diagnosis indicator to improve the multi-
variate discriminating expression found. As a consequence,
the found multivariate expressions happen to be diagnosis
indicators themselves.

3 Background
3.1 Decision Trees
A decision tree T (E,N) is a directed acyclic graph having
at most one edge between every pair of nodes. E is the set
of edges and N is the set of nodes. T has a root node n0,
characterized by no incoming edge. All other nodes have
exactly one incoming edge. Nodes that do not have an out-
going edge are called leaves. We consider only binary deci-
sion trees, meaning each node that is not a leaf has exactly
two outgoing edges. A path of the tree goes from the root
node to a leaf. The children of a node are the nodes reach-
able from it by following the two outgoing directed edges.

A decision tree can be used to classify a sample x with
n features x = (x1, x2, ..., xn) ∈ Rn. Let us define C
the set of possible classes of cardinality m. A dataset is a
set of pairs (x,Ci) with Ci ∈ C, i ∈ J1,mK. A sample
can designate x alone or the whole pair (x,Ci), depending
on the context. When training (building) the decision tree,
a sample is a pair and when using the tree to predict, the
sample is only x.

Training (that is equivalent to building the decision tree)
is performed by starting from the lone root node of the tree
by figuratively storing all the dataset (all the training sam-
ples) inside it. Then, if the node is pure, meaning that sam-
ples contained in it are all of the same class Ci, the node
is considered a leaf and labeled with the class Ci. If the
node is not pure, a discriminating criterion d is computed.
The most common algorithms used to determine discrimi-
nating criteria are gini and entropy [3]. Once d is chosen,
all samples contained in the node are tested on d and two
new nodes are created, one for the samples that respect the
criterion (d(x) is true), and one for those that do not (d(x)
is false). Then, the whole process is repeated for nodes that
have been created until there are no impure nodes left. As
a consequence, when the decision tree is fully trained, each
leaf has been given a class Ci of C, i ∈ J1,mK.

Once the decision tree has been trained, it can be used to
predict the class of a sample x.

For univariate decision trees, each non-leaf node is asso-
ciated with a feature xi with i ∈ J1, nK and a subset Si of
R. One of the outgoing edges is associated with the condi-
tion (xi ∈ Si), the other one to values that are outside Si

(xi /∈ Si). This is the criterion mentioned before. A deci-
sion in a node is taken based on whether the actual feature
xi belongs to the subset Si. If it does, it is sent to the edge
associated with this condition, if not, to the other.

For multivariate decision trees, a non-leaf node is associ-
ated with k features, the value of k being dependent of the
node. It is also associated with a subset of Rk. A decision
in a node is taken based on whether the actual values of the
k features belong to the subset.

During the prediction phase, classification of a sample x
is performed by following the path of decisions that corre-
sponds to its feature values until reaching a leaf node. The
predicted class is the one associated with this leaf node.

Diagnosis can be considered as a classification problem
with C the set of diagnosis classes and the features of x the
observable variables measured on the system.

3.2 Diagnosis Indicators
A diagnosis indicator is an analytical expression of ob-
servable variables. More precisely, a diagnosis indicator
d : Rn → R is a function of the n observable variables
x = (x1, x2, ..., xn) ∈ Rn whose value is zero for nominal
samples and non zero in some faulty situations. To evalu-
ate a diagnosis indicator d on a sample x means to com-
pute the image of x by d. A diagnosis indicator evaluated
on a nominal sample should always be zero (considering an
ideal, non-noisy environment).

The idea of this paper is to use this knowledge to find
appropriate multivariate relations that will be used to take
a decision in each node of the diagnosis tree. To do so,
we propose to use symbolic classification modified to incor-
porate this knowledge and constrain the output function to
have the properties of a diagnosis indicator.

3.3 Symbolic Classification
Symbolic classification is based on symbolic regression, and
it is necessary to understand symbolic regression to be able
to understand symbolic classification. The principle of sym-
bolic regression is detailed in [13].

Symbolic Regression
Symbolic regression is a method to estimate a function f :
Rn → R knowing pairs (x, f(x)) with x = (x1, x2, . . . ,-
xn) ∈ Rn and f(x) ∈ R. It is a kind of regression that
does not assume the structure of the solution and discov-
ers a precise analytical solution. It relies on a genetic algo-
rithm to find this solution. It takes as inputs a set of pairs
D = {(x, f(x))} called the dataset and a set of operators
O (e.g. +, ∗,−, /,√, ||, log, etc.). It searches for the best
combination Cx,O of variables (x1, x2, ..., xn) and opera-
tors so that Cx,O = f(x). The genetic method is more pre-
cisely described and explained in [13]. The python package
gplearn [14] provides an implementation.

Symbolic regression algorithms such as the one imple-
mented in gplearn accept many hyper-parameters. For
instance, the mutation frequency and likeliness for each
possible type of mutation, the number of candidates solu-
tion at each generation, etc. A major parameter is the fit-
ness function. At each generation, each candidate solution
c : Rn → R (a combination of variables (x1, x2, ..., xn) and
operators) is tested on the dataset D and given a score that
represents how well it fits f . This score is called the fitness.
It is determined using the formula:

Fitness(c) =
1

n

∑
(x,f(x))∈D

(f(x)− c(x))2

with n being the cardinality of D.

Symbolic Classification
Symbolic classification is a binary classification method to
estimate a function f : Rn → R knowing pairs (x, l) with
x = (x1, x2, ..., xn) ∈ Rn and l ∈ C, C being a set of
classes of cardinality two. For the sake of practicality, we
choose C = {0, 1}. Just like symbolic regression, sym-
bolic classification does not assume knowing the structure
of the solution, discovers a precise analytical solution and
relies on a genetic algorithm to train. It also takes a set of



pairs D = {(x, l)} called the dataset and a set of operators
O (e.g. +, ∗,−, /,√, ||, log, etc.) as input. It also searches
for the best combination Cx,O of variables (x1, x2, ..., xn)
and operators so that Cx,O = f(x). Everything is identi-
cal to symbolic regression except the set of values for the
labels l and the way to compute the fitness. Indeed, the
candidate functions, when applied to each sample x, give
a number in R. Symbolic classification accepts an addi-
tional parameter (compared to symbolic regression) often
called the transformer t : R → [0, 1], a function that gets
fed a number y = c(x) ∈ R and that outputs t(y) ∈ [0, 1].
This transformer can take many shapes. Its default value
in gplearn [14] is a sigmoid function. Since a symbolic
classifier aims at predicting classes, the fitness function used
is most often the log loss function ([15]). It is determined
using the formula:

Fitness(c) = − 1

n

∑
(x,l)∈D

[l ln(t(c(x)))

+ (1− l ln(1− t(c(x)))]

with n being the cardinality of D.
In the context of this paper, the transformer is customized

to fit our needs, see Section 4.6

4 DT4X
DT4X stands for Diagnosis Tree with 4 main features: mul-
tivariate analysis, explicable decision-making, incorpora-
tion of meta-knowledge and use of symbolic classification.

4.1 General Principle
The DT4X algorithm aims at building (and training simul-
taneously) a binary decision tree to diagnose a system. This
decision tree is built starting from the root node and by prop-
agating the training data in the corresponding nodes, simi-
larly to what is done traditionally (see Section 3.1). The
pseudo code for the DT4X algorithm is shown in Algo-
rithm 1. The inputs for DT4X are the learning dataset D,
the operators and the hyper-parameters values.

The dataset D contains pairs of corresponding (x, l) with
x ∈ Rn, n ∈ N, the observable variables and l ∈ C
the diagnosis with C the set of possible diagnosis classes
(nominal, faulty1, faulty2, ..., faultym). A faulty sce-
nario can be any faulty state of the system, even multiple
faults occurring at the same time. The dataset must contain
data from the nominal class and from all the faulty classes.
Indeed the tree will only be able to predict faults used to
build it.

The operators are a set of functions specified by the user.
The usual operators are: +, ∗,−, /, sign, abs,√, cos, sin,
... By default, the operators are +,−, ∗, /. They should be
chosen according to knowledge about the system behavior.
For instance, if it is known that a component squares the
input to give the output, it makes sense to include the square
operator and its inverse, the square root operator.

The hyper-parameters are described in Section 4.4.
In the resulting decision tree, each node ni ∈ N that is

not a leaf contains a binary diagnosis indicator dni
: Rn →

R. For a subset SC of C that contains the nominal class,
dni(xi) = 0 and for xi ∈ C\SC , dni(xi) ̸= 0.

Each diagnosis indicator dni is used to split data into two
disjoint subsets. Each subset is then sent to a different child

node. Each leaf of the resulting tree has a label that is the
class predicted for the data that reaches this leaf.

The algorithm uses some concepts that need to be defined.
Definition 1 (Pure with label). A node ni is said to be pure
with label if at least Xp% of the samples belonging to ni are
of class label.

The value Xp is a hyper-parameter of the algorithm.
Definition 2 (Representative). Let us say the majority class
(the one with the most samples in ni) has N samples. A
class is said to be in a representative amount in ni if at least
Xr% of the N samples of this class belong to the node ni.

The value Xr is a hyper-parameter of the algorithm.

4.2 DT4X Pseudo Code
Algorithm 1 gives the pseudo-code of DT4X. The arrow
symbol with a plus (← +) means that the value is appended
to the variable. All the keywords used are explained in Sec-
tion 4.3.

Algorithm 1 DT4X
Input: Training Dataset, Operators, Hyper-parameters
Output: Decision Tree with Diagnosis Indicators

1: currentNodes← rootNode
2: while currentNodes is not empty do
3: for all node ∈ currentNodes do
4: if node is pure with label then
5: node is leaf
6: node← label
7: else
8: pairsToTry ← generate pairs
9: pair← first element of pairsToTry

10: while not check foundExpression
11: and pairsToTry not empty do
12: balance pair
13: foundExpression← SC on pair
14: pair← next element of pairsToTry
15: end while
16: if foundExpression then
17: lNode, rNode← split according to
18: foundExpression
19: futureNodes← +lNode, rNode
20: else
21: node is leaf
22: node← majority label
23: end if
24: end if
25: end for
26: currentNodes← futureNodes
27: end while

4.3 Pseudo Code In-depth Explanation
During the learning phase, a node ni ∈ N contains a set
of samples Dni

⊂ D. Each sample (x, l) in ni verifies the
conditions that are defined on the edges that lead to this node
from the root node.

At the beginning of the DT4X algorithm (line 1), the root
node rootNode contains the entire set D.

DT4X builds the tree starting from the root node and then
going through every single node in the order they are cre-
ated. The algorithm stops when there are no nodes left to
deal with.



When reaching a node ni, the algorithm DT4X first
checks whether ni is pure with label (line 4). If it is
the case, the node ni is designated as a leaf and the label
label is associated to it (line 6).

Otherwise, the goal is to find a new diagnosis indicator
dni

that splits the data belonging to node ni (line 8 to 15).
Since symbolic classification allows classification between
two classes only, the algorithm looks for a diagnosis indi-
cator that splits a specific pair of classes. Thus, we need to
generate a set of possible pairs of classes (pairsToTry)
to split (line 8).

Two cases are distinguished for the pair generation:
• If there are still nominal samples in a representative

amount (see Definition 2) in the node ni, the set of
pairs to try (pairsToTry) is built by having the nomi-
nal data as the first class, and any of the faulty classes
present in a representative amount as the second class.
This means pairs of the shape (nominal, faultyk).

• If the nominal samples are not present in a represen-
tative amount in the node, the first step is finding the
set of faulty classes that are present in a representa-
tive amount. Then, all permutations of pairs of these
classes are generated. It means that for p faulty classes
there will be p ∗ (p − 1) pairs. This also means
that if the pair (faultyi, faultyk) is present, the pair
(faultyk, faultyi) will be present too. This is impor-
tant because of the following reason: the first class of
the pair is then modified so that during balancing (see
further) of the pairs, half of the data of the first class is
made of samples of the class itself, and the other half
is made of nominal data (randomly selected from the
initial dataset). This is done so that symbolic classifi-
cation finds an expression that is worth 0 for nominal
samples but also for samples that are member of the
first class of the pair. This expression will also be dif-
ferent from 0 for samples of the second class of the
pair. In other words, an expression that is triggered by
samples of the second class but not by samples of the
first or by nominal samples.

Once the set of pairs (pairsToTry) is generated, the al-
gorithm loops over those pairs until either it runs out of pairs
to try or until a diagnosis indicator dni

is found that discrim-
inates the classes from the pair correctly (lines 10 to 11).

When a pair is selected from pairsToTry, the first step
is to balance samples in the two classes (line 12). This is
a pre-processing step that checks which class in the pair has
less samples and randomly selects the same number of sam-
ples from the class that has the most samples. This is done
so that the ensuing symbolic classification is performed with
balanced classes.

Then the symbolic classification algorithm is performed
on the pair as described in Section 3.3 (line 13).

Symbolic Classification (SC in the pseudo code)
always returns an expression candidate, named
foundExpression, that is the best it found (line 13).
However, this expression might be the best found but still
not good enough to be considered as a good diagnosis
indicator, either because the best possible expression has
not been found or because the pair of classes used to train
the symbolic classification are samples from non isolable
fault cases. Thus, it is important to check (line 10) if the
found expression is a diagnosis indicator. This is done by
taking two consecutive tests.

T1 Check that the nominal data from the whole dataset is
predicted as 0 by foundExpression. If at least XT1

%
of the nominal data is predicted as 0 then the test is
passed successfully, XT1

being a hyper-parameter of
the algorithm.

T2 Check that foundExpression predicts correctly
XT2% of the data used to find it through symbolic clas-
sification. This does not include the data discarded
for balance purposes. Indeed, symbolic classification
might not be able to fit the data and the output ex-
pression might be random and not classify the data
correctly. This test ensures that foundExpression is
classifying correctly. XT2

is a hyper-parameter of the
algorithm.

If either T1 or T2 is false, then foundExpression is not
considered as a valid diagnosis indicator and the loop over
the pairs continues.

Once either a diagnosis indicator dni
has been found

or all pairs have been tested, the while loop is exited.
If a diagnosis indicator dni was found, corresponding to
foundExpression (line 16), the data in node ni is split
according to dni . The algorithm evaluates dni on the sam-
ples included in Dni . If the result is 0, the sample (x, l) is
sent to the left child of the current node (lNode). If the re-
sult is different (from 0), the sample is sent to the right child
(rNode). If no diagnosis indicator was found (line 20), the
class that has the most samples in Dni

has the majority
and the node is labeled with this class (line 22) and declared
a leaf.

4.4 Hyper-parameters
The hyper-parameters described in the previous section are
summarized in Table 1, along with the hyper-parameters for
symbolic classification.

DT4X Default Value
purity threshold Xp 0.95

relevance threshold Xr 0.05
performance on nominal threshold XT1 0.95
indicator performance threshold XT2

0.90
Symbolic Classification Default Value

ϵ 0.01
population size 5000

maximum number of generations 50
proportion of samples used 1

parsimony coefficient 0.02

Table 1: List of hyper-parameters and their default value

The DT4X hyper-parameters are described in Section 4.3.
The ϵ parameter is described in Section 4.6. ϵ has a pow-

erful influence on the outcome of symbolic classification,
so it should be modified according to the studied system. It
should be scaled according to the order of magnitude of the
data.

The parameter population size corresponds to the number
of candidate solutions generated at each generation of sym-
bolic classification. The higher it is, the more likely it is that
convergence towards a good solution will be fast. However,
the larger it is, the more time the training will take.

The maximum number of generations is the number of
generations beyond which the algorithm will stop even if it



Figure 1: Single Faults Decision Tree

did not find any solution. The bigger it is, the more chances
the algorithm has to find the right solution. However, when
there is no solution to be found, a higher number might
lengthen the time it takes to stop.

The proportion of samples used is the proportion of the
dataset that will be used to test each candidate solution. It
allows a trade-off between computation time and accuracy.
Since, in this case, a better accuracy means finding better
diagnosis indicators, and since a better diagnosis indicator
means a faster prediction, the proportion of samples used
should remain high. Indeed, prediction time should have
priority over training time. Thus, the whole dataset is used
by default.

When computing the fitness of a candidate solution, a
penalty is subtracted to its score. This penalty is the parsi-
mony coefficient multiplied by the length of the expression
of the candidate solution. This favors shorter solutions.

4.5 Prediction with DT4X
Once DT4X finished building the tree, it can be used to pre-
dict the class of a sample x, meaning to diagnose the system
status when x was measured. Prediction is performed by in-
putting x in the root node. When x reaches a node ni, the
diagnosis indicator dni

of this node is evaluated on x. Sim-
ilarly to what is done in Section 3.1, depending on the result
of this evaluation, x is sent to one output edge or the other.
When x reaches a leaf node, the prediction is made and it is
the label of this leaf node.

4.6 Implementation of DT4X
In DT4X, the transformer for the symbolic classification is
customized to fit our problem. Indeed, symbolic classifi-
cation is here used to find diagnosis indicators. Thus, the
custom transformer t used is the following:

−ϵ <y < ϵ =⇒ t(y) = 0 (1)
y ≤ −ϵ or y ≥ ϵ =⇒ t(y) = 1 (2)

With ϵ a parameter of DT4X. If nominal data is inputted as
class 0 and a faulty scenario data is inputted as class 1 and a
function is found that has perfect accuracy on this data, then
this function is a diagnosis indicator (in the sense that it is
null in nominal cases and not null for this faulty scenario and
it only involves observable variables). This fault indicator is
sensitive to at least the fault used to find it.

5 Illustration on the Polybox Example
DT4X has been tested on the polybox use case. The polybox
is a fictional static system that contains five components:
M1, M2, M3, A1 and A2. These components are connected
as shown on Figure 2. The M components are multipliers
(the output equals the product of the inputs) and the A com-
ponents are adders (the output equals the addition of the in-
puts).

Figure 2: The Polybox

Each component can malfunction, meaning the compo-
nent does not produce the correct output according to the in-
puts. Thus, there are five possible faults in this system. For
the sake of simplicity, the fault associated with component
M1 is called fault M1 and idem for the other components.

There are seven observable variables in this system:
a, b, c, d, e, f and g. The pairs in the dataset are of the shape
(x, l) with x = (a, b, c, d, e, f, g) and l ∈ C with C the
set of possible diagnoses. In the context of this study, two
experiments have been made. One with single faults only
and one with double faults as well as single faults. It can be
noted that cases with triple, quadruple and all faults are very
similar to the double faults case, and work the same.



Figure 3: Double Faults Decision Tree

5.1 DT4X results
Single Faults
If only single faults are considered, C = {Nominal, fault
M1, fault M2, fault M3, fault A1, fault A2}. The experi-
ment presented here uses a randomly generated dataset of
16807 nominal samples and 16807 faulty samples, each be-
ing of one fault type. A fault or a component malfunction
is defined as an output from this component that is different
from the expected value. Thus, a faulty component outputs
the expected value plus a modifier in {−3,−2,−1, 1, 2, 3}.
Then, this dataset is randomly split between a training set
with 23530 samples and a testing set with 10084 samples.
The training set is injected into DT4X with default hyper-
parameters and the output decision tree is shown in Figure 1.

The accuracy of this decision tree on the test set is
80, 09%.

Double Faults
When considering double faults, C = {Nominal, fault M1,
fault M2, fault M3, fault A1, fault A2, fault M1 & fault M2,
fault M1 & fault M3, fault M1 & fault A1, fault M1 & fault
A2, fault M2 & fault M3, fault M2 & fault A1, fault M2 &
fault A2, fault M3 & fault A1, fault M3 & fault A2, fault
A1 & fault A2}. This experiment also uses a randomly gen-
erated dataset of 16807 nominal samples and 16807 faulty
samples, each being of one random fault combination (ei-
ther single or double fault). A faulty component outputs the
expected value plus a random modifier in J−15 , 15K* but in
the case of double faults, the value of the two modifiers are
neither the same nor the opposite of each other, in order to
avoid fault cancellation. Then, this dataset is randomly split
between a training set with 23530 samples and a testing set
with 10084 samples. The training set is injected into DT4X
with default hyper-parameters and the output decision tree

is shown in Figure 3.
The accuracy of this decision tree on the test set is

63.67%.

5.2 Discussion
Classical DT Results
In order to compare DT4X to the more common univari-
ate decision trees, we trained a scikit-learn1 default deci-
sion tree (SklDT) on both single and double fault training
datasets.

The accuracy of sklDT on the same single fault test set
is 46.85%. Its accuracy on the same double fault test set is
47.33%.

In order to give a better comparison of the two algorithms,
we trained a scikit-learn decision tree and a DT4X diagnosis
tree for 10 different datasets randomly generated (but still
with 23530 samples). The results are presented in Table 2.
The time columns correspond to the prediction time for the
whole test set (10084 samples) with the same hardware.

The training time for the scikit-learn decision tree is
around one second for single faults and five seconds for
double faults while DT4X takes around fifteen minutes for
single faults and one hour and twenty minutes for double
faults, both trained on the same hardware (an AMD Ryzen
9 6900hx with radeon graphics, 16 cores). Overall, a factor
of a thousand between the two. In addition, Table 2 shows
that the prediction time for scikit-learn decision trees are
shorter.

Nevertheless, the univariate decision is not interpretable
right away. A set of conditions on variables can be extracted
by following the paths to a certain class. In the case of

1https://scikit-learn.org/stable/modules/tree.html



SklDT DT4X
Id accuracy (%) time (s) accuracy (%) time (s)
1 47.83 0.08 79.93 0.64
2 47.27 0.09 80.30 0.63
3 47.10 0.08 80.00 0.64
4 47.46 0.08 80.14 0.85
5 47.84 0.08 79.52 0.79
6 45.96 0.09 80.08 0.66
7 47.17 0.08 80.59 0.94
8 42.28 0.09 80.16 0.94
9 47.81 0.09 80.66 0.64

10 46.63 0.09 79.72 1.32

Table 2: Comparison of DT4X and scikit-learn decision
trees

DT4X, the expressions in the nodes are diagnosis indicators
on their own, as it will be explained later.

A comparison with a multivariate decision tree parame-
terized and trained specifically for the polybox case (rather
than the sci-kit learn univariate decision tree) would be more
relevant and is a priority among our future works. However,
we are confident a better accuracy cannot be reached (see
the next section).

Analytical Redundancy Approaches
Model-based diagnosis can be performed using analytical
redundancy approaches. They extract fault indicators called
Analytical Redundancy Relations (ARR) from the model of
the system [16].
Definition 3. An analytical redundancy relation (ARR) is a
constraint deduced from the system model which contains
only observed variables, and which can therefore be evalu-
ated from any observable sample x. It is noted r = 0, where
r is called the residual of the ARR.

ARRs are used to check the consistency of the observa-
tions with respect to the system model. The ARRs are sat-
isfied if the observed system behavior satisfies the model
constraints. ARRs can be obtained from the system model
by eliminating the unknown variables.

ARRs are relations between observable variables that are
sensitive to certain faults, in the sense that they are false in
these faulty situations and they are true otherwise.

The ARRs for the polybox are presented in Table 3. An
example on how to obtain them is presented in [16]. This
representation is called a signature matrix. It indicates in
which cases an ARR is verified or not.

N M1 M2 M3 A1 A2
ARR1 =

a ∗ c+ b ∗ d− f O X X O X O
ARR2 =

e ∗ c+ b ∗ d− g O O X X O X
ARR3 =

c(a− e) + g − f O X O X X X

Table 3: Signature Matrix of the Polybox

N means Nominal, M1 means fault M1, and idem for the
other faults. An O means that the ARR is verified (is equal
to 0) for this case, and a X means it is not.

Let us consider the single fault decision tree in Figure 1.
The diagnosis indicator found in the first node corresponds

to ARR1 in Table 3. The samples that went through the
left side of the tree are those that verify it. They are those
from classes nominal, fault M3 and fault A2. These faults
are exactly the ones ARR1 is insensitive to. The same rea-
soning can be applied to ARR2. Actually, the first two lines
of the signature matrix can be built from the tree, and vice
versa. The first two lines of the signature matrix and the
single fault tree are strictly equivalent.

In the double fault tree, the same reasoning can be ap-
plied to find the three ARRs. However, in this case, there
is no strict equivalence between the tree and the signature
matrix. Indeed, the signature matrix allows to build the tree,
but not the other way around. For instance, the diagnosis in-
dicator b ∗d+ e ∗ c− g = 0 is true for all scenarios of {fault
M1, fault A1, fault M1 & fault A1} and false for all sce-
narios of {fault M2, fault M1 & fault M2, fault M1 & fault
M3, fault M1 & fault A2, fault M2 & fault M3, fault M2 &
fault A1, fault M2 & fault A2, fault M3 & fault A1, fault A1
& fault A2}. However, with the tree alone we can not say
whether it is sensitive to the other faults. Though, consid-
ering the way it was built, it is expected to be insensitive to
the nominal samples. Summarizing, there is more informa-
tion in the matrix than in the tree and all the information of
the tree is contained in the matrix. Nevertheless, the infor-
mation that is lacking in the tree to reconstruct the signature
matrix is information that is not useful to perform full de-
tection and isolation of the faults. The information that the
matrix possesses but not the tree is useless to achieve maxi-
mal diagnosability.

We indeed conjecture that the tree contains the minimal
information for maximal fault diagnosability. This makes
sense because analytical redundancy approaches show that
the accuracies obtained with single fault and double fault
trees are the highest accuracies achievable for this system
and this dataset.

Indeed, the signature matrix shows that fault M3 and fault
A2 are not isolable. Same for fault M1 and fault A1. Thus,
fault M3 samples are predicted as fault A2 and fault A1 sam-
ples as fault M1. Considering that the dataset contains 50%
of nominal samples, approximately 10% of each fault sam-
ples and 2 of those faults are non isolable, the accuracy can
not be reliably more than 80% which is what the single fault
tree gives according to Section 5.1.

Applying the same reasoning to double fault trees gives a
maximum reliable accuracy of 63.33%. This conjecture is
to be studied in future work.

In the decision trees presented in Figures 1 and 3, a label
is given to leaves that contain multiple classes based on the
class that has more samples. However, this is just to be able
to perform classification automatically. In an online envi-
ronment where the system is used to give advice to an oper-
ator, or in order to give a relevant diagnosis, the algorithm
can output all the classes present in a representative amount
in the node reached by the tested sample. This avoids having
to attach only one label to a node that contains two classes
with pretty much the same amount of samples.

6 Conclusion
The DT4X algorithm builds a multivariate decision tree that
performs diagnosis. Decisions in each node are taken based
on a diagnosis indicator found through symbolic classifica-
tion. The obtained decision tree is easily interpretable be-
cause each discriminating expression in nodes is an explicit



diagnosis indicator. It has been tested on the well-known
polybox system and has been confirmed to output great ac-
curacies. However the question is raised about the possibil-
ity to apply this algorithm to more computationally complex
systems. Experiments show that the DT4X training step
is costly and more complex than a univariate decision tree
training. However, its accuracy on a test set is much better
and it allows discovering fault indicators otherwise obtain-
able only through knowledge about the system model.

Future work will improve DT4X by adding some infor-
mation on the structural model of the system. This is pos-
sible by biasing the starting generation of symbolic classifi-
cation. The next step is testing DT4X on logic circuits and
dynamic systems. Interestingly enough, in the case of the
polybox, ARRs are found. However, the constraints imply
that any diagnosis indicators can be found, not necessarily
ARRs. Future research will show whether this is the case on
logic circuits and dynamic systems.
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