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ABSTRACT

The fastACI toolbox is a set of MATLAB routines that al-
lows to prepare and perform behavioural listening experi-
ments. The main feature of this toolbox is the inclusion
of a reverse correlation (revcorr) post-processing mod-
ule. The revcorr method allows the assessment of acoustic
cues used by a listener with only minimal a priori knowl-
edge of the actual listener’s strategy during the experi-
ments. Another special fastACI feature is the possibility
to replicate experiments using an artificial listener, con-
sisting of a hearing-inspired model and a decision mod-
ule which convert trial-by-trial waveforms into a decision
variable (e.g., discriminated or not discriminated). In this
contribution we explain how to set an artificial listener us-
ing an auditory model from the AMT toolbox, combined
with one of the decision back-ends that are available in the
fastACI toolbox. The selected decision back-ends are all
based on a template-matching approach. We provide a list
of assumptions and the steps required to derive templates
to mimic the performance of human listeners. The em-
phasis of this contribution is on showing the flexibility of
the fastACI framework where any new experiment can be
tested using either human or artificial listeners and how to
strategically compare collected or simulated results.

Keywords: Auditory modelling, reverse correlation,
tone-in-noise

1. INTRODUCTION

Auditory reverse correlation (revcorr) is an experimental
paradigm that allows to derive which acoustic features
are effectively used by participants engaged in an audi-
tory task. This paradigm was first proposed by Ahumada
and colleagues in a set of tone-in-noise experiments [1,2].

In our lab, we have applied reverse correlation to obtain
participants’ behavioural templates—that we have named
auditory classification images (ACIs)—in tasks such as
amplitude modulation (AM) perception [3] and speech
(phoneme-in-noise) perception [4, 5]. A revcorr exper-
iment basically means that the trial-by-trial behavioural
responses for a specific task are related to the proper-
ties of the specific sound interval, as a post-processing
scheme after data collection. However, for this to be pos-
sible, the trials need to be subjected to some form of ran-
dom fluctuation that interacts with the target sounds, as
elicited by a source of external variability, most typically,
using background noises. Other practical considerations
are that: (1) the target sounds need to be contrasted to
each other (e.g., having the same length or sharing some
acoustic similarity), and that (2) a considerable number of
trials leading to correct and incorrect responses need to be
collected. In this sense many listening experiments could
be processed using revcorr. Examples of sounds that can
(directly) be contrasted are those used in classic psychoa-
coustic experiments where, e.g., tone-in-noise sounds are
compared with noise-alone sounds [1,6] or AM sounds are
compared with non-AM sounds [6]. With the goal of en-
abling these experimental paradigms for revcorr, we built
the fastACI toolbox.

A versatile and popular experimental package to con-
duct psychoacoustic experiments is the so-called AFC
toolbox [7] for MATLAB. AFC allows to modularise lis-
tening experiments in a set of compulsory and optional
scripts and offers the possibility to run the experiments us-
ing either human (normal experiments) or artificial listen-
ers. For this reason, fastACI experiments follow a similar
rationale, requiring minimal modifications to experiments
coded in AFC to be compatible with our toolbox. In this
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Figure 1: Schematic flowchart of the fastACI toolbox when run-
ning the experiment ‘toneinnoise ahumada1975.”

sense, fastACI experiments can also be run using either
human or artificial listeners. The current study focuses on
detailing how an auditory model can be added as an artifi-
cial listener in fastACI. Although this feature was already
available in the toolbox [3,8], this is the first time we pro-
vide a step-by-step guide about how to include an auditory
model as a ready-to-use artificial listener in our toolbox.

2. METHODS

2.1 The fastACI toolbox

The fastACI toolbox developed in our group is freely
available online [9]. A description of the revcorr approach
can be found in [4, 10], but a schematic flow chart for the
execution of a listening experiment is shown in Fig. 1.
The block “listener” can either be a human listener, with
trials being actually presented (e.g., via headphones with
responses recorded using the computer keyboard), or an
artificial listener. The focus of this contribution is on
this latter mode. An artificial listener consists of an au-
ditory model used as a preprocessing module, attached to
one of the available decision back ends. This process is
schematised using a tone-in-noise experiment that is al-
ready available within the toolbox, with an artificial lis-
tener based on the model king2019 [11] from the AMT
toolbox [12].

2.2 The test listening experiment

2.2.1 Suitable for the revcorr approach?

The experiments we have evaluated so far in fastACI are
based on single-interval trials and the use of random back-
ground noises to detriment the performance of the partici-
pants. It is the randomness in the stimuli, i.e., the external

variability, what it is actually used by revcorr to derive the
effective acoustic cues of the (human or artificial) partic-
ipant or, in other words, to assess a behavioural template
that better explains the participant’s “listening strategy”
adopted during the experiment.

In other words, the revcorr approach assumes a dom-
inant role of the trial external variability on behavioural
performance. Considering background noises as the most
common source of trial variability, the target itself is of-
ten omitted from the revcorr analysis [13]. Therefore, lis-
tening experiments with deterministic trials are not suit-
able for revcorr. Examples of non-suitable experiments
are AM detection tasks using pure tones and speech intel-
ligibility tests in quiet.

2.2.2 The selected experiment: fastACI implementation

We chose to replicate the tone-in-noise experiment by
Ahumada et al. [2], which is coded in fastACI as ‘tonein-
noise ahumada1975.’ The experiment considers the de-
tection of a 100-ms long pure tone with a carrier frequency
of 500 Hz, temporally centred in 500-ms long broadband
Gaussian noises, that have an effective bandwidth up to
5000 Hz, half the sampling frequency fs = 10 kHz. Our
implementation differed in the presentation level of the
background noises, which were set to a lower (more com-
fortable) level of 70 dB SPL (instead of 90 dB SPL). Addi-
tionally, we implemented an adaptive track procedure (tar-
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Figure 2: Characterisation of tone-in-noise (in blue) and noise-
alone trials (in red) showing their average power spectrum (top)
and the low-pass filtered Hilbert envelope (fcut=30 Hz) (bot-
tom). In this figure, the signal-to-noise ratio SNR was fixed at
SNR=0 dB (in blue) and −18.2 dB (in pink). The grey traces
represent the individual envelopes of 1000 waveforms (only for
SNR=0 dB). The target tone was centred at 500 Hz, which was
temporally centred in the noises (between t = 0.2 and 0.3 s).
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get score of 70.7%) with a variable tone level, expressed
as a signal-to-noise ratio (SNR), whereas Ahumada and
colleagues implemented a constant stimulus paradigm,
with the tone presented at a fixed level. Figure 2 depicts
the fast Fourier transform and the Hilbert envelope of sev-
eral tone-in-noise and noise alone trials.

2.2.3 The selected experiment: Reference data

The interest of Ahumada et al. (1975) in investigating
tone-in-noise paradigms relied, on the one hand, on the
popularity of these paradigms at that time, and on the
other, on the fact that the most popular trial configura-
tion used tone and noise stimuli that were simultaneously
gated (e.g., [1] and, more recently, [14]) in contrast to
later preferred configurations in psychoacoustic research
where the tone is shorter than the noise [2, 15]. For si-
multaneously gated noise data, Ahumada and colleagues
had observed that the “tone present” and “tone absent”
judgements of their participants did not only depend on
the current trials but also on the noise information from
the immediately previous trials. Thus, they wanted to in-
vestigate whether this noise effect could occur at a trial
level if the tone, when presented, was made shorter than
the noise.

The reference data for the current study can be found
in [2] (their Fig. 1) and are replotted in our Fig. 3. We
arbitrarily took the data from their first two participants.
More particularly, we show the regression coefficients cij
that related the trial information with the participant’s re-
sponses, comparable to the ACIs that can be obtained us-
ing revcorr (see Fig. 1). Ahumada et al.’s results can be
summarised as follows: for five frequency bands at and
around 500 Hz, there was a dominant positive weight of
the information in the segment starting at 200 ms (contain-
ing the tone) that led participants to answer “tone present.”
There were, however, some weaker (positive and nega-
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Figure 3: Reference data for two participants, taken from the
“all-trial” analysis from [2], their Fig. 1. Non-null weights are
indicated by filled markers. See the text for more details.

tive) cues in the neighbouring bands. Some of these be-
havioural cues started before the tone onset, as visible
in the on-frequency channel for participant RM (negative
cue in the 0-ms segment). For participant KL, there was
a consistent negative cue in the 200-ms segment for off-
frequency bands (at 450, 550, and 600 Hz). We will come
back to these data in the discussion section.

2.3 Artificial listeners

To evaluate the selected tone-in-noise experiment, the ar-
tificial listeners need to be composed of an auditory front-
end module, sometimes referred to as a preprocessing
model, and a back-end module that provides a simple bi-
nary decision, where the incoming sound is labelled as the
most likely target interval from a limited set of options,
based on signal detection theory. This study shows how to
integrate a “preprocessing model” that transforms the in-
put waveforms into an internal representation in fastACI,
where two decision back ends are included. The prepro-
cessing models, referred from now on to as “the mod-
els,” follow the structure of monaural auditory models in
the AMT toolbox [12] and the decision back ends are, at
this point, available within the script aci detect.m from
fastACI. We focus on the considerations to enable “any
model” to be used with one of the decision back ends.

2.3.1 The models

The auditory front-ends that can be evaluated within the
toolbox are required to have input and output parameters
in the format as used in the monaural models from the
AMT toolbox (as of version 1.0) [16]. In this format,
the first two inputs are fixed and correspond to the sound
waveform insig and the sampling frequency fs in Hz, re-
spectively. The first output, outsig, contains the internal
representation of the sound, which can either be a numer-
ical matrix with dimensions time, frequency, and (option-
ally) modulation frequency or a cell array with as many
elements as frequencies, containing numerical arrays with
dimensions time and modulation frequency. The specific
format of outsig is only relevant for interpretation, as the
internal representation is always converted to a large one-
column numerical array before is further processed (and
compared between sounds) in the toolbox.

The toolbox has already been used using the AMT
models king2019 [3], osses2021 [8], and a model which
is not in AMT, but that follows the AMT conventions,
osses2022a [5]. In this contribution we will use the
model king2019 as a front-end module and the deci-
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Figure 4: Model internal representations for tone-in-noise (TN)
trials at SNRs of 0 dB (in blue) and −18.2 dB (in pink) and
noise-alone trials (N, in red) for the band centred at 500 Hz.
For this figure, the representations of all modulation filters were
added together (see the text for details). Panel A shows average
representations from 1000 TN or N trials. Panel B shows the dif-
ference between TN and N trials at the corresponding SNR. The
blue curve, at SNR=0 dB, represents the difference signal used
in the template, whereas the pink curve represents the difference
signal at a much lower presentation level of the target tone, in the
range of the experimental SNRs, near the detection threshold.

sion option optimal detector as a back-end module, be-
cause we have never used this combination of front-end
and back-end modules before. In this sense, king2019
is a new model. The model king2019 is a simplified
modulation-filter-bank implementation, described in de-
tail in [11, 16]. For the simulations here, the model “in-
ternal” representations had three dimensions, time, fre-
quency, and modulation frequency. Average internal rep-
resentations obtained from the model for tone-in-noise tri-
als at an SNR of 0 and −18.2 dB, as well as for noise-
alone trials are shown in Fig. 4A.

2.3.2 The decision back ends

The back-end module used in this study
(optimal detector) corresponds to the template-matching
approach defined in [6]. However, because the listening
experiments that we are simulating in the toolbox are
single-interval trials, we need to compare the current trial
with two templates and, hence, the extended decision
framework based on two templates from [17] is used in-
stead. For this detector, there are a number of compulsory
parameters that need to be set. In particular, the templates
need to be derived at a supra-threshold level, that is, at
a signal level that is expected to be clearly detectable
(variable sim def.det lev). At that supra-threshold level,
a configurable number of tone-in-noise and noise-alone
trials are averaged (variable sim def.templ num).

2.4 “Behavioural data:” Running the models

In the toolbox, the simulations are run as any other regu-
lar participant but indicating the name of the model (here:
‘king2019’) as the subject’s ID. If the model is correctly
configured in the toolbox (in king2019 cfg.m), the sub-
ject’s ID will be recognised as being a model and then the
simulations will automatically start being collected.

Listing 1: MATLAB commands required to run experiment
toneinnoise ahumada1975.

1 exp_name = 'toneinnoise_ahumada1975';
2 subj_ID = 'king2019'; % model front-end
3 cond = 'white'; % default noise condition
4 fastACI_experiment(exp_name,subj_ID,cond);

The trial progression will be visible in the MATLAB
command window. Line 4 in Listing 1 will run for one
experimental block of about 400 trials. If the total num-
ber of experimental trials is 3200, then that line needs
to be run 8 times. The number of trials is a config-
uration parameter in the * set.m file of the experiment
(here, cfg.N presentation per target to 1600 in tonein-
noise ahumada1975 set.m). The result file is a MAT
file with the prefix savegame. The savegame file contains
all the information collected for the corresponding partic-
ipant (here ‘king2019’) during the experimental sessions.

2.5 Data post-processing: Reverse correlation

The post-processing is done following the default con-
figurations of the toolbox, where the incoming sounds
are transformed into time-frequency representations us-
ing a gammatone filterbank with 32 bands between 80 and
1500 Hz, and where the time samples are grouped in 10-
ms long bins. Although there are many possible config-
uration options for the revcorr module, in this paper we
adopted the revcorr settings detailed in [10].

This post-processing requires the result “savegame”
file as input, from where the exact noises used in each
trial are read together with the corresponding answer from
the artificial listener. More specifically, the noises are first
read from disk and then converted into the described gam-
matone T-F representations. The T-F noise representations
and the artificial listener’s answers are used as input to
a generalised linear model (GLM) fitting, resulting in an
ACI (more details can be found in [4, 5]).
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3. ADDING A NEW ARTIFICIAL LISTENER

If the selected auditory preprocessing module complies
with the input-output structure described in Sec. 2.3.1.
The only remaining aspect is to manually generate a con-
figuration file for the model. For king2019.m the con-
figuration file needs to be named king2019 cfg.m (List-
ing 2) and is required to be located in the toolbox folder
Local. The configuration file contains specific parameters
for the decision back end and, if needed (but not required),
contains extra parameters for running the front-end model.
Some of the compulsory fields in the configuration file are:

Listing 2: File king2019 cfg.m.

3 % Parameters for the model (1 of 2)
4 def_sim.modelname='king2019';
5 % Parameters for the detector:
6 def_sim.decision_script='aci_detect';
7 def_sim.template_script='model_template';
8 def_sim.template_every_trial=0;
9 def_sim.templ_num=100;

10 def_sim.det_lev=0; % supra lvl, 0 dB SNR

The exact configuration file used in this contribu-
tion was added to the stored configurations in fastACI
(file name: osses2023b FA king2019.m in ../Sim-
ulations/Stored cfg/). This configuration file is au-
tomatically copied to the local folder if the script
publ osses2023b FA 1 sim.m is run. After success-
fully setting the configuration file, the simulations can be
run as indicated in Listing 1.

4. RESULTS AND DISCUSSION

4.1 Internal representations from the model

The shape of the internal representations of the test stim-
uli, here the noise-alone and tone-in-noise intervals, de-
pend on the auditory model and are assumed (by the mod-
eller) to be relevant enough to investigate experimental
outcomes. In other words, different models can result in
very different internal representations (see, e.g., [16]). Av-
erage internal representations for noise-alone and tone-in-
noise trials are shown in Fig. 4A, at SNRs of 0 dB and
−18.2 dB. Each curve was obtained by averaging 1000
trials. For this illustrative representations, only the outputs
of the gammatone filter bank centred at 500 Hz are shown.
For this “audio band,” all modulation bands were grouped
together (sum across modulation bands). In particular, the
noise-alone average is shown as red traces, and the tone-
in-noise averages at SNRs of 0 and −18.2 dB are shown

as blue and pink traces, respectively. Figure 4B, shows the
difference between tone-in-noise and noise-alone trials as
a schematic representation of the trial-by-trial difference
that, after normalisation, is effectively used by the model
for the template-matching decision. The SNRs used in the
figure were strategically chosen to represent (1) the arbi-
trary supra-threshold level, i.e., the condition at which the
tone is presented at an “easy-to-detect” level (SNR=0 dB,
blue traces in Fig. 4), and the (2) tone level at around the
model detection threshold (SNR=−18.2 dB, pink traces),
as presented in the subsequent section. In other words, be-
cause the model decision used the template-matching ap-
proach, the correlation between the blue and pink traces
in Fig. 4B lead to a correct tone detection in 70.7% (the
target score) of the times.

4.2 Behavioural results

The raw data were obtained by running the sim-
ulations with the king2019 model (Sec. 2.4, List-
ing 1), whose main file (savegame 2023 04 19 01 08
king2019 toneinnoise ahumada1975 white.mat) can
be retrieved from [18]. From this savegame file, the ex-
perimental variable (expvar), here the SNR expressing the
tone level with respect to the background noises, can be
retrieved and plotted as an average per session or as an
average as a function of SNR, with scores below or above
70.7% for SNRs to the left (lower) or to the right (higher)
than the model detection threshold as shown in Fig. 5.
The model, king2019, produced a score of 70.7% at an
SNR=−18.2 dB, which is indicated as a vertical dashed
line in the figure. Because of the adaptive procedure, most
of the experimental trials lied in the SNR bin around this
threshold (1166 trials of the 3200).

4.3 Auditory classification images

As indicated in Sec. 2.5, the ACIs were obtained by apply-
ing a GLM fitting algorithm set up as detailed in [5]. This
process required as input the savegame file with model re-
sponses and the automatically-retrieved sound waveforms
used during the simulations.

The derived ACI fitted to the specific noise waveforms
and the corresponding artificial listeners’ responses are
shown in Fig. 6. The obtained ACI shows a dominant pos-
itive weight (maroon region) at around 500 Hz, between
0.2 and 0.3 s, which is the time at which the tone is ex-
pected to be presented. In other words, the artificial lis-
tener was using the on-frequency information during the
tone presentation to respond “tone present.” This intuitive
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Figure 5: Behavioural results obtained from the simulations us-
ing the king2019 model. The results were obtained from the
experimental variable, the tone level expressed as a SNR. The
overall score, averaged across 400-trial blocks is indicated by
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SNR bins are depicted by the continuous blue line. The vertical
dashed line indicates the location of the average SNR threshold
of −18.2 dB. Refer to the text for more details.
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Figure 6: ACI obtained for the responses from the artificial
listener (‘king2019’). Dominant positive (maroon) cues were
found between 0.2 and 0.3 s, simultaneous to the tone presenta-
tion, whereas negative cues (blue) precede and follow the tone
onset and offset, respectively.

result is in line with the main positive cues in the refer-
ence data (Sec. 2.2.3 and Fig. 3). We also found nega-
tive cues (blue regions) before and after the tone in the
same on-frequency region. Taking the difference internal
representations from Fig. 4B that, after normalisation, are
used for the template in the template-matching process,
the negative cue after the tone offset can be directly at-
tributed to the negative amplitudes between 0.3 and 0.4 s.
In that time segment, the tone-in-noise representations
show amplitudes that are below those of the noise-alone
representations (Fig. 4A). This is a consequence of the un-
dershoot effect related to the auditory adaptation process-
ing in king2019 which, in a simplified form with respect
to other auditory models [16], is implemented as a 3-Hz
high-pass filter [11, 16]. On the contrary, the cue before
the tone onset in the ACI, between 0.1 and 0.2 s, highlights
the fact that noise energy preceding the tone can interfere
with the detection process, a finding that is not immedi-
ately apparent from Fig. 4B, as the difference between

tone-in-noise and noise-alone trials seems to be negligi-
ble between 0 and 0.2 s. This observation is consistent
with the view that “behavioural templates”—as expressed
by ACIs—should be seen as descriptors of data structure
rather than estimates of processing components [19].

In general, for the evaluated tone-in-noise experi-
ment, we can state that the ACI results obtained for
the artificial listener share an overall resemblance with
the experimental results from the reference tone-in-noise
data [2], having the same main positive cue during the
time segment of the expected tone. Further, our results
support an influence of the noise during time segments
directly before the tone onset and directly after the tone
offset. Ahumada and colleagues hypothesised that this
influence was possible for tone-in-noise tasks with tones
embedded and temporally centred in noise, in contrast to
the tasks using the simultaneous gating noise paradigm.
Importantly for the current contribution, these observa-
tions were derived from an artificial listener mimicking
a trial-by-trial detection task, where the artificial listener
was based on a simplified modulation-filter-bank model
(king2019) adopting a template matching, a combination
of front-end and decision modules that we tested within
the fastACI toolbox for the first time.

5. CONCLUSION

In this contribution we provided a step-by-step guide to
integrate an auditory model, king2019, as an artificial
listener within the fastACI toolbox to which a decision
device, a template-matching approach, was attached. We
used the newly configured artificial listener to mimic hu-
man performance for a tone-in-noise paradigm, where the
tone was a 100-ms long sinusoid centred at 500 Hz, which
was added to 500-ms long broadband Gaussian noises in
half of the trials [2]. After applying reverse correlation
to the artificial listener’ responses we obtained an audi-
tory classification image (ACI) with weights that were
broadly similar to the weights obtained by Ahumada and
colleagues. At this point, it is important to emphasise that
our effort in this study was not on a critical comparison of
simulation results with the original behavioural data but
rather on how to build an artificial listener from an audi-
tory model attached to a decision device, all in the frame-
work of the fastACI toolbox. We are confident of the flex-
ibility of the toolbox to be used with any other type of
model, as soon as the model is adjusted to have a specific
format of inputs and outputs (see Sec. 2.4). New psychoa-
coustic experiments can also be added in a straightfor-
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ward way, however, a current limitation of the toolbox is
that we have evaluated it only using single-interval tasks,
e.g., speech-in-noise [4] and amplitude modulation detec-
tion [3]. The toolbox is in constant development and, as
part of our future work, we plan to extend the toolbox to
support tasks using trials with two or more intervals. The
challenge of such an extension is not at the level of the ex-
periment implementation and subsequent data collection,
but on the extension of the post-processing module to ap-
ply the reverse correlation paradigm.

6. DATA AVAILABILITY

The fastACI toolbox for MATLAB, containing all
the required scripts to replicate the results from this
study can be downloaded from https://github.
com/aosses-tue/fastACI. The only exception
is the auditory model king2019, which is available
in the AMT toolbox [12] (routine king2019.m). All
figures can be replicated using the fastACI script
publ osses2023b FA figs.m. For an exact reproduction
of the study figures, the stimuli and raw data need to be
retrieved from Zenodo [18], before running the indicated
fastACI script.
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