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Introduction 10

Vegetation status assessment is a crucial information for agricultural monitoring 11 and management. In the coming years, climate change [START_REF] Tilman | Forecasting Agriculturally Driven Global Environmental Change[END_REF], increasing population [START_REF] Foley | Solutions for a Cultivated Planet[END_REF] 12 among other factors will rise the level of pressure on agricultural production. Also, 13 agricultural practices are an important source of ecosystem degradation at the global 14 scale [START_REF] Benayas | Restoration of Biodiversity and Ecosystem Services on Agricultural Land[END_REF] and therefore, land use monitoring related to farming is crucial for sustainable [START_REF] Schwartz | Intercomparing Multiple Measures of the Onset of Spring in Eastern North America[END_REF], [START_REF] White | Remote Sensing of Spring Phenology in Northeastern Forests: A Comparison of Methods, Field Metrics and Sources of Uncertainty[END_REF]; and other types of vegetation [START_REF] Cong | Spring vegetation green-up date in China inferred from SPOT NDVI data: A multiple model analysis[END_REF].

77

All these papers use the full vegetation cycle either for fitting a parametric model or 78 to produce a smoothed profile on which robust estimators can be applied. The key dates 79 are either estimated from the parameters of the fitted models, or by using constraints on 80 the profile derivatives. For instance, Zangh et al. [START_REF] Zhang | Monitoring vegetation phenology using MODIS[END_REF] propose the first maximum of the 81 3rd derivative of the double logistic function, but other versions using the 2nd derivative 82 (the camel-back method [START_REF] Balzter | Coupling of Vegetation Growing Season Anomalies and Fire Activity With Hemispheric and Regional-Scale Climate Patterns in Central and East Siberia[END_REF]) also exist.

83

The simpler methods using empirical thresholds on vegetation index (VI) profiles 84 [START_REF] Reed | Measuring Phenological Variability From Satellite Imagery[END_REF], [START_REF] Moulin | Global-scale assessment of vegetation phenology using NOAA/AVHRR satellite measurements[END_REF], need both a smoothing window of several months and the knowledge of the 85 maximum value of the VI. For instance, Reed et al. [START_REF] Reed | Measuring Phenological Variability From Satellite Imagery[END_REF] use 9 14-day composites, which A recent review on the topic was done by [START_REF] Zeng | A Review of Vegetation Phenological Metrics Extraction Using Time-Series, Multispectral Satellite Data[END_REF] showing that the choice of the most 94 appropriate model «depends upon the purpose of the study, the growth trajectory to be 95 analyzed and the targeted land cover type(s)».

96

Another recent review, focused on high spatial and temporal resolution image time 97 series [START_REF] Misra | Status of Phenological Research Using Sentinel-2 Data: a Review[END_REF] gives interesting discussion about the differences between ground phenology 98 and land surface phenology (satellite). This paper also lists performances of phenol-99 ogy estimation methods and concludes that «more efforts are required for testing the 100 efficiency of Sentinel-2 data in estimating phenophases of crops».

101

The difference between ground phenology and land surface phenology must be 102 stressed. Ground phenology is defined by very precise stages that can only be observed 103 on the field, like for instance the emergence of 50% of the seeds to the cotyledon stage.

104

This ground phenology is used by agronomists, but it is very costly to monitor and 105 suffers from observator biases. Remote sensing allows to observe a large number of 106 fields without observer bias, but is less accurate and should be considered as a proxy for 107 the ground phenology.

108

In this work, we choose the most widely used model for land surface phenology, 109 that is, the double logistic for two main reasons. First of all, it has a small number of 110 parameters ( 6), yet it is flexible enough to describe the phenology of annual crops in 111 temperate areas. Second, as we will show in section 3, it is easy to link the parameters of 

121

The approach does not need smoothing or gap-filling of the data as it is the case in 122 most published approaches.

123

It is worth noting that the Bayesian approach proposed here is completely generic 124 and can be applied to phenological models other than the 6-parameter double logistic.

125 Finally, all prior information about the phenology can easily be incorporated into 126 the model via the prior distributions of the parameters. In this work, we choose rather 127 uninformative priors, yet the results show accurate estimations. 

134

The logistic function has the form:

135 f (t) = 1 1 + e t 0 -t t 1 , (1) 
where the t variable represents time in our application.

136

The double logistic is an affine scaling of the difference of 2 logistics:

g(t) = A( f 1 (t) -f 2 (t)) + B = A 1 1 + e t 0 -t t 1 - 1 1 + e t 2 -t t 3 + B, (2) 
where A + B and B are respectively the maximum and the minimum values of g(t).

137

The other 4 parameters control the slopes of growing and senescence phases: t 0 (resp. (3)

we have that

142 g (t) = dg dt (t) = A      e t 0 -t t 1 t 1 1 + e t 0 -t t 1 2 - e t 2 -t t 3 t 3 1 + e t 2 -t t 3 2      . ( 4 
)
From these expressions, we can derive the 6 phenology metrics of interest: 

(t 0 ) = dg dt (t 0 ) = A      e t 0 -t 0 t 1 t 1 1 + e t 0 -t 0 t 1 2 - e t 2 -t 0 t 3 t 3 1 + e t 2 -t 0 t 3 2      ≈ A 1 t 1 (1 + 1) 2 -0 ,
(5) and therefore,

g (t 0 ) ≈ A 4t 1 . ( 6 
)
If we take this derivative as the slope of the line which joins SoS and Mat in figure 156 1, we have that

157 g (t 0 ) ≈ A Mat -SoS , (7) 
and therefore,

158 t 1 ≈ Mat -SoS 4 .
We can also assume

t 0 ≈ Mat + SoS 2 .
Using the same reasoning, we can approximate

159 t 3 ≈ EoS -Sen 4 
t 2 ≈ EoS + Sen 2 .
With The Bayes rule is written as

177 p(θ|D) = p(D|θ)p(θ) p(D) (8) 
where: 195

The question now is how to choose the 3 terms in the right-hand side of equation ( 8). 

202

In other words, we need to estimate

203 p(θ|D) ∝ p(D|θ)p(θ) (9) 
and normalize to ensure .

212

We can write the likelihood of the observations as

213 p(D|θ) ∼ N (m, σ 2 ),
where σ is the standard deviation of a Gaussian noise and can be estimated as part 

245 NDV I(t) = m(t|θ) + ε(t), ( 11 
)
where ε(t) is an i.i.d. Gaussian noise. Therefore:

246 NDV I(t) ∼ N (µ(t), σ 2 ) (12) µ(t) = m(t, max NDV I , min NDV I , SoS, Mat, Sen, EoS), (13) 
where m(t, max NDV I , min NDV I , SoS, Mat, Sen, EoS) was defined at the end of section 3. With this model, the vector of parameters is θ = (σ, max NDV I , min NDV I , SoS, Mat, Sen, EoS) and includes the variance of the noise. Given this model, we can simulate NDVI profiles 247 by choosing values for the parameters, obtaining the mean µ(t) and sampling a Gaussian 248 distribution.

249

We now need to choose prior distributions for all the parameters to be estimated.

250

We will choose uniform distributions for simplicity. These are rather uninformative 251 priors.

252

For σ, which represents the standard deviation of the noise in the observations, we 253 will chose a maximum value of 0.1 which corresponds to 10% of the maximum expected 254 range for NDVI values. For min NDV I , we will define a range between 0 (bare soil) and 255 0.4 (presence of vegetation). The maximum value of NDVI will be defined relative to 256 the minimum value: we assume that a crop with a typical phenology value will have a 257 max NDV I at least 0.3 higher than min NDV I , and that the highest value will not be higher 258 than 1.

The 4 dates for the phenological stages are each one defined in terms of the previous 260 as follows: EoS is allowed to be right after Sen and up to 90 days later. Sen is defined in 261 the same way with respect to Mat, and Mat follows the same rationale with respect to 262 SoS.

263

For SoS we would need to give a very wide prior to take into account winter 264 and summer crops. Instead of doing that, we introduce an additional (latent) variable 265 SummerLike which will model the probability of summer crop. This probability is used to 266 adjust the starting point of the interval of prior values for SoS. We assume that the earliest 267 SoS for a winter crop is on day 30 (end of January) and that the earliest summer crop can 268 have an SoS of 120 (late April). It is interesting to note that this latent variable will be 269 available after the inference, and therefore, the algorithm also provides a classification 270 output for winter and summer crops if we threshold this probability.

271

With the above considerations, the priors for the parameters are set as follows:

σ ∼ U (0, 0.1) ( 14 
)
min NDV I ∼ U (0, 0.4) ( 15 
)
max NDV I ∼ U (min NDV I + 0.3, 1) (16) 
EoS ∼ U (Sen, Sen + 90) ( 17)

Sen ∼ U (Mat, Mat + 90) ( 18 
)
Mat ∼ U (SoS, SoS + 90) ( 19 
)
SoS ∼ U (∆ SoS , ∆ SoS + 90) (20) 
SummerLike ∼ U (0, 1) The real data set is extracted from the public data sets built for the Sentinel-2 290

∆ SoS = 90 × SummerLike + 30 (21) 
Agriculture project [START_REF] Bontemps | sentinel-2 for Agriculturex201d;: Supporting Global Agriculture Monitoring[END_REF]. The data collection procedure and protocol are described in 291 [START_REF] Bontemps | Building a Data Set Over 12 Globally Distributed Sites To Support the Development of Agriculture Monitoring Applications With Sentinel-2[END_REF].

292

For this paper, we will use a smaller subset of 25 crop fields of the France MiPy 293 site (near Toulouse in South-West France) for which SPOT Take 5 [START_REF] Hagolle | SPOT4 (Take5): Simulation of Sentinel-2 Time Series on 45 Large sites[END_REF] and Landsat-8 Although no reference data for the phenological variables is available for these time 298 series, the results can be visually inspected to assess the usefulness and validity of the 299 Bayesian estimations. (these values are doubled on the areas where 2 orbits overlap).

309

In order to simulate this irregular acquisition pattern, we will generate NDVI 310 profiles with a 5 day time step and then randomly choose N dates. 

Results

322

We present the results of the experiments on both the synthetic and the real data 323 sets. For all experiments the NUTS algorithm [START_REF] Hoffman | The No-U-turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo[END_REF] as implemented in the NumPyro 324 library [START_REF] Phan | Composable Effects for Flexible and Accelerated Probabilistic Programming in Numpyro[END_REF][START_REF] Bingham | Deep Universal Probabilistic Programming[END_REF] was used with 10000 samples after the generation of 100 warming steps. 

337

Since one of the interests of using a Bayesian approach is the availability of a full 338 posterior distribution, the second metric evaluates the frequency with which the real 339 value falls within the 5th and the 95th quantiles of the posterior distribution of each 340 variable.

341

Table 1 provides the results of the quantitative validation on the simulated data set posterior distribution of the model parameters.

363

In order to help the reader interpret the figures, let's take the profile number 6, The results presented in section 6.2 illustrate the power of the Bayesian approach.

408

On one hand, the model is defined in terms of the application domain (equations [START_REF] Thayn | Dates and Introduced Temporal Error in Remote Sensing Vegetation Phenology Studies[END_REF] 409 through ( 14)) in a way that is independent of the inference approach. This allows to 410 introduce all prior knowledge about the parameters of the model. On the other hand,

411
the inference is able to provide full posterior distributions of the parameters given 412 the available observations. The uncertainties are easy to interpret and can be used in downstream models if needed.

414

There is however one drawback to the inference approach used here. The MCMC 415 technique has a high computational cost, since a Markov chain has to be used for each 416 time profile, which implies generating hundreds of Monte Carlo samples of the joint 417 probability distribution of the parameters. This approach will therefore not scale to an 418 estimation over large geographical areas. However, it can be used at the individual field 419 level in precision agriculture applications.

420

In order to be able to scale the Bayesian inference, other algorithms than MCMC 421 should be used. One approach would be using variational inference [START_REF] Jordan | An Introduction To Variational Methods for Graphical Models[END_REF][START_REF] Ranganath | Black Box Variational Inference[END_REF] where the 422 posterior distributions would be approximated by a parametric family (for instance 423 normal distributions) and gradient descent optimization would be used to estimate the 424 parameters of these distributions (mean and standard deviation in the case of normal 425 distributions). This approach can still be costly, since the optimization has to be run for 426 each time profile. Another approach would be using amortized variational inference,

427

where the optimization is replaced by a regression which is trained offline: for instance, be done using real data and variational auto-encoders [START_REF] Kingma | Auto-Encoding Variational Bayes[END_REF].

432

The trade-off between accuracy of the posterior distributions (the variational fam-433 ilies are just approximations of the real posteriors) and computational cost has to be 434 analyzed for each application case. 

446

The proposed approach has been applied to simulated data to provide a quantitative 447 assessment of the expected performances. The results show that the key phenological 448 dates can be estimated with an accuracy higher than the average sampling rate of 

455

The main limitation of the approach proposed in this paper is its computational cost.

456

Indeed the MCMC needs drawing hundreds of samples per time profile. Amortized 457 variational approaches could be used to scale the procedure to pixel-based inference 458 over large geographical areas.

  112 the mathematical model to the phenological variables of interest, making the estimation 113 of the latter straightforward. 114 In terms of estimation procedure, we propose an original approach which, to the 115 best of our knowledge is absent from the literature. We use a probabilistic estimation 116 based on Bayesian inference which allows to estimate the full (posterior) probability 117 distribution of all the phenological variables given the satellite observations. The method 118 can operate on irregularly sampled time series (which is the case in presence of cloudy 119 acquisitions) and provides an estimation of the error of the double logistic model with 120 respect to the observed data.

128 3 .

 3 The phenological model 129 As stated in the previous section, we choose to use a 6 parameter double logistic 130 to model the crop phenology as observed through a vegetation index like NDVI. An 131 example of such a model is shown in figure 1. The top plot shows the 2 slopes (growing 132 in green and senescence in red) that will be used to define the phenometrics, and the 133 bottom plot shows the values of those metrics.

178 •D

 178 is the observed data, in our case a time profile of NDVI; 179 • θ are the parameters of the model, that is the NDV I min , NDV I max , SoS, Mat, Sen, EoS 180 in our case; • p(θ|D) is the posterior distribution of the parameters, that is, the probability distribu-182 tion of the unknown parameters θ once we have observed some data D; 183 • p(D|θ) is called the likelihood and corresponds to the probability of observing some 184 data when the parameters are known; 185 • p(θ) is the prior distribution of the parameters and 186 • p(D) is the probability of observing some data. 187 Usually, we would want to find the values of θ which maximize p(θ|D) for a given 188 observed time profile D. This is what is called the maximum a posteriori (MAP) estimate 189 and for all intents and purposes, is not very different that a direct parameter optimization 190 with respect to the RMSE criterion. Actually, the solutions are equivalent for posterior 191 distributions which are symmetrical with respect to the mode. 192 What is interesting here, is that we can estimate the complete distribution of the 193 parameters for a given observation, and therefore, have an accurate picture of the 194 uncertainty associated to each parameter.

196 4 . 1 .

 41 The probability of the observation 197 The term p(D) is the most difficult to set, since it represents the joint probability 198 of the data points in the time profile. Fortunately, for a given time profile, p(D) is a 199 constant which does not depend on θ. The role of this constant is to ensure that p(θ|D) 200 has a unit integral. We can therefore ignore this term and normalize p(θ|D) after the 201 fact.

4 . 2 .

 42 The likelihood of the data 205 The term p(D|θ) represents the process of generation of the data once the parame-206 ters of the model are known. The phenological model gives a deterministic link between 207 the parameters and the observation and we need a conditional probability. Since the 208 model is a simplification of the physical reality, we can build a probability distribution 209 to account for the modeling errors. This can be done by modeling the observations as a 210 noisy version of the deterministic model. 211 Let m be a deterministic vector such as [m(t 1 |θ), ..., m(t T |θ)] and θ = [max NDV I , min NDV I , SoS, Mat, Sen, EoS, σ]

4. 6 .

 6 Prior predictive checks 272 To assess the ability of our model to represent realistic crop NDVI profiles, we can 273 perform simulations. In the case of Bayesian inference, these are called prior predictive 274 checks. Using equations 14 through 22, we can sample values of the parameters, use 275 them in equation 13 to produce an NDVI profile and finally sample an observation using 276 equation 12. 277 An illustration of such prior predictive checks is given in figure 2. The legends 278 show the values for max NDV I , min NDV I , SoS, Mat, Sen, EoS and green (resp. red) plots 279 indicate a probability of Summer crop lower (resp. higher) than 0.5. 280 One can observe a wide variety of behaviors in terms of growing rates, dates, noise 281 level and NDVI dynamics.

282 5 .

 5 Data sets 283 To illustrate the application of phenological parameter extraction using the pro-284 posed Bayesian model, 2 different data sets will be used. The first one is a real data 285 set composed of satellite observations of annual crops and will be used for qualitative 286 validation. A second data set, composed of simulated crop NDVI time profiles will be 287 used for quantitative validation of the approach.

288 5 . 1 .

 51 Real data set289

294

  acquisitions were available. Three types of crops are present: winter wheat, sunflower 295 and maize. The number of acquisition dates for one year range between 12 and 18 296 depending of the field.

Figure 2 .

 2 Figure 2. Prior predictive checks of the Bayesian phenology model. The legends show the values for max NDV I , min NDV I , SoS, Mat, Sen, EoS, σ and green (resp. red) plots indicate a probability of Summer crop lower (resp. higher) than 0.5.

300 5 . 2 .

 52 Simulated data set 301 The generation of a synthetic but realistic data set is important to provide a quanti-302 tative assessment of the performances of the method. If generating NDVI time profiles is 303 straightforward with the model used for the prior predictive checks, an additional step 304 is needed in order to obtain data close to what a satellite may observe. Although having 305 a regular revisit cycle, optical satellites suffer from the presence of clouds. For instance, 306 the 5-day revisit cycle of the Sentinel-2 constellation provides, on average, about 20 clear 307 acquisitions per pixel over Metropolitan France, instead of the 73 theoretically possible 308

311Figure 3

 3 Figure 3 illustrates some simulations. The blue solid lines correspond to the full

  321

Figure 3 . 6 . 1 .

 361 Figure 3. Simulation examples of crop NDVI time profiles using the double logistic model, noisy observations and 20 random dates on a 5 day revisit cycle. The red dots are joined by straight lines to emphasize the missing information due to missing dates.

342 for the 3

 3 temporal samplings and the 2 metrics. As one can observe, the errors on the 343 NDVI values (min and max) are lower than 0.05 and the errors on the dates are always 344 lower than the average revisit cycle, which is of 24 days for 15 dates, 18 days for 20 dates 345 and 12 days for 30 dates. It is worth noting that doubling the number of acquisitions 346 (from 15 to 30) only improves the dates estimations by about 2 days. 347 In terms of uncertainty estimation, the chosen interval covers the real values in 348 more than 80% of the cases. The coverage increases when the number of observed dates 349 decreases, probably due to the increase of uncertainty with the reduction of observations.

350 6 . 2 .Figures 4

 624 Figures 4 through 8 illustrate the results for the 25 real NDVI time profiles. Each

364 at the top of figure 5 .

 5 On the first row, the inference with only 4 dates early in the 365 year is presented. In this case we observe a wide distribution for all variables: SoS is 366 between day 50 and day 200, Mat between 70 and 300, Sen between 100 and 350 and EoS 367 between 100 and 400. The probability of Summer crop is nearly uniformly distributed 368 between 0 and 1, with a slight skew towards Summer, due to the fact that the 4 available 369 dates have a low NDVI value. The posterior predictive highest density intervals (HDI) 370 in the rightmost column show this wide spread of uncertainty. On the second row, 4 371 additional dates are used for the inference. Since these dates confirm the low NDVI 372 values, the probability of Summer crop increases significantly. As a consequence, the 373 uncertainty on SoS is reduced and most of the probability is between day 150 and day 200. 374 The uncertainty on the other 3 phenological dates is also reduced, this narrowing 375 decreases for dates further in the season, which is expected, since it is more difficult 376 to predict further in the future. The HDI in the posterior predictive distribution are 377 narrowed close to the observed dates and widen afterwards. On the third row, 12 dates 378 are used and SoS and Mat are fully observed. This greatly reduces the spread of the 379 posterior distributions of these variables as illustrated in the 2 leftmost columns. Almost 380 all probability of Summer crop is above 0.

428a

  neural network is used to estimate the parameters of the variational distributions of the 429 parameters (mean and standard deviation) from the observed time profiles. The training 430 data can be generated with the phenological model (synthetic data) or the training can 431

436

  In this paper, we have proposed a Bayesian approach for the estimation of crop 437 phenological parameters using vegetation indices derived from high resolution optical 438 satellite image time series. The phenological model is based on a 6 parameter double 439 logistic function which is well suited for annual crops in temperate areas. The interest of 440 such a phenological model is providing a direct link between the mathematical function 441 and the phenological markers. Performing Bayesian inference through Markov Chain 442 Monte Carlo (MCMC), one can obtain samples of the joint posterior distribution of 443 the parameters given the observation. In this way, the full distribution is available for 444 each vegetation index time profile, which allows to perform point estimates as in other 445 estimation procedures, but provides a very rich characterization of the uncertainties.

Figure 4 .Figure 5 .Figure 6 .Figure 7 .Figure 8 .

 45678 Figure 4. Incremental inference of real profiles 1 -5

  t 2 ) is the date of the maximum increasing (resp. decreasing) slopes and t 1 (resp. t 3 ) is 139 related to the speed of growth (resp. senescence). The growing and senescence slopes 140 can be obtained from the derivatives of the double logistic. Since

	141			
	d f dt	(t) =	e t 1 1 + e t 0 -t t 1 t 0 -t t 1	2
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  Mat and Sen are defined in an analogous way with respect to NDV I max .

	143		
	144	1.	the minimum value of the vegetation index NDVI min ;
	145	2.	the maximum value, NDVI max ;
	146	3.	the start of the season date, SoS;
	147	4.	the maturity date, Mat;
	148	5.	the senescence date, Sen;
	149	6.	the end of the season, EoS.
	Figure 1. Double logistic function and associated parameters
	150		For a crop with a well defined cycle, NDV I min ≈ B and NDV I max ≈ A + B. We
	151	define the SoS (resp. EoS) as the date for which the growing (resp. senescence) slope line
	152	(see figure 1 top) crosses the horizontal axis corresponding to the NDV I min value. The
	dates for 153
	154		Let's take the growing slope (green line in figure 1 top) and assume that t 2 is much
		larger than t 0 . In this case, eq. (4) becomes:

t 2 , t 3 are computed from the approxi- 165 mations above. 166 4. Bayesian parameter retrieval 167 As stated in section 2, the differences between ground and land surface phenology

  

	160	these approximations, we have direct relation between the phenological
	161	variables and the parameters of the mathematical model. These approximations are
	162	inaccurate for very slow growing and senescence vegetation (as for instance fallows),
	163	but they are well fit for annual crops in temperate areas.
	164	In the remainder, we will use m(t; max NDV I , min NDV I , SoS, Mat, Sen, EoS) to desig-
	nate the double logistic function where A, B, t 0 , t 1 , 168
	169	as well as the assumptions made by the phenology models used, can lead to inaccurate
	170	phenology characterizations. Being able to asses the uncertainty of the estimations is
	171	therefore crucial for downstream uses, either by models or by decision makers.
	172	In order to obtain uncertainty estimates of retrieved parameters from an NDVI time
	173	profile, we will use a Bayesian approach. The interest of Bayesian estimation is that,
	174	given a data generation model (the phenology model described in the previous section),
	175	one can estimate the probability distribution of each of the parameters of the model (the
		phenological variables) given an observation (an NDVI time profile).

176

  For instance, let's take the Mat parameter for a summer crop. Since it corresponds to 221 the end of the growing stage, we know that it will be between early June and late August 222 (in the case of Southern France). This can be represented by a uniform distribution 223 between day 150 and day 240. If we don't know whether we have a summer or a winter 224 crop, we can widen the distribution to start on day 50. Conversely, if we have knowledge 225 about the climate and the exact type of crop, we can narrow the distribution.

	226	
	227	Instead of a uniform distribution, we can use other shapes and introduce a more
		nuanced information about the probability distribution of each date.
	230	
	231	However, it is important to point out that the influence of the prior distributions
	232	decreases when the number of observation points increases.
	233	4.4. Bayesian inference using Markov Chain Monte Carlo
	234	There exist many techniques for performing Bayesian inference, that is, obtaining
		the posterior distributions of the model parameters given the observations. Describing
	214	
	215	of the Bayesian inference.
		4.3. The prior distribution of the parameters

216

The term p(θ) is where we inject our prior knowledge of the parameters. Although 217 this freedom may seem subjective, it is not different than setting initial values for the 218 parameters when using gradient descent or simplex optimization algorithms. The 219 advantage here is that we can provide much richer information than an initial guess.

228

We can also introduce dependencies and constraints between the parameters if 229 needed. For instance, the senescence date is always after the starting date. 235 them is out of the scope of this paper. For our work, since we do not have a closed ex-236 pression for the full posterior of the phenological parameters, we will use Markov Chain 237 Monte Carlo (MCMC) to obtain samples from it. More precisely, we use Hamiltonian 238 Monte Carlo as per the NUTS algorithm [27] as implemented in the NumPyro library 239 [28,29].

240 4.5. A Bayesian model for phenology 241 As stated above, in order to implement Bayesian inference through MCMC we need 242 to define the likelihood for the observed data. Since we know that the double logistic 243 model is an approximation, we will model the observations as a noisy version of such a 244 model:

Table 1 :

 1 Quantitative performances of the Bayesian inference for 15, 20 and 30 dates. Mean absolute error (MAE) of the point estimate using the median and proportion of estimates falling between the 5th and the 95th quantiles of the posterior marginal distributions. The MAE is measured in probability units for SummerLike, in NDVI units for NDV I max , NDV I min and σ and in days for SoS, Mat, Sen and EoS.

		MAE (15d) 5-95th (15d) MAE (20d) 5-95th (20d) MAE (30d) 5-95th (30d)
	SummerLike	0.19	88.68	0.18	87.60	0.18	87.72
	NDVI max	0.05	88.04	0.05	86.32	0.04	84.74
	NDVI min	0.02	85.28	0.02	83.44	0.01	82.56
	SoS	9.93	84.88	8.79	83.38	7.49	81.42
	Mat	11.91	84.82	10.72	83.84	9.51	82.52
	Sen	12.39	83.22	11.70	81.74	10.26	80.22
	EoS	12.65	83.26	11.71	82.02	10.52	79.52
	σ	0.01	86.00	0.01	84.92	0.01	81.80
		column corresponds to the posterior distribution of the latent variable representing the

358 probability of a Summer crop. The rightmost column shows in blue the observations 359 (the real NDVI data) and the 50% (dark orange) and 95% (light orange) probability 360 intervals of the posterior predictive distributions. The posterior predictive distributions 361 are obtained by running the phenological model with samples drawn from the joint 362

  5, which is correct for a Sunflower crop in the 381 study area. The posterior distributions for Sen and SoS are also narrower, but with a long 382 tail towards later dates, since these dates are not yet observed. The slight decrease in 383 NDVI could be caused by observation noise. This is reflected in the wide intervals on 384 the posterior predictive distribution on the decreasing slope. The fourth row illustrates 385 the inference with 16 dates representing the full season. We see that these additional 386 observations do not reduce the uncertainties on SoS and Mat which were already fully 387 observed, but the posterior distributions of Sen and SoS get narrower. It is interesting to 388 note that the uncertainties for Mat and Sen are significantly larger than for SoS and EoS389due to the fact that the maturity plateau is nearly non existent for this time profile. Also, 390 the spread of SoS posterior values is greater than those of EoS due to the slight increase the end of the season. This is the case for instance for profile 24 in figure8, which 396 corresponds to an irrigated maize crop. The reduction of the spread of the posterior predictive distribution (rightmost column) as a consequence gives nearly a perfect fit of 398 the observed profile, indicating that the double logistic model is a good approximation 399 in this case. This behavior is observed for all maize crops (profiles 17 through 25) except 400 for profiles 17 and 18 which show important vegetation presence at the beginning and 401 the end of the season, resulting in higher uncertainties for SoS and EoS. Again, this

	402	
	403	shows the interest of having full posterior distributions of the phenological variables to
	404	assess the adequacy of the model to the observed data. The same kind of conclusions
	405	can be derived from winter wheat crops (profiles 1 through 5) where the vegetation can
	406	emerge before day of year 1, and therefore it is not observed.
	407	7. Discussion
	391	
		of NDVI between days 50 an 100 (probably due to vegetation regrowth before the spring

392

tillage). These events are not taken into account by the simple double logistic model, but 393 the Bayesian inference is able to detect the issue.

394

For well behaved profiles, the Bayesian inference produces very narrow distribu-395 tions at
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