
HAL Id: hal-04186376
https://hal.science/hal-04186376v1

Submitted on 2 Dec 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

User acceptance test for software development in the
agricultural domain using natural language processing

Leandro Antonelli, Guy Camilleri, Diego Torres, Pascale Zaraté

To cite this version:
Leandro Antonelli, Guy Camilleri, Diego Torres, Pascale Zaraté. User acceptance test for software de-
velopment in the agricultural domain using natural language processing. Journal of Decision Systems,
2023, pp.1-24. �10.1080/12460125.2023.2229579�. �hal-04186376�

https://hal.science/hal-04186376v1
https://hal.archives-ouvertes.fr

User acceptance test for software
development in the agricultural domain

using natural language processing

Leandro Antonelli1, Guy Camilleri2, Diego Torres1,3, and Pascale Zaraté4

1 LIFIA - CICPBA - Facultad de Informática, Universidad Nacional de La Plata, 50
y 120, La Plata, 1900, Argentina

2 University of Toulouse, IRIT, Université Toulouse III - Paul Sabatier, 118 Route de
Narbonne, F-31062 Toulouse Cedex 9 France

3 Depto. CyT, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, Bernal,
B1876BXD, Argentina

4 University of Toulouse, IRIT, Université Toulouse I - Capitole, 2 rue du Doyen
Gabriel Marty, 31043 Toulouse, France

leandro.antonelli@lifia.info.unlp.edu.ar;guy.camilleri@irit.fr;
diego.torres@lifia.info.unlp.edu.ar;pascale.zarate@irit.fr

Abstract. Software test case design is one of the most challenging
activities since many actors with different backgrounds and points of view
about the domain must participate in designing test cases that should
cover most of the user’s needs and expectations. This activity is more
complex in the agricultural domain since tasks can be done in very
different ways because practices vary worldwide regarding weather
conditions and the level of mechanization. Moreover, even if the farmers
belong to the same region, practices can vary regarding their budget or
the philosophy (organic or artificial) they follow. Thus, in this context, it
is very hard to design test cases to validate requested functionality that
automatizes some farm tasks. This paper proposes an approach to make
the testing step easier, designing User Acceptance Tests (UATs) from
requirements captured through scenarios. The scenarios capture the
knowledge of different stakeholders (farmers) and using natural language
processing tools, the approach proposed to consolidate the set of
scenarios in a consistent and coherent base of knowledge organized in a

tree, from where the design of test cases is extracted using the Task /
Method model, a tool from the Artificial Intelligence.

Keywords: User Acceptance Tests; Requirements Specifications;
Scenarios; Task/Method model; Agriculture Production Systems

1 Introduction
Software development is a big challenge considering the communication gap that
arises between the IT team and the clients since these two groups of people speak
different languages. The IT team speaks a technical language oriented to the de-
sign of the solution that the software system should provide, while the clients

Title Suppressed Due to Excessive Length 2

speak a technical language oriented to the problem domain. Thus, it is very hard
for both parties to communicate with each other. This communication is even
more difficult because inside each group there are many people with different
backgrounds, knowledge, and language. For example, there are sponsors, users,
and domain experts from the client side, while there are commercial officers,
managers, analysts, and developers from the IT team. Moreover, the situation
is even more complex in the agricultural domain, because agricultural practices
are mainly regional since weather, soil conditions, plants, materials, and
techniques are specific to a region. For example, some farmers produce in an
organic way while others produce in a conventional way. That is, while organic
farmers are focused on ecological production, conventional farmers generally use
modern technologies like chemical crop protection and synthetic fertilizers
among other practices [33, 1, 41]. Then, water resources of the region (because of
the weather conditions or because of its proximity to sources of fresh water)
can restrict the type of watering practices that can be carried out. For example, if
there are plenty of water resources, a sprinkler irritation technique can be carried
out [44]. If the resource of water is limited a drip irrigation system is a better
option [50]. Finally, hydroponic farming is a technique to use where water must
be saved and the quality of the soil is not good [39]. Although every application
domain has its particularities and a proper language, the agriculture field
combines different elements: living beings (the plants), different levels of
technology (from manual practices to complete automatization with IoT),
different conditions (from economic conditions to natural conditions), and many
stakeholders involved (the chain supply in the agriculture include management,
production, commercialization, etc.). These elements create a variety in the
language that could be similar to the Health application domain, although in the
Health field, fewer people than in the agricultural domain participate. Thus,
although the proposed approach is domain independent, the agriculture domain
includes a variety and complexity in the language to justify the applicability and
usability of the proposed approach. The amount and variety of stakeholders are
also related to a specific context of development, the market-driven software
development. In this type of development, managing requirements is a big issue
since it is not easy to elicit and agree on requirements from all the stakeholders
[24]. Thus, designing test cases
[8] is also a great challenge.

Let’s consider the following situation that involves a farmer who knows how
to grow crops and a business administrator who knows how to deal with eco-
nomic accounts. The farmer says to the administrator: “Can you help me to sell
more products because I need to increase my benefits?”. And the business
administrator answers, “Increasing the selling of goods is not the only way to
increase the utilities.” It seems that they are talking about different things, but in
fact, they use different words to express the same idea, and it could seem confusing
for someone not familiar with the terms, because “goods” are materials that satisfy
human wants and provide “utility”.

Communication of both worlds is extremely important for the project soft-
ware development’s success since the clients state their goals, needs, and wishes

Title Suppressed Due to Excessive Length 3

that should be translated into requirements. And these requirements (as for
example in the software development V model [15]) are usually the source
information to design the test cases that assure the software application satisfies
the client’s need.

Traditional techniques to design test cases can be grouped into two main
categories. White box tests and black box tests. The first one needs a detailed
specification of execution workflows of the software application to analyze all
possible flows to test all of them. The second type of category needs all the data
that a software application needs to provide all the possible combinations
concerning the data to perform a decision table that considers every possible
combination. Thus, in order to test a software application, generally source code
is used as input, although it is beneficial to use an artifact of early stages as
requirements, so the validation of the software application is tied closely to
clients’ products. This type of test is called system test and user acceptance test,
both types of tests have the same goal, to ensure that the whole system satisfies
clients’ needs. The difference between both types relies on that the person who
performs the tests: user acceptance tests are performed by some representative
of the client, while system tests are performed by some member of the
development team [20]. Generally, system and user acceptance tests are more
related to white-box tests, where a flow of actions is tested. In this paper, two
expressions are used "User Acceptance Tests" and "Test cases". It is important to
mention that "User Acceptance Test" is a specific type of test like for example,
others specific types of tests "System Usability Tests", and "Integration Tests".
Meanwhile, "Test case" is a generic expression that refers to a set of actions or
instructions that validates a specific aspect of a product.

Scenarios [3] are a suitable type of artifact to specify knowledge of the do-
main. That is, they can be used to describe the dynamic of a system as well
as the requirements of a software system. Scenarios are described using natural
language, without introducing complex formalism, so they are adequate to be
produced and consumed by the client. It implies removing the aspects that are not
relevant to analyze the test cases. Moreover, a scenario describes a sequence of
events, and this is related to the flows of actions that lately the software
application will provide. Furthermore, scenarios usually describe situations,
materials, and actors that are related to conditions and data that lately will appear
in the source code. Thus, a scenario provides in an early stage a good description
of a software application that can be used as the input that the test cases design
activity needs.

Designing test cases conceptually requires processing the flows of execution
or the set of data to obtain a set of combinations of them, to evaluate the software
application with the wide range of possible situations to assure that its behavior
is the intended behavior (that is, it agrees with the requirements). Task
/ Method model [48] is a technique of the Artificial Intelligence that provides
the capability to process semi structured descriptions (for example scenarios) to
obtain a weaving (combinations). Thus, the Task / Method model can be used
to process Scenarios to obtain all the combinations.

Title Suppressed Due to Excessive Length 4

The goal of this paper is to provide an approach to relate or compose scenarios
and use the Task / Method model to obtain test cases without inconsistencies
inserted by vocabulary concerns. Moreover, the approach also considers
excluding any irrelevant aspects or cases when selecting test cases for analysis.
That is, the approach uses the Scenarios as input and produces test design as
output. The approach does not consider any feedback to correct the Scenarios, it
only processes the scenarios (with some manual and some automatic tasks) and
pro- duces the test design. These tests can either be used as a framework to specify
more detailed user acceptance or system tests.

Nevertheless, this proposal extends the previous publication regarding the
analysis of the scenarios. The scenarios are written by different people, that is a
farmer can write one scenario while a business administrator writes another one.
Although they use different languages, the scenarios need to be related to each
other to provide a consistent description of the whole system so that the test cases
can cover it. Thus, this new proposal uses natural language processing techniques
and semantic support to relate the scenarios, while the previously proposed
approach considered that the scenarios were described and consolidated, so they
were described using a consistent language. We believe that this contribution (the
use of natural language processing and semantic support) to related scenarios is
one of the greatest advantages regarding other proposals. At the moment of
writing this article and according to authors knowledge there was no evidence of
other proposals to derive test from scenarios using these techniques to consolidate
the scenario.

This approach is intended to be used mainly in an agile software development
process where the specification of requirements is not so detailed, thus scenarios
can add more information. Moreover, since agile software development is
incremental, our proposed approach provides continuously the whole landscape
of the test designs sprint after sprint considering the addition of new
functionality. Finally, it is important to mention that the proposed approach
provides a guideline of the chain of situations that are relevant to test, although it
does not provide specific context and detailed results for the tests. That is, our test
cases are nearer to user experience than to unit tests. Because of the nature of the
agile development, the effort invested in the specification is not so big, thus some
vocabulary concerns can arise due to the involvement of different stakeholders.
Thus, our proposed approach helps with this issue. Moreover, since User Stories
describes requirements vaguely and the scenarios describe the dynamic of the
domain (some part automatized by the software application), our proposed
approach helps to cope with this issue about the boundaries of the application
in the Scenarios. The product owner (or the engineer in charge) is the intended
role to use our proposed approach to obtain the test cases to provide to the
development team. Our approach uses the Task/Method paradigm in order to plan
all possible tests to be done for the developed software [10].

This paper is organized in the following way. Section 2 discusses some other
approaches proposed by other authors for a similar situation. Section 3 describes

Title Suppressed Due to Excessive Length 5

some concepts needed to understand our proposed approach. Section 4 explains
our approach. Finally, Section 5 provides some conclusions.

2 Background

This section describes the two main modeling techniques used in our proposed
approach. The first technique is a template for describing the Scenarios: the input
of our approach. The second technique is the Task / Method model, a conceptual
model that provides the execution capability of the specification of the Scenarios
to obtain the execution tree of all the alternative workflows.

2.1 Scenarios

The Scenarios are adequate artifacts to describe the behavior of an application
domain. They simply tell a story, and it is easy for no technical people to do that
since everyone knows how to tell a story (for example a joke or an anecdote).

Scenarios can be used in different software development stages, from refining
business processes to describing requirements [3]. There is a gap between the
context domain (the real world where the process is carried out) and the software
application (the tool to be used in the real world) [22]. Scenarios can describe
both: real-world events like business processes and requirements.

There is a wide range of descriptions of Scenarios from visual artifacts such as
storyboards to structured text [51]. Leite et al. [38] propose a textual Scenario
with a template containing the following attributes: (i) a title that identifies the
scenario, (ii) a goal with the objective that the scenario pursues, (iii) a context that
states the starting point of the scenario, (iv) the actors, that is, the subjects that
perform actions, (v) the resources, that is, the material and information the
actors need, and (vi) the episodes, the sequence of actions to be carried out
within the scenario. Table 1 summarizes the structure. It is important to mention
that the template proposed by Leite et al. [38] also includes exceptions and
restrictions from which non-functional requirements can be obtained as well as
more alternative situations. Moreover, the context attribute can include specific
information like geographic location, temporary location, and precondition.
Nevertheless, this information is not considered in our proposed approach, we
plan to use it in a further work.

Let’s consider, for example, the domain of agriculture where two different
farmers describe the activity of fertilizing. Fertilizing is performed usually while
watering since the fertilizers are dissolved into water. Thus, big farms have an
infrastructure to perform watering with pipes, pumps, and tanks. The fertilizers
are poured into the tank, the pump is turned on, and the mixture of water with the
fertilizers is spread over the field. This situation is described in Table 2.
Nevertheless, fertilization can be done in another way if the field does have not
the described infrastructure or if the field has the infrastructure but the water
in the tanks is not enough to activate the pump. In these situations, fertilization

Title Suppressed Due to Excessive Length 6

Table 1. Scenario template

Title: Identify the Scenario by a name.
Goal: It defines the conditions to be reached after the execution of the Scenario.
Context: Also known as pre-conditions that should be satisfied at the beginning of
the Scenario execution.
Actors (and agents): Stakeholders that execute actions to reach the goal from the
context.
Resources: The elements and products that are manipulated or used by actors to

perform actions.
Episodes: These are the steps that actors execute to reach the goal.

Table 2. Scenario Fertilize using the irrigation pipe

Title: Fertilize using the irrigation pipe.
Goal: Add nutrients to the plant.

Context: The cistern has enough water to activate the irrigation pipe.
Actors (and agents): Farmer.
Resources: cistern with water, irrigation pipe, minerals, chart to calculate the
amount of minerals.
Episodes:
The farmer calculates the amount of minerals.
The farmer dilutes the minerals in the water.
The farmer pours the mixture into the irrigation pipe.

The farmer activates the irrigation pipe.
The farmer pours fresh water into the irrigation pipe.

is performed manually using a spraying backpack. This alternative scenario is
described in Table 3.

Another important characteristic of the scenarios is that they can be com-
posed, that is, one episode of one scenario can be described as a whole scenario.
For example, fertilizing is one of the main activities to perform during the
cultivation, but there are others: watering, performing cultural labors (removing
weeds among the plants), etc. Thus, let’s consider a scenario that describes the
activities during the vegetative phase of the plant. This scenario includes different
steps in their episodes. One of the steps is “fertilize using the irrigation pipe”, Table
4. Thus, the detail necessary to understand this activity must be obtained from the
previous scenario Table 2.

It can be noticed, that the first two episodes of the scenario in Table 4 are
too general (”The farmer waters the plants” and “The farmer performs cultural
labors”), while the last episode (”The farmer fertilizes using the irrigation pipe”)
is very specific. This example was provided to show explicitly the link between the
Scenario “Cultivate the plants” and “Fertilizes using the irrigation pipe”.
Nevertheless, the episodes are commonly more general as “The farmer fertilizes
the plants”, since this is the activity that he performs. Then, the activity can be
performed in two ways: “Fertilize using the irrigation pipe” and “Fertilize using
the spraying backup”.

Title Suppressed Due to Excessive Length 7

Table 3. Scenario Fertilize using the spraying backpack

Title: Fertilize using the spraying backpack.
Goal: Add nutrients to the plant.

Context: The cistern does not have enough water to activate the irrigation pipe.
Actors (and agents): Farmer.

Resources: water, backpack, minerals, chart to calculate the amount minerals.
Episodes:
The farmer calculates the amount of minerals.
The farmer dilutes the minerals in the water.
The farmer pours the mixture into the backpack.

The farmer sprays the liquid into the plant.

The farmer washes the backpack.

Table 4. Scenario Cultivate the plants

Title: Cultivate the plants.
Goal: Perform the necessary activities to foster the plant to grow up.

Context: The plant has reached its vegetative phase.
Actors (and agents): Farmer.
Resources: water, fertilizer, pruning scissors.

Episodes:
The farmer waters the plants.
The farmer performs cultural labor.

The farmer fertilizes using an irrigation pipe.

2.2 Task / Method model
The Task/Method model is a conceptual model where knowledge is described in
declarative form. This facilitates their processing by execution engines and
planners [4]. A conceptual model is composed of two sub-models: a domain model
and a reasoning model [48, 43, 2]. The domain model contains the objects of the
world (or more precisely the application domain, similar to an application
ontology). The achievement descriptions of tasks are described in the reasoning
model. Therefore, all relevant objects and relations of the world used in the
reasoning model must be represented in the domain model. Generally, the UML
modeling language is used to describe domain models. They are often
implemented using an object-oriented language. The Task/Method paradigm
(coming mainly from the field of artificial intelligence) is generally used to
represent models of reasoning. This paradigm is defined below.

Definition 1. A task (or an action) is a transition between two world states.

The following attributes define it:

Name: the name of the task,

Par: the list of parameters used by the task,

Objective: the task goal,

Methods: the list of methods that enable the task to be performed.

Title Suppressed Due to Excessive Length 8

Definition 2. One way (at a single level of abstraction) to perform a task is

described in one method. The method is defined by :

Header: task achieved by the method,
Prec: conditions that must be satisfied in order to apply the method,
Effects: effects caused by a successful application of the method,
Control: description of the order in which the subtasks should be executed,
subtasks: set of subtasks.

In a reasoning model, the reasoning is modeled by the decomposition of tasks
into subtasks. One decomposition is represented using one method. The reasoning
model is therefore a set of hierarchical decompositions of tasks. De- compositions
end with the terminal tasks which are directly executable (there is no method for
them).

This section describes briefly the attributes required to understand the
proposed approach. A complete description can be found in Camilleri et al. [10].
In addition, the precondition and effect fields will not be used in this work. For the
Task/Method model, we deal only with a high-level description that does not
require a domain model.

3 Approach
3.1 Our approach in a nutshell
The proposed approach is a three steps approach that uses Scenarios as input and
produces a set of test cases as output. The first step of the approach consists in
integrating the scenarios in a tree, where the relationship used to build a tree is “an
episode is described as a scenario”. This step is performed automatically using
natural language processing and semantic tools, to discover the relationships
between episodes and scenarios. Then, the second step of the approach consists
in removing the branches of the tree that are not relevant to analyze to design test
cases. This step is performed manually since the engineer in charge of the
development of the software application based on the scenarios is the one who
knows the scope of the system. Finally, the third step of the approach consists
in creating all the combinations of the possible flows of the sequence of actions to
design the test cases. This step is performed automatically using the Task /
Method model. Figure 1 shows a summary of the approach.

Fig. 1. Our approach in a nutshell

The following subsections describe each step of the proposed approach.

Title Suppressed Due to Excessive Length 9

3.2 Step 1, build a tree of scenarios (composition)

The linking between episodes and scenarios can face different situations, from the
simplest one, where the same expression is used in the episode and the title of the
scenarios, to the most complex one, where the expressions are different and it is
necessary to analyze in detail the attributes that constitute both different activities
to infer whether they are similar. Thus, this step of building a tree by linking
scenarios (in fact, linking episodes to scenarios) can be done using three different
techniques: (i) syntactic recognition, (ii) semantic recognition, and (iii) analysis
of attributes. The rest of this subsection describes each one of the techniques.

It is very important to mention that the composition is done between one
episode and one scenario. That is, the proposed approach does not consider the
situation where one episode can be linked to several scenarios at the same time.
This situation is considered future work.

The first technique, syntactic recognition is the simplest situation and it can be
solved using natural language processing tools. Let’s consider the scenario
“Cultivate the plants” (Table 4). This scenario includes the episode “The farmer
fertilizes using the irrigation pipe”. This expression is quite similar to the one used
in the title of the scenario “Fertilize using the irrigation pipe”. The last part
of the expression is exactly the same as “using irrigation pipe”. The episode
includes the subject “The farmer”, and both expressions contain the verb
“fertilize”. The difference regarding the verbs is that the expression that contains
the subject “The farmer” contains the verb conjugated “fertilizes” for the third
person, while in the other case, it is written in its bare infinitive “fertilize”. This
situation could be even more complex since the episode of the scenario “Cultivate
the plants” (Table 4) could only state “The farmer fertilizes the plants”. In this
situation, this episode should be linked to both scenarios simultaneously. It should
be linked to the scenario “Fertilize using the irrigation pipe” (Table 2) and the
scenario “Fertilize using the spraying backpack” (Table 3). In this case, the link
relies mainly on the verb “fertilize”. In order to perform this syntactic analysis
to link episodes with scenarios, we use different tools provided by natural
language processing tools. The first one is the Levenshtein distance for syntactic
similarity. This technique measures how similar are both expressions regarding
characters in common and difference and their relative positions. Using this
technique, the distance between “The farmer fertilizes using the irrigation pipe”
and “Fertilize using the irrigation pipe” would be close. The second tool we use is
Part of Speech tagging in combination with lemmatization. Part of a Speech (POS)
tagging is a tool that determines the function of every word in a sentence. Thus
“The farmer fertilizes the plant” after a pos tagging will provide that: “the” is a
determinant article, “farmer” is a noun, “fertilizes” is a verb, etc. Since the most
significant word in the episode and in the title of the scenarios are the verbs,
because they describe the activity, with POS tagging the word “fertilizes” can be
identified from the episode and the word “fertilize” can be obtained from the title
of the scenario. Then, using lemmatization verb “fertilizes” is transformed to its
bare infinitive “fertilize”.

Title Suppressed Due to Excessive Length 10

The second technique, semantic recognition, applies when the expressions are
different but the meaning is the same. This analysis is performed using
dictionaries and considering synonyms, as well as hyponyms and hypernyms. For
example, “Tomato” is the usual name that every regular consumer uses when
shopping in the grocery store. And “Solanum Lycopersicum” is the scientific name
that engineer use. Both “Tomato” and “Solanum Lycopersicum” are synonyms.
Then, the “Tomato” is a “plant”. Thus, “plant” is the hypernym, while “tomato” is
the hyponym. Moreover, “solanum” is the hypernym, and “Solanum
Lycopersicum” is the hyponym. However, “Solanum” and “plant” are not
synonyms. There are glossaries (dictionaries, vocabularies) that describe
concepts and also include relationships between them (for example the three
mentioned: synonym, hypernym and hyponym)5.

Let’s consider the episode “The farmer waters the plants” of the scenario
“Cultivate the plants” (Table 4). And consider another scenario with the title
“Irrigate the tomatoes”. The expressions “The farmer waters the plants” and
“Irrigate the tomatoes” are related since water and irrigate describe the same
activity, and tomatoes are one specific type of plant. Using semantic recognition
and some POS tagging tools it is easy to find the link between both expressions.
With POS tagging the verb “water” and the noun “plant” can be identified from the
episode. Then, using the same POS tagging, the verb “irrigate” and the noun
“tomato” can be obtained from the second expression. Then, using some glossary
can be identified that “water” and “irrigate” are synonyms, while there is a
relationship of hyponym and hypernym between “tomato” and “plant”. Thus, we
can conclude that both expressions are similar.

The last technique: analysis of attributes, applies when it is necessary to
determine whether an episode is related to a scenario by analyzing the attributes
of the scenario (and not only its title). That is, by analyzing the descriptions
of the scenarios: goal, context, actors, resources, and episodes. For example,
fertilizing a plant implies using chemical products to add nutrients to a plant. Thus,
the episode of one scenario can state: “The farmer fertilizes the plant to add
nutrients”. And there is another scenario with the title “Adding chemical products”
and the goal “to add nutrients”. In this situation, the link of the episode to the
scenario can be done through the goal.

Figure 2 shows an example of two scenarios composed. The first two levels
represent the scenario of Table 4. That is, “Cultivate the plants” is the title of the
Scenario, while its children are its episodes. Particularly, “The farmer fertilizes
using the irrigation pipe”, is a child (an episode) of “Cultivate the plants”, but at
the same time is another Scenario (Table 2). Thus, his children are its episodes.

3.3 Step 2, remove irrelevant branches (prune the tree)
This step is an entirely manual step that should be performed by the engineer
in charge of the software developer who knows the scope of the system. Thus,

5 http://wordnetweb.princeton.edu/perl/webwn
https://agrovoc.fao.org/browse/agrovoc/en/

http://wordnetweb.princeton.edu/perl/webwn

Title Suppressed Due to Excessive Length 11

Fig. 2. Tree depicting the composition of two scenarios

she/he can identify the boxes of the tree that are not relevant for designing test
cases, since those activities are outside of the boundaries of the software
application. For example, Figure 3 shows an example where the engineer states
that two activities will remain outside of the boundaries of the software
application. The cultural labor is related to removing the weed and this will
keep manually. Nevertheless, the watering will be completely automatized (since
sensors will assess the conditions and the software application will turn the
machine on when necessary). Then, fertilization will be almost completely
automated. That is, the calculation of minerals will be solved by the software
application. Then, the task of pouring the minerals into the tank will remain
manual. Finally, the last three tasks: pouring the mixture, activating the pump, and
flushing the pipe will be automatized. Thus, it makes sense to consider these steps
for designing test cases.

Fig. 3. Tree where manual activities are pruned

Title Suppressed Due to Excessive Length 12

3.4 step 3, create all the combinations
This step is automatized using task/method model. It consists in converting the
tree of scenarios into a task/method model, in order to execute it to provide all
the combinations of the relevant test cases. The rest of the subsection is organized
in the following way. First, the relation between test cases and the execution of
Task/method model is presented. Then we describe how Task/Method model can
be built from scenarios. Finally, we explain the generation of test cases.

The relation between test cases and Task/Method model execution
Let us consider the previous scenarios in the tree of Figure 2 “Cultivate the plants”
and “The farmer fertilizes using the irrigation pipe”. A task/method model for
these scenarios is shown in tables 5 and 6.

Table 5. list of Tasks for “Cultivate the plants” and “The farmer fertilizes using the
irrigation pipe” scenarios

Task Methods

Cultivate the plants(Farmer, fertilizer, irrigation pipe) {M1}

Fertilize using the irrigation pipe(Farmer, cistern with water,

irrigation pipe, minerals, chart to calculate the amount of min-

erals)

{M2}

Water(Farmer, plants) {} // terminal task

Calculate amount(Farmer, minerals) {} // terminal task

Pour(Farmer,mixture,irrigation pipe) {} // terminal task

Activate(Farmer, irrigation pipe) {} // terminal task

Pour(Farmer, water, irrigation pipe) {} // terminal task

In our approach, we consider that test cases correspond to situations where
an action (task) is performed correctly or not. If an action is executed correctly,
we will say that the action was successful, which means more precisely that its
execution was successful. Conversely, when an action is not performed correctly,
we will consider that it has failed. The execution of each task can therefore be only
a success or a failure. Each episode is modeled by a task, and the result of the
episode (task) execution must be taken into account. If the result is positive, the
execution of the scenario continues, but otherwise, if the result fails, then the
scenario ends.

In the scenario paradigm, test cases are related to failure and success cases. In
the task/method model, they correspond to failure and success of the execution of
subtasks. In the scenarios “Cultivate the plants” and “The farmer fertilizes using
the irrigation pipe”, the scenarios test cases and their translation in a task/method
model execution are:

– For the scenario “Cultivate the plants”:
• Test case: The farmer cultivates the plants by watering them and then

fertilizing them using irrigation pipe:

Title Suppressed Due to Excessive Length 13

Table 6. list of methods of for “Cultivate the plants” and “The farmer fertilizes using
the irrigation pipe” scenarios

Method: M1

header: Cultivate the plants(Farmer, fertilizer, irrigation pipe)
Control:

Water(Farmer, plants);
Fertilize using the irrigation pipe(Farmer, cistern with water, irrigation pipe, minerals,
chart to calculate the amount of minerals);
subtasks: {Water, Fertilize using the irrigation pipe}

Method: M2

header: Fertilize using the irrigation pipe(Farmer, cistern with water, irrigation pipe,
minerals, chart to calculate the amount of minerals)
Control:
Calculate amount(Farmer, minerals);
Pour(Farmer,mixture,irrigation pipe);
Activate(Farmer, irrigation pipe);
Pour(Farmer, water, irrigation pipe);

 subtasks: {Calculate amount, Pour, Activate, Pour}

∗ subtask success: Water(Farmer, plants)
∗ subtask success: Fertilize using the irrigation pipe(Farmer, cistern

with water, irrigation pipe, minerals, chart to calculate the amount of
minerals)

• Test case: The farmer fails to water plants:
∗ subtask failure: Water(Farmer, plants)

• Test case: The farmer fails to fertilize using the irrigation pipe:
∗ subtask failure: Fertilize using the irrigation pipe(Farmer, cistern

with water, irrigation pipe, minerals, chart to calculate the amount of
minerals)

– For the scenario “The farmer fertilizes using the irrigation pipe”:
• Test case: The farmer fertilizes using the irrigation pipe by calculating the

amount of minerals, by pouring the mixture into the irrigation pipe, by
activating the irrigation pipe and by pouring fresh water in the irrigation
pipe:
∗ subtask success: Calculate amount(Farmer, minerals)
∗ subtask success: Pour(Farmer,mixture,irrigation pipe)
∗ subtask success: Activate(Farmer, irrigation pipe)
∗ subtask success: Pour(Farmer, water, irrigation pipe)

• Test case: The farmer fails to calculate the amount of minerals because:
∗ failure of subtasks: Calculate amount(Farmer, minerals)

• Test case: The farmer fails to pour the mixture into the irrigation pipe:
∗ failure of subtasks: Pour(Farmer,mixture,irrigation pipe)

• Test case: The farmer fails to activate the irrigation pipe:
∗ failure of subtask: Activate(Farmer, irrigation pipe)

• Test case: The farmer fails to pour fresh water into irrigation pipe:
∗ failure of subtask: Pour(Farmer, water, irrigation pipe)

Title Suppressed Due to Excessive Length 14

Building a task/method model from scenario description In this section,
we briefly present how scenarios can be translated into task/method model. More
details can be found in [4, 5]. The translation follows certain rules described
below:

Rule 1 (Tasks Identification): Each verb in the Episodes attribute (of the

scenario model) is translated into a task in Task/Method model. Moreover,

scenario title is also translated by a task .
For example, if we apply rule 1 in the scenario “Cultivate the plants”, we
obtain:

– Scenario: Cultivate the plant → Task: Cultivate the plants
– Episode: The farmer waters the plants → Task: Water

Rule 2 (Task’s Parameters Identification): In scenarios, each resource and

each actor linked to an action is translated in task/method model into a

parameter of the task corresponding to the linked action.

In the scenario “Cultivate the plants”, rule 2 produces :

– Episode: The farmer waters the plants → Task: Water(Farmer, plants)

Rule 3 (Scenario’s and Episode’s method:) Each way of realizing an episode

or a scenario is translated by a method task/method model.

For example:

– Realization of Cultivate the plants → Method: M1

– Realization of the episode: The farmer fertilizes using irrigation pipe →

Method: M2

Rule 4 (Sequence of tasks): Lines in “Episodes” part of scenario described

a sequence, thus they are translated by a sequence in control attribute of

method.

For example:
Episodes for the scenario “Cultivate the plants”:
The farmer waters the plants
The farmer fertilizes using irrigation pipe
↓

Method: M1
Control
{
Water(Farmer, plants);
Fertilize using the irrigation pipe(Farmer, cistern with water, irrigation pipe,
minerals, chart to calculate the amount of minerals);
}

Test cases generation The test cases correspond to all possible executions of
tasks. Therefore, this step consists in computing all these executions and storing
them in a data structure. Since task/method models are intrinsically hierarchical,
this step uses a tree data structure to store all the executions. This structure is
called Execution Tree (ET).

An ET contains two types of nodes:

Title Suppressed Due to Excessive Length 15

Definition 3. An etask node describes the execution of one task. It is composed

of an execution status (success or failure) and a link to the description of the

executed task (in the task/method model).

Definition 4. An emethod node represents an executed method. It owns an ex-

ecution status (success or failure) and has access to the executed method in the

task/method model.

Figure 4 shows an ET for the task “Cultivate the plants(Farmer, fertilizer,
irrigation pipe)”. It contains the tree of all possible executions of the “Cultivate the
plants” task. In an ET, there is an alternation between etask nodes and emethod

nodes. In Figure 4, etasks are represented by a box and emethods by an oval,
an alternation between boxes and ovals can be seen. Failed etasks and emethods

are displayed on a gray background and successful etasks and emethods on a white
background. In this tree, five methods “M3”, “M4”, “M5”, “M6” and “M7”
correspond to all possible executions of the task “Fertilize using the irrigation
pipe(Farmer, cistern with water, irrigation pipe, minerals, chart to calculate the
amount of minerals)”. The method “M3” succeeded, and the others failed. The
emethod “M5” failed because “Calculate amount(Farmer, minerals)” succeeded but
“Pour(Farmer, mixture, irrigation pipe)” failed. An ET is generated by an execution
engine.

The principle of the propagation of the execution status is: the terminal tasks
succeed or fail, this status brings up the method that contains them. If the last
subtask of a method fails, the method fails. If a task has at least one successful
method, then the task has success status.

The execution engine algorithm is provided in Algorithm 1. For the terminal
task, two emethods are created one with the failure status and the other with the
success status. For each method of non-terminal task, an emethod is created and
the control attribute of the emethod is launched. The control attribute describes
the execution order of the subtasks that are executed by recursively calling the
execution engine on each of them (see Algorithm 1).

The ET presented in Figure 4 was built by this algorithm for the task “Cultivate
the plants(Farmer, fertilizer, irrigation pipe)”.

The test cases are extracted from the ET. In ET, one failure test case
corresponds to one path from the root of the tree to a terminal task with the failed
status. for example in Figure 4, the path “Cultivate the plants” → “Fertilize using
the irrigation pipe” → “Pour(Farmer, mixture, irrigation pipe” with failed status.
This path can be read in the following way: “Cultivate the plants” fails because
“Water” succeeds, but “Fertilize using the irrigation pipe” fails because although
“Calculate amount” succeeds, “Pour” fails. Similarly, a successful test case
corresponds to a path starting from the root, consisting only of successful methods
and ending with a terminal task.

The algorithm which generates all paths of failed test cases is presented in
Algorithm 2. Basically, this algorithm starts from failed terminal tasks and goes up
to the root. For the ET of Figure 4, this algorithm produced the following paths:

Title Suppressed Due to Excessive Length 16

Fig. 4. Execution tree for “Cultivate the plants” task

– [’Cultivate the plants(Farmer, fertilizer, irrigation pipe)’, ’M1’, ’Fertilize using
the irrigation pipe(Farmer, cistern with water, irrigation pipe, minerals, chart
to calculate the amount of minerals)’, ’M4’, ’Calculate amount(Farmer,
minerals)’]

– [’Cultivate the plants(Farmer, fertilizer, irrigation pipe)’, ’M1’, ’Fertilize using
the irrigation pipe(Farmer, cistern with water, irrigation pipe, minerals, chart
to calculate the amount of minerals)’, ’M5’, ’Pour(Farmer, mixture, irrigation
pipe)’]

– [’Cultivate the plants(Farmer, fertilizer, irrigation pipe)’, ’M1’, ’Fertilize
using the irrigation pipe(Farmer, cistern with water, irrigation pipe, minerals,
chart to calculate the amount of minerals)’, ’M6’, ’Activate(Farmer,
irrigation pipe)’]

– [’Cultivate the plants(Farmer, fertilizer, irrigation pipe)’, ’M1’, ’Fertilize using
the irrigation pipe(Farmer, cistern with water, irrigation pipe, minerals, chart
to calculate the amount of minerals)’, ’M7’, ’Wash(Farmer, water, irrigation
pipe)’]

– [’Cultivate the plants(Farmer, fertilizer, irrigation pipe)’, ’M2’, ’Water(Farmer,
plants)’].

M3

Calculate amount(Farmer, minerals)

Water(Farmer, plants) M4

M1 M5

M2
Calculate amount(Farmer, minerals)

M6

Pour(Farmer, mixture, irrigation pipe)

M7 Pour(Farmer, mixture, irrigation pipe)

Fertilize using the irrigation pipe(Farmer,
cistern with water, irrigation pipe, minerals,
chart to calculate the amount of minerals)

Pour(Farmer, water, irrigation pipe)

Activate(Farmer, irrigation pipe)

Calculate amount(Farmer, minerals)

Activate(Farmer, irrigation pipe)

Water(Farmer, plants)

Cultivate the plants(Farmer,
fertilizer, irrigation pipe)

Pour(Farmer, mixture, irrigation pipe)

Calculate amount(Farmer, minerals)

Pour(Farmer, water, irrigation pipe)

Activate(Farmer, irrigation pipe)

Pour(Farmer, mixture, irrigation pipe)

Calculate amount(Farmer, minerals)

Title Suppressed Due to Excessive Length 17

Algorithm 1 Execution engine to achieve the task t thanks to an emethod em
initially set to null

1: generate an etask et from the task t with em as parent and the status success
2: if t is a terminal task then
3: generate another emethod em1 from em with the status failure
4: generate an etask et1 from the task t with em1 as parent and the status failure
5: else
6: set methods = all methods of t;
7: for all m in methods do
8: if preconditions of m are satisfied then
9: generate emethod em2 from et with the status success

10: launch the control attribute of em2

11: end if
12: end for

13: end if
14: return et

The generation of all test cases of success paths follows the same algorithm but
selects only successful methods. For the ET of Figure 4, the success path is:

– [’Cultivate the plants(Farmer, fertilizer, irrigation pipe)’, ’M1’, ’Fertilize using
the irrigation pipe(Farmer, cistern with water, irrigation pipe, minerals, chart
to calculate the amount of minerals)’, ’M3’, ’Pour(Farmer, water, irrigation
pipe)’].

Algorithm 2 Generation of Test Case paths for an Execution Tree ET

1: set F_ETasks={et in ET such as et is an etask for a terminal task t with a failure
status}

2: set T_Cases={}
3: for all et in F_ETask do

4: generate the path pLJfrom the root of ET to et
5: T_Cases=T_Cases
6: end for

7: return T_Cases

{p}

From the test case paths, we can generate a narrative expression using some
natural language tools. For example, Figure 4, we applied a very basic sentences
generation and we obtained the following test cases in natural language:

– Cultivate the plants(Farmer, fertilizer, irrigation pipe) succeeds because
Water(Farmer, plants) succeeds, and Fertilize using the irrigation
pipe(Farmer, cistern with water, irrigation pipe, minerals, chart to calculate
the amount of minerals) succeeds because Calculate amount(Farmer,
minerals) succeeds, Pour(Farmer, mixture, irrigation pipe) succeeds,
Activate(Farmer, irrigation pipe) succeeds, and Pour(Farmer, water,
irrigation pipe) succeeds.

Title Suppressed Due to Excessive Length 18

– Cultivate the plants(Farmer, fertilizer, irrigation pipe) fails because
Water(Farmer, plants) succeeds, but Fertilize using the irrigation
pipe(Farmer, cistern with water, irrigation pipe, minerals, chart to calculate
the amount of minerals) fails because Calculate amount(Farmer, minerals)
fails.

– Cultivate the plants(Farmer, fertilizer, irrigation pipe) fails because
Water(Farmer, plants) succeeds, but Fertilize using the irrigation pipe(Farmer,
cistern with water, irrigation pipe, minerals, chart to calculate the amount of
minerals) fails because Calculate amount(Farmer, minerals) succeeds, but
Pour(Farmer, mixture, irrigation pipe) fails.

– Cultivate the plants(Farmer, fertilizer, irrigation pipe) fails because
Water(Farmer, plants) succeeds, but Fertilize using the irrigation pipe(Farmer,
cistern with water, irrigation pipe, minerals, chart to calculate the amount of
minerals) fails because Calculate amount(Farmer, minerals) succeeds,
Pour(Farmer, mixture, irrigation pipe) succeeds, but Activate(Farmer, irrigation
pipe) fails.

– Cultivate the plants(Farmer, fertilizer, irrigation pipe) fails because
Water(Farmer, plants) succeeds, but Fertilize using the irrigation pipe(Farmer,
cistern with water, irrigation pipe, minerals, chart to calculate the amount of
minerals) fails because Calculate amount(Farmer, minerals) succeeds,
Pour(Farmer, mixture, irrigation pipe) succeeds, Activate(Farmer, irrigation
pipe) succeeds, but Wash(Farmer, water, irrigation pipe) fails.

– Cultivate the plants(Farmer, fertilizer, irrigation pipe) fails because
 Water(Farmer, plants) fails.

4 Related works
The main activity for test design is finding defects instead of solving them. Testing
is a very complex task included in a more generic process of software development
life cycle: architecture, design, code, etc. Some researchers focus their
contributions on the cognitive processes of software testers in order to contribute
to the field [13].

For some application domains, testing is very critical. For example, software
testing in automated vehicles is crucial to launch safe and reliable vehicles [30].
This application domain is characterized by an extremely large space of test input
and a high cost of test executions. The first one is our main concern: a large space
of test input. Thus, our proposed approach uses Scenarios to analyze their
episodes in a combinatorial way to obtain the whole space of alternatives. It can
be categorized as specification-based, structured-based, and experienced- based
according to [21]. This is commonly used in automated vehicles and similar
complex domains.

Ramler and Klammer [40] introduce scenarios as models and use them to
increase the coverage and reduce the effort of test design. They report their
experience applying model-based testing for several real-world industrial projects
where they were able to minimize the risks and reduce the effort in testing.

A literature review of test design approaches is presented by Dos Santos et al.
[12]. Their findings show that there is no existing approach that incorporates

Title Suppressed Due to Excessive Length 19

a supportive tool utilizing natural language text descriptions, in particular, a
behavior-driven technique using scenarios. These are the key elements of our
approach. Natural language is a key element in obtaining descriptions directly
from end users, those who will use the application. Another issue is that it is
mandatory that end-users accept it. Moreover, Scenarios describing the behavior
of the application domain constitute an excellent approach since scenarios tell
stories that are easily understandable. Other works deriving Uses Cases to Users
Acceptance Tests (UAT) [18, 9] or acceptance criteria described in the form of
Given-When-Then[36] are also frequently used. All the aforementioned
approaches require an effort to build these models. Moreover in agile method-
ologies, that do not use artifacts such as UAT [23].

Svensson and Regnell [46] state that automating testing is a shared concern in
software engineering. Testing software generally requires a lot of effort from
programmers. They should imagine all the possible errors that the end-users
could make. They also have to work with a lot of rigor to test all possible cases that
are included in the code. They can miss some specific cases, and it is the reason
why they need to be assisted. Garousi and Elberzhager [16] propose an approach
with six steps: (i) test-case design, (ii) test scripting, (iii) test execution, (iv)
test evaluation, (v) test results reporting and (vi) test management and other test
engineering activities. Stoyanova et al. [45] propose a framework for testing web
applications with two main parts: (i) test case generation and (ii) test case
execution. It is important to remark that both proposals include one first step
(separated from the others) related to the design of the test cases.

Monpratarnchai et al. [32] propose an approach to generate test cases de-
scribed in JUnit from Java source code. A combined approach is proposed by Lipka
et al. [28]. They derive test cases from requirements and source code. They
consider narrative requirements enriched with annotations to connect the
specification to the source code. An interesting technique based on Use Cases is
proposed by Khamaisehand Xu [25]. They determine misuse cases to test
vulnerabilities. Philip et al. [37] approach is similar since they analyze a model
with safety requirements to generate fault trees representing functional hazards.
Then, test cases for the validation of the mitigation of hazards are generated
automatically from the model.

It exists many other proposals based on requirements, some others on
conditions, restrictions, or states. These elements could be captured using Use
Cases, formal languages, state machines, or workflow diagrams that are the input
of the approach developed by Chatterjee and Johari [11]. They propose an
approach to derive test cases from Use Cases, as well as [7]. Although they analyze
the alternatives in the flow of actions, the preconditions stated in the Use Cases,
they finally rely on a state machine. On the contrary, our approach relies on
combining all possible actions (and their result).

Pandit et al. [36] propose an approach to design User Acceptance Tests. This
approach is similar to our approach. Nevertheless, they base their proposal on
acceptance criteria written in the form of a Given-When-Then template. They also
rely on states that are arranged in a dependency graph. Lei and Wang

Title Suppressed Due to Excessive Length 20

[27] propose a framework to analyze testing constraints in requirements, that is,
another way of considering states. Huaikou et al. [31] analyze specifications, in
particular, the prior and posterior state of every operation to generate test cases.

Many other proposals are related to the steps that are implicitly linked to every
requirement (for example [19]). This is the essence of our approach but some
distinctions should be made. Some proposal uses Use Cases or similar products,
where the description of the requirements has a big precision. While some others
use Scenarios, where the description is more related to the business than the ap-
plication. Our approach is in this last category. Some other approaches analyze the
description inside a Use Case or Scenario, while others analyze the relationship
between Use Cases or Scenarios. Our approach relies on both things. It analyzes
the internal description of the Scenarios, but, they can also be described as another
scenario that gives an overview of the problem.

Hsieh et al. [17] propose an approach to analyze the steps of the Use Cases to
determine all the alternatives to design tests in order to cover all the possibilities.
Other approaches are based on the external relations of the Use Cases. This is the
case of Lizhe Chen and Qiang Li. [29] who consider the relationships between the
Use Cases. Budha et al. [8] propose a similar approach based on Use Case
diagrams. This approach generates test cases to detect use case dependency faults
using multiway trees. They transform the use case diagram into a tree and
they traverse the tree. This is similar to our approach since we explore a tree to
obtain all the alternatives. Boucher Mussbacher [6] also analyze workflow models
(Use Case Maps) to transform them into Acceptance Test Cases that can be
automated with the JUnit framework. Nogueira et al. [34] propose to generate test
cases from use cases with a specific definition of control flow, input, and output.
Vieira et al. [49] propose a similar approach using annotated UML Activities
Diagrams.

Entin et al. [14] propose to focus on obtaining tests independent from the
platform. They obtain very general User Acceptance Tests as the one obtained by
our approach. Takagi and Noda [47] describe a strategy to develop a graph about
the sequence of test case execution related to hardware testing, that is very
detailed and specific situations in contrast with the essence of the Scenarii.
Hussain et al. [19] provide design tests considering dependencies between
Scenarios. Nomura et al. [35] model business context in a matrix representing the
dependencies between the business process. The tests are then designed from the
perspective of profiles in order to cover different situations. Sarmiento et al.
[42] propose a similar approach using scenarios.

Summing up, our proposed approach satisfies some characteristics that, to our
better knowledge, they are not satisfied by another proposal. That is, our
proposed approach deals with a large set of scenarios that have behavior-driven
text descriptions, and our proposed approach also provides a supporting tool that
deals with natural language.

Title Suppressed Due to Excessive Length 21

5 Conclusions
This paper proposed an approach to design test cases. It consists in analyzing
natural language artifacts using them very early in the software development life
cycle instead of using artifacts of the design step as usually done. Thus, this
approach makes it possible to contrast the software application with the initial
requirements. The approach relies on using and mixing several tools and
techniques. It uses natural language processing tools in order to cope with the
description of the scenarios to provide a consistent and coherent description
regarding the variety of stakeholders involved and their differences in the
descriptions. It also uses the task / method model to deal with the task of
systematically analyzing all the situations that is relevant to tests. And this is a
crucial feature of the proposed approach. Although some approaches provided a
very detailed sequence of steps to perform unit or integration testing, our
proposed approach provides a guideline for user acceptance testing in order to
assess the correctness of the software application. The main advantage of our
approach is to propose a systematic way to test software thanks to the
Task/method paradigm. Nevertheless, a systematic approach is very time
consuming, so we propose to optimize this approach using a Natural Language
Processing (NLP) paradigm in order to automatically generate software tests. We
plan to continue this research in three different ways. Firstly, our proposed
approach considers that scenarios can be organized in one big tree with scenarios
in the different levels. Although there is no limitation to the number of levels in
the tree, we consider that only one tree is generated. That is, we consider that
there is one root scenario that includes episodes that should be related to
scenarios, that in turn, are related to other scenarios and finally, all the scenarios
should be stuck to this tree. It makes sense, since a software application should
integrate the whole functionality, so, all the scenarios should be integrated into
the tree. Nevertheless, our proposed approach does not provide an integrated
set of test cases if there is not only one scenario as a root. This could happen
in different situations. For example, if the set of scenarios is not complete and
some scenarios cannot be related to the tree. Or if the description of the scenarios
is too complex, and the natural language processing techniques provided in the
approach are not able to link the scenarios. We believe that in that case, the
proposed approach should raise some warning about the scenarios that cannot be
related to the consolidated tree of scenarios to rewrite them or to add more
scenarios. This situation could be even more complex since one node of the tree
for example, could also be linked to different scenarios at the same time. For
example, if an episode makes reference to simple ”fertilizes” and there are two
strategies to do that: (i) “Fertilizes using the irritation pipe” and (ii)“fertilizes
using the backpack”, the node ”fertilizes” should be related to both different ways
of fertilizing. Regarding the composition of scenarios, we also plan to explore the
integration of the Language Extended Lexicon (LEL)[38], a technique to capture
and model the glossary of the ap- plication domain. This LEL glossary is coupled
in many proposed methods to the scenarii technique used in this proposed
approach. Thus, we believe that their use will be beneficial. Moreover, we believe
that we can take advantage of

Title Suppressed Due to Excessive Length 22

some attributes of the scenarios not used: restrictions and exceptions in order to
relate scenarios. For example, regarding the fertilization example, the exception
attribute of the scenario "Fertilize using the irrigation pipe" could state that "The
cistern does not have enough water to activate the irrigation pipe" and the
solution to this exception could be: "Fertilize using the spraying backpack". Thus,
the link between the scenarios is explicitly mentioned. We think that the two
incorporations, the LEL glossary and the attributes of restrictions and exception
will demand more effort from the practitioners since they need to describe more
information, but the results will be better. Secondly, our proposed approach only
considers functional requirements, that is, activities described in the scenarios are
woven by the proposed approach that provides all the combinations that should
be tested to ensure the functionality. Nevertheless, non-functional requirements
are not considered. They are much more complex to deal with, since non-
functional requirements are specified in one sentence of a scenario, but that
characteristic could be scattered in all the software systems, so this should be
tested in many different places. For example, let’s consider the security non-
functional requirements. If the application should be secure, one root scenario can
include this characteristic, and all the children of the root scenario should ensure
security. Thus, dealing with non-functional requirements requires spreading them
around the necessary scenarios. Thirdly, we plan to perform more validations. We
plan to conduct a case study in order to assess the applicability and usability of the
proposed approach. And we also plan to perform a controlled experiment in order
to compare the effectiveness of our proposed approach against some other
approaches. It is important to note that we voluntarily do not use all
information available in scenarios and all representation capabilities of the
Task/method paradigm in the translated Task/Method models. Our strategy is to
complexify the Task/Method as little as possible, and to add representation
elements (fields for example) only in order to be able to generate interesting test
cases. Regarding the semantic representation, we will study the combination with
other types of ontologies defined in the elicitation phase, for example a
combination with the Requirements Journey ontology defined by [26] which
includes concepts as User, Event, or Timeline.

Acknowledgments
This paper is partially supported by funding provided by the STIC AmSud
program, Project 22STIC-01.

References
1. Abeysiriwardana, P.C., Jayasinghe-Mudalige, U.K., Seneviratne, G.: Probing into the

concept of ‘research for society’ to utilize as a strategy to synergize flexibility of a

research institute working on eco-friendly commercial agriculture. All Life 15(1), 220–
233 (2022). https://doi.org/10.1080/26895293.2022.2038280, https://doi.org/
10.1080/26895293.2022.2038280

Title Suppressed Due to Excessive Length 23

2. Adla, A., Soubie, J.L., Zarate, P.: A co-operative intelligent decision support system for

boilers combustion management based on a distributed architecture. Journal of
Decision Systems 16(2), 241–263 (2007). https://doi.org/10.3166/jds.16.241-263,

https://doi.org/10.3166/jds.16.241-263

3. Alexander, I., Maiden, N.: Scenarios, stories, and use cases: the modern basis for system

development. Computing Control Engineering Journal 15(5), 24–29 (2004)

4. Antonelli, L., Camilleri, G., Grigera, J., Hozikian, M., Sauvage, C., ZARATÉ, P.: A modelling

approach to generating user acceptance tests. In: Dargam, F., Delias, P., Linden, I.,
Mareschal, B. (eds.) 4th International Conference on Decision Support Systems

Technologies (ICDSST 2018). Decision Support Systems VIII: Sustainable Data-Driven

and Evidence-Based Decision Support, vol. 313. Springer, Heraklion, Greece (May

2018), https://hal.archives-ouvertes.fr/hal-02289948

5. Antonelli, L., Hozikian, M., Camilleri, G., Fernandez, A., Grigera, J., Torres, D., Zaraté, P.:
Wiki support for automated definition of software test cases. Kybernetes 49(4), 1305–

1324 (mai 2020), https://doi.org/10.1108/K-10-2018-0548

6. Boucher, M., Mussbacher, G.: Transforming workflow models into automated end- to-
end acceptance test cases. In: 2017 IEEE/ACM 9th International Workshop on

Modelling in Software Engineering (MiSE). pp. 68–74 (2017)

7. Bouquet, F., Grandpierre, C., Legeard, B., Peureux, F.: A test generation solution to

automate software testing. In: Proceedings of the 3rd International Workshop on

Automation of Software Test. p. 45–48. AST ’08, Association for Computing Machinery,

New York, NY, USA (2008). https://doi.org/10.1145/1370042.1370052,
https://doi.org/10.1145/1370042.1370052

8. Budha, G., Panda, N., Acharya, A.A.: Test case generation for use case dependency fault

detection. In: 2011 3rd International Conference on Electronics Computer Technology.

vol. 1, pp. 178–182 (2011)

9. Bystrický, M., Vranić, V.: Use case driven modularization as a basis for test driven

modularization. In: 2017 Federated Conference on Computer Science and Informa- tion
Systems (FedCSIS). pp. 693–696 (2017). https://doi.org/10.15439/2017F343

10. Camilleri, G., Soubie, J.L., Zalaket, J.: Tmmt: Tool supporting knowledge modelling. In:

7th International Conference on Knowledge-Based Intelligent Information and

Engineering Systems, KES 2003, Oxford UK, 03/09/03- 05/09/03. pp. 45–52. Springer

(septembre 2003), http://www.springerlink.com/ index/CMXAFDNLQCAJDKVX%20,

pages de la publication : 45-52,partI.

11. Chatterjee, R., Johari, K.: A prolific approach for automated generation of test cases

from informal requirements. SIGSOFT Softw. Eng. Notes 35(5), 1–11 (Oct 2010),
https://doi.org/10.1145/1838687.1838702

12. Dos Santos, E.C., Vilain, P., Hiura Longo, D.: Poster: A systematic literature review to

support the selection of user acceptance testing techniques. In: 2018 IEEE/ACM 40th

International Conference on Software Engineering: Companion (ICSE-Companion). pp.

418–419 (2018)

13. Enoiu, E., Tukseferi, G., Feldt, R.: Towards a model of testers’ cognitive processes:

Software testing as a problem solving approach. In: 2020 IEEE 20th International

Conference on Software Quality, Reliability and Security Companion (QRS-C). pp. 272–
279 (2020). https://doi.org/10.1109/QRS-C51114.2020.00053

14. Entin, V., Siegl, S., Kern, A., Reichel, M., Meyer-Wegener, K.: A scenario-centric approach

for the definition of the formal test specifications of reactive systems. In: 2009

Testing: Academic and Industrial Conference - Practice and Research Techniques. pp.
179–183 (2009)

http://www.springerlink.com/
http://www.springerlink.com/

Title Suppressed Due to Excessive Length 24

15. Forsberg, K., Mooz, H.: The relationship of system engineering to the project cycle. In:

Proceedings of the First Annual Symposium of National Council on System Engineering.
pp. 57–65 (1991)

16. Garousi, V., Elberzhager, F.: Test automation: Not just for test execution. IEEE Software

34(2), 90–96 (2017)

17. Hsieh, C., Tsai, C., Cheng, Y.C.: Test-duo: A framework for generating and ex- ecuting

automated acceptance tests from use cases. In: 2013 8th International Workshop on

Automation of Software Test (AST). pp. 89–92 (2013)

18. Hsieh, C.Y., Tsai, C.H., Cheng, Y.C.: Test-duo: A framework for generating and

executing automated acceptance tests from use cases. In: 2013 8th Inter- national

Workshop on Automation of Software Test (AST). pp. 89–92 (2013).
https://doi.org/10.1109/IWAST.2013.6595797

19. Hussain, A., Nadeem, A., Ikram, M.T.: Review on formalizing use cases and scenar- ios:

Scenario based testing. In: 2015 International Conference on Emerging Tech- nologies

(ICET). pp. 1–6 (2015)

20. ISO/IEC/IEEE: Systems and software engineering – vocabulary. ISO/IEC/IEEE,

24765:2010 edn. (2010)

21. ISO/IEC/IEEE: Ieee draft international standard for software and systems
engineering–software testing–part 4: Test techniques. Tech. rep., IEEE (2014)

22. Jackson, M.: The world and the machine. In: 1995 17th International Conference on

Software Engineering. pp. 283–283 (1995)

23. Jeeva Padmini, K., Perera, I., Dilum Bandara, H.M.N.: Applying agile prac- tices to
avoid chaos in user acceptance testing: A case study. In: 2016 Moratuwa

Engineering Research Conference (MERCon). pp. 96–101 (2016).

https://doi.org/10.1109/MERCon.2016.7480122

24. Karlsson, L., Åsa G. Dahlstedt, Regnell, B., Natt och Dag, J., Persson, A.: Re- quirements

engineering challenges in market-driven software development – an in- terview study

with practitioners. Information and Software Technology 49(6), 588– 604 (2007).

https://doi.org/https://doi.org/10.1016/j.infsof.2007.02.008, https://

www.sciencedirect.com/science/article/pii/S0950584907000183, qualitative Soft-
ware Engineering Research

25. Khamaiseh, S., Xu, D.: Software security testing via misuse case modeling. In: 2017

IEEE 15th Intl Conf on Dependable, Autonomic and Secure Comput- ing, 15th Intl

Conf on Pervasive Intelligence and Computing, 3rd Intl Conf on Big Data

Intelligence and Computing and Cyber Science and Technology

Congress(DASC/PiCom/DataCom/CyberSciTech). pp. 534–541 (2017)

26. Lane, S., O’Raghallaigh, P., Sammon, D.: Requirements gathering: the journey. Journal

of Decision Systems 25(sup1), 302–312 (2016), https://doi.org/10.1080/

12460125.2016.1187390, publisher: Taylor & Francis

27. Lei, H., Wang, Y.: A model-driven testing framework based on requirement for
embedded software. In: 2016 11th International Conference on Reliability, Main-

tainability and Safety (ICRMS). pp. 1–6 (2016)

28. Lipka, R., Potuák, T., Brada, P., Hnetynka, P., Vinárek, J.: A method for semi- automated

generation of test scenarios based on use cases. In: 2015 41st Euromi- cro Conference

on Software Engineering and Advanced Applications. pp. 241–244 (2015)

29. Lizhe Chen, Qiang Li: Automated test case generation from use case: A model based

approach. In: 2010 3rd International Conference on Computer Science and Information

Technology. vol. 1, pp. 372–377 (2010)

http://www.sciencedirect.com/science/article/pii/S0950584907000183

Title Suppressed Due to Excessive Length 25

30. Masuda, S.: Software testing design techniques used in automated vehi- cle

simulations. In: 2017 IEEE International Conference on Software Test- ing,
Verification and Validation Workshops (ICSTW). pp. 300–303 (2017).

https://doi.org/10.1109/ICSTW.2017.55

31. Miao Huaikou, Liu Ling: A test class framework for generating test cases from z

specifications. In: Proceedings Sixth IEEE International Conference on Engineering of
Complex Computer Systems. ICECCS 2000. pp. 164–171 (2000)

32. Monpratarnchai, S., Fujiwara, S., Katayama, A., Uehara, T.: An automated testing tool for

java application using symbolic execution based test case generation. In: 2013 20th

Asia-Pacific Software Engineering Conference (APSEC). vol. 2, pp. 93– 98 (2013)

33. Niazi, A.R., Ghafoor, A.: Different ways to exploit mushrooms: A review. All Life
14(1), 450–460 (2021), https://doi.org/10.1080/26895293.2021.1919570

34. Nogueira, S., Sampaio, A., Mota, A.: Test generation from state based use case models.

Formal Aspects of Computing 26(3), 441–490 (2014)

35. Nomura, N., Kikushima, Y., Aoyama, M.: A test scenario design methodology based on

business context modeling and its evaluation. In: 2014 21st Asia-Pacific Software

Engineering Conference. vol. 1, pp. 3–10 (2014)
36. Pandit, P., Tahiliani, S., Sharma, M.: Distributed agile: Component-based user

acceptance testing. In: 2016 Symposium on Colossal Data Analysis and Networking
(CDAN). pp. 1–9 (2016)

37. Philip, G., Dsouza, M., Abidha, V.P.: Model based safety analysis: Automatic gen- eration

of safety validation test cases. In: 2017 IEEE/AIAA 36th Digital Avionics Systems

Conference (DASC). pp. 1–10 (2017)

38. do Prado Leite, J.C.S., Hadad, G.D.S., Doorn, J.H., Kaplan, G.N.: A scenario construction

process. Requirements Engineering 5, 38–61 (2000)
39. Prince, I.A., Adnan, M.A., Rifat, R.I., Mostafiz, M.S., Rahman, S.I.: Iot

based monitoring framework for a novel hydroponic farm. In: 2022 IEEE

Region 10 Symposium (TENSYMP). pp. 1–4 (2022).

https://doi.org/10.1109/TENSYMP54529.2022.9864365

40. Ramler, R., Klammer, C.: Enhancing acceptance test-driven development with model-
based test generation. In: 2019 IEEE 19th International Conference on Soft- ware

Quality, Reliability and Security Companion (QRS-C). pp. 503–504 (2019).

https://doi.org/10.1109/QRS-C.2019.00096

41. Saah, K.J.A., Kaba, J.S., Abunyewa, A.A.: Inorganic nitrogen fertilizer, biochar particle
size and rate of application on lettuce (lactuca sativa l.) nitrogen use and yield. All

Life 15(1), 624–635 (2022), https://doi.org/10.1080/26895293.2022.
2080282

42. Sarmiento, E., Leite, J.C., Almentero, E., Sotomayor Alzamora, G.: Test sce- nario

generation from natural language requirements descriptions based on petri-nets.

Electronic Notes in Theoretical Computer Science 329, 123 – 148 (2016).

https://doi.org/https://doi.org/10.1016/j.entcs.2016.12.008, http://www.
sciencedirect.com/science/article/pii/S1571066116301153, cLEI 2016 - The Latin

American Computing Conference

43. Schreiber, G., Akkermans, H., Anjewierden, A., de Hoog, R., Shadbolt, N.R., Van de

Velde, W., Wielinga, B.J.: Knowledge Engineering and Management: The CommonKADS

Methodology. The MIT Press (12 1999), https://doi.org/10.7551/

mitpress/4073.001.0001
44. Shruthi, G., Selva Kumari, B., Rani, R.P., Preyadharan, R.: A-real time smart sprinkler

irrigation control system. In: 2017 IEEE International Conference on

http://www/
http://www/

Title Suppressed Due to Excessive Length 26

Electrical, Instrumentation and Communication Engineering (ICEICE). pp. 1–5
(2017). https://doi.org/10.1109/ICEICE.2017.8191943

45. Stoyanova, V., Petrova-Antonova, D., Ilieva, S.: Automation of test case genera- tion and

execution for testing web service orchestrations. In: 2013 IEEE Seventh International

Symposium on Service-Oriented System Engineering. pp. 274–279 (2013)
46. Svensson, R.B., Regnell, B.: Aligning quality requirements and test results with

quper’s roadmap view for improved high-level decision-making. In: 2015 IEEE/ACM
2nd International Workshop on Requirements Engineering and Test- ing. pp. 1–4

(2015)

47. Takagi, T., Noda, K.: Partially developed coverability graphs for modeling test case

execution histories. In: 2016 IEEE/ACIS 15th International Conference on Computer
and Information Science (ICIS). pp. 1–2 (2016)

48. Trichet, F., Tchounikine, P.: Dstm: a framework to operationalise and

refine a problem solving method modeled in terms of tasks and methods.

Expert Systems with Applications 16(2), 105 – 120 (1999).

https://doi.org/https://doi.org/10.1016/S0957-4174(98)00065-7,

http://www.sciencedirect.com/science/article/pii/S0957417498000657

49. Vieira, M., Leduc, J., Hasling, B., Subramanyan, R., Kazmeier, J.: Automation of gui testing

using a model-driven approach. In: Proceedings of the 2006 Interna- tional Workshop

on Automation of Software Test. p. 9–14. AST ’06, Association for Computing
Machinery, New York, NY, USA (2006), https://doi.org/10.1145/ 1138929.1138932

50. Yang-ren, W., Zhi-wei, Z.: Research of tomato economical irrigation sched- ule

with drip irrigation under mulch in greenhouse. In: 2016 Fifth Interna- tional

Conference on Agro-Geoinformatics (Agro-Geoinformatics). pp. 1–5 (2016).
https://doi.org/10.1109/Agro-Geoinformatics.2016.7577636

51. Young, R.: The requirements engineering handbook. Artech House Publishers, 1st edn.

(2004)

http://www.sciencedirect.com/science/article/pii/S0957417498000657

