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Abstract: Vegetation status assessment is crucial for agricultural monitoring and management.1

Vegetation indices derived from high resolution image time series can be used to derive key2

phenological parameters for annual crops. In this work, we propose a procedure for the estimation3

of these parameters and their associated uncertainties. The approach uses Bayesian inference4

through Markov Chain Monte Carlo in order to obtain the full joint posterior distribution of the5

phenological parameters given the satellite observations. The proposed algorithm is quantitatively6

validated on synthetic data. Its use on real data is presented together with an application to7

real-time within season estimation allowing for phenology forecasting.8

Keywords: phenology; satellite image time series; vegetation index; Bayesian inference9

1. Introduction10

Vegetation status assessment is a crucial information for agricultural monitoring11

and management. In the coming years, climate change [1], increasing population [2]12

among other factors will rise the level of pressure on agricultural production. Also,13

agricultural practices are an important source of ecosystem degradation at the global14

scale [3] and therefore, land use monitoring related to farming is crucial for sustainable15

land management [4].16

Remote sensing imagery in general and, in particular, high temporal and high17

spatial resolution data as the ones provided by Sentinel-2 [5] constitute a major asset for18

this kind of application. Indeed, high temporal resolution provides access to phenology19

monitoring through vegetation status indicators.20

These indicators are usually derived from vegetation indices. For instance, the21

well-known Normalized Difference Vegetation Index (NDVI) is largely used to monitor22

fractional vegetation cover. The Leaf Area Index (LAI) is preferred when downstream23

models requiring a physical magnitude are used. The choice between NDVI, LAI or other24

vegetation indices is application dependent. Bolton and Friedl [6] show that remotely25

sensed vegetation indices and phenology metrics can be used to forecast agricultural26

yields. Using Sentinel-2 image time series, NDVI and LAI maps can be produced at 1027

meter resolution every 5 days [7].28

For most modeling and diagnostic applications a set of metrics describing the29

temporal evolution of the vegetation is preferred to the raw profiles. These can be for30

instance the dates of the emergence of the vegetation (start of season), the maturity, the31

senescence, etc. The extrema values of the vegetation index are also used.32

All these metrics can be computed at different temporal and spatial scales depend-33

ing on the application. Precision agriculture can use pixel-level estimations to deal with34

heterogeneity within the fields. Field-level estimations are enough for other applications.35

Evaluations at the end of the season can be useful for long term monitoring, while within36

season estimations are needed for real-time management and forecasting.37

For all applications, the availability of uncertainty estimates is crucial, since many38

sources of errors are present in the computation of phenological parameters. Indeed, the39

remote sensing observations can contain different sources of noise: missing acquisitions40
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due to cloud cover, undetected clouds or cloud shadows, atmospheric correction errors.41

The chosen metrics assume an underlying model for the vegetation phenology. The42

accuracy of these assumptions with respect to the observed reality will also introduce43

errors in the estimates.44

In this paper, we propose a methodology for the estimation of phenology parameters45

for annual crops using high resolution optical satellite image time series which is able46

to provide uncertainty estimates. The procedure is based on a Bayesian modeling. The47

approach is illustrated for a specific phenology model for crops (a 6 parameter double48

logistic function fitted on NDVI), but it is generic enough to be applied to other models.49

The paper is organized as follows. In section 2, we review the existing literature on50

phenology estimation from satellite image time series. The phenological model used in51

this work is introduced in section 3 and the Bayesian approach is presented in section52

4. The data sets used for the qualitative and quantitative assessment of the method are53

presented in section 5. In section 6 we present the results and we discuss them in section54

7. Finally, the conclusion is presented in section 8.55

2. Literature review56

The characterization of vegetation phenology using remote sensing has been widely57

addressed in the literature. Most of the methods estimate phenological parameters using58

either sigmoidal fitting based on the work of Zhang et al. [8] or empirical thresholds on59

vegetation indices. The most usually extracted markers are start of season and end of60

season [9], [10], which are also referred as onset and offset [11]. These 2 phenophases are61

useful in determining the length of the growing season.62

In the published literature, the onset of the vegetation appears under many different63

names (SoS for start of season or start of spring, emergence date, etc.). It is also defined64

in multiple ways which actually represent different phenological stages (e.g., the timing65

when vegetation starts to green up, the timing when vegetation grows the fastest) [12],66

[13]. For instance, [8] defines it as the first maxima of the rate of change. An inter-67

comparison of SoS retrieved using 10 satellite methods made by Xu et al. [14] shows that68

the difference between individual methods can be as much as two months. It also shows69

that most of the methods have large biases with respect to field data. Other works show70

disparities up to 100 days [15].71

Some studies also derive more than two phenology markers. For example, Zhang72

et al. computed four parameters including the onset of green-up, maturity, senescence73

and dormancy [8].74

Many papers have compared different approaches on different types of vegetation,75

as for instance crops [16]; forests, grasslands and schrublands [17]; croplands and forests76

[18], [19]; and other types of vegetation [20].77

All these papers use the full vegetation cycle either for fitting a parametric model or78

to produce a smoothed profile on which robust estimators can be applied. The key dates79

are either estimated from the parameters of the fitted models, or by using constraints on80

the profile derivatives. For instance, Zangh et al. [8] propose the first maximum of the81

3rd derivative of the double logistic function, but other versions using the 2nd derivative82

(the camel-back method [21]) also exist.83

The simpler methods using empirical thresholds on vegetation index (VI) profiles84

[22], [23], need both a smoothing window of several months and the knowledge of the85

maximum value of the VI. For instance, Reed et al. [22] use 9 14-day composites, which86

corresponds to more than 4 months. Furthermore, the thresholds are dependent on the87

vegetation type and the site.88

Most of the literature cited above uses medium or low resolution imagery (AVHRR89

and MODIS) which ensures regular cloud-free data and smooth temporal behaviors.90

Only recently, have these approaches been compared using high spatial resolution data91

(30 m) [24], and even though a 2-day revisit cycle was used, the whole season approach92

was adopted.93
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A recent review on the topic was done by [25] showing that the choice of the most94

appropriate model «depends upon the purpose of the study, the growth trajectory to be95

analyzed and the targeted land cover type(s)».96

Another recent review, focused on high spatial and temporal resolution image time97

series [26] gives interesting discussion about the differences between ground phenology98

and land surface phenology (satellite). This paper also lists performances of phenol-99

ogy estimation methods and concludes that «more efforts are required for testing the100

efficiency of Sentinel-2 data in estimating phenophases of crops».101

The difference between ground phenology and land surface phenology must be102

stressed. Ground phenology is defined by very precise stages that can only be observed103

on the field, like for instance the emergence of 50% of the seeds to the cotyledon stage.104

This ground phenology is used by agronomists, but it is very costly to monitor and105

suffers from observator biases. Remote sensing allows to observe a large number of106

fields without observer bias, but is less accurate and should be considered as a proxy for107

the ground phenology.108

In this work, we choose the most widely used model for land surface phenology,109

that is, the double logistic for two main reasons. First of all, it has a small number of110

parameters (6), yet it is flexible enough to describe the phenology of annual crops in111

temperate areas. Second, as we will show in section 3, it is easy to link the parameters of112

the mathematical model to the phenological variables of interest, making the estimation113

of the latter straightforward.114

In terms of estimation procedure, we propose an original approach which, to the115

best of our knowledge is absent from the literature. We use a probabilistic estimation116

based on Bayesian inference which allows to estimate the full (posterior) probability117

distribution of all the phenological variables given the satellite observations. The method118

can operate on irregularly sampled time series (which is the case in presence of cloudy119

acquisitions) and provides an estimation of the error of the double logistic model with120

respect to the observed data.121

The approach does not need smoothing or gap-filling of the data as it is the case in122

most published approaches.123

It is worth noting that the Bayesian approach proposed here is completely generic124

and can be applied to phenological models other than the 6-parameter double logistic.125

Finally, all prior information about the phenology can easily be incorporated into126

the model via the prior distributions of the parameters. In this work, we choose rather127

uninformative priors, yet the results show accurate estimations.128

3. The phenological model129

As stated in the previous section, we choose to use a 6 parameter double logistic130

to model the crop phenology as observed through a vegetation index like NDVI. An131

example of such a model is shown in figure 1. The top plot shows the 2 slopes (growing132

in green and senescence in red) that will be used to define the phenometrics, and the133

bottom plot shows the values of those metrics.134

The logistic function has the form:135

f (t) =
1

1 + e
t0−t

t1

, (1)

where the t variable represents time in our application.136

The double logistic is an affine scaling of the difference of 2 logistics:

g(t) = A( f1(t)− f2(t)) + B = A

(
1

1 + e
t0−t

t1

− 1

1 + e
t2−t

t3

)
+ B, (2)

where A + B and B are respectively the maximum and the minimum values of g(t).137

The other 4 parameters control the slopes of growing and senescence phases: t0 (resp.138
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t2) is the date of the maximum increasing (resp. decreasing) slopes and t1 (resp. t3) is139

related to the speed of growth (resp. senescence). The growing and senescence slopes140

can be obtained from the derivatives of the double logistic. Since141

d f
dt

(t) =
e

t0−t
t1

t1

(
1 + e

t0−t
t1

)2 (3)

we have that142

g′(t) =
dg
dt

(t) = A

 e
t0−t

t1

t1

(
1 + e

t0−t
t1

)2 −
e

t2−t
t3

t3

(
1 + e

t2−t
t3

)2

. (4)

From these expressions, we can derive the 6 phenology metrics of interest:143

1. the minimum value of the vegetation index NDVImin;144

2. the maximum value, NDVImax;145

3. the start of the season date, SoS;146

4. the maturity date, Mat;147

5. the senescence date, Sen;148

6. the end of the season, EoS.149

Figure 1. Double logistic function and associated parameters

For a crop with a well defined cycle, NDVImin ≈ B and NDVImax ≈ A + B. We150

define the SoS (resp. EoS) as the date for which the growing (resp. senescence) slope line151

(see figure 1 top) crosses the horizontal axis corresponding to the NDVImin value. The152

dates for Mat and Sen are defined in an analogous way with respect to NDVImax.153

Let’s take the growing slope (green line in figure 1 top) and assume that t2 is much154

larger than t0. In this case, eq. (4) becomes:155
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g′(t0) =
dg
dt

(t0) = A

 e
t0−t0

t1

t1

(
1 + e

t0−t0
t1

)2 −
e

t2−t0
t3

t3

(
1 + e

t2−t0
t3

)2

 ≈ A

(
1

t1(1 + 1)2 − 0

)
,

(5)
and therefore,

g′(t0) ≈
A

4t1
. (6)

If we take this derivative as the slope of the line which joins SoS and Mat in figure156

1, we have that157

g′(t0) ≈
A

Mat− SoS
, (7)

and therefore,158

t1 ≈
Mat− SoS

4
.

We can also assume
t0 ≈

Mat + SoS
2

.

Using the same reasoning, we can approximate159

t3 ≈
EoS− Sen

4

t2 ≈
EoS + Sen

2
.

With these approximations, we have direct relation between the phenological160

variables and the parameters of the mathematical model. These approximations are161

inaccurate for very slow growing and senescence vegetation (as for instance fallows),162

but they are well fit for annual crops in temperate areas.163

In the remainder, we will use m(t; maxNDVI , minNDVI , SoS, Mat, Sen, EoS) to desig-164

nate the double logistic function where A, B, t0, t1, t2, t3 are computed from the approxi-165

mations above.166

4. Bayesian parameter retrieval167

As stated in section 2, the differences between ground and land surface phenology168

as well as the assumptions made by the phenology models used, can lead to inaccurate169

phenology characterizations. Being able to asses the uncertainty of the estimations is170

therefore crucial for downstream uses, either by models or by decision makers.171

In order to obtain uncertainty estimates of retrieved parameters from an NDVI time172

profile, we will use a Bayesian approach. The interest of Bayesian estimation is that,173

given a data generation model (the phenology model described in the previous section),174

one can estimate the probability distribution of each of the parameters of the model (the175

phenological variables) given an observation (an NDVI time profile).176

The Bayes rule is written as177

p(θ|D) = p(D|θ)p(θ)
p(D) (8)

where:178

• D is the observed data, in our case a time profile of NDVI;179

• θ are the parameters of the model, that is the NDVImin, NDVImax, SoS, Mat, Sen, EoS180

in our case;181
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• p(θ|D) is the posterior distribution of the parameters, that is, the probability distribu-182

tion of the unknown parameters θ once we have observed some data D;183

• p(D|θ) is called the likelihood and corresponds to the probability of observing some184

data when the parameters are known;185

• p(θ) is the prior distribution of the parameters and186

• p(D) is the probability of observing some data.187

Usually, we would want to find the values of θ which maximize p(θ|D) for a given188

observed time profile D. This is what is called the maximum a posteriori (MAP) estimate189

and for all intents and purposes, is not very different that a direct parameter optimization190

with respect to the RMSE criterion. Actually, the solutions are equivalent for posterior191

distributions which are symmetrical with respect to the mode.192

What is interesting here, is that we can estimate the complete distribution of the193

parameters for a given observation, and therefore, have an accurate picture of the194

uncertainty associated to each parameter.195

The question now is how to choose the 3 terms in the right-hand side of equation (8).196

4.1. The probability of the observation197

The term p(D) is the most difficult to set, since it represents the joint probability198

of the data points in the time profile. Fortunately, for a given time profile, p(D) is a199

constant which does not depend on θ. The role of this constant is to ensure that p(θ|D)200

has a unit integral. We can therefore ignore this term and normalize p(θ|D) after the201

fact.202

In other words, we need to estimate203

p(θ|D) ∝ p(D|θ)p(θ) (9)

and normalize to ensure204 ∫
θ

p(θ|D)dθ = 1 (10)

4.2. The likelihood of the data205

The term p(D|θ) represents the process of generation of the data once the parame-206

ters of the model are known. The phenological model gives a deterministic link between207

the parameters and the observation and we need a conditional probability. Since the208

model is a simplification of the physical reality, we can build a probability distribution209

to account for the modeling errors. This can be done by modeling the observations as a210

noisy version of the deterministic model.211

Let m be a deterministic vector such as [m(t1|θ), ..., m(tT |θ)] and

θ = [maxNDVI , minNDVI , SoS, Mat, Sen, EoS, σ]

.212

We can write the likelihood of the observations as213

p(D|θ) ∼ N (m, σ2),

where σ is the standard deviation of a Gaussian noise and can be estimated as part214

of the Bayesian inference.215

4.3. The prior distribution of the parameters216

The term p(θ) is where we inject our prior knowledge of the parameters. Although217

this freedom may seem subjective, it is not different than setting initial values for the218

parameters when using gradient descent or simplex optimization algorithms. The219

advantage here is that we can provide much richer information than an initial guess.220
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For instance, let’s take the Mat parameter for a summer crop. Since it corresponds to221

the end of the growing stage, we know that it will be between early June and late August222

(in the case of Southern France). This can be represented by a uniform distribution223

between day 150 and day 240. If we don’t know whether we have a summer or a winter224

crop, we can widen the distribution to start on day 50. Conversely, if we have knowledge225

about the climate and the exact type of crop, we can narrow the distribution.226

Instead of a uniform distribution, we can use other shapes and introduce a more227

nuanced information about the probability distribution of each date.228

We can also introduce dependencies and constraints between the parameters if229

needed. For instance, the senescence date is always after the starting date.230

However, it is important to point out that the influence of the prior distributions231

decreases when the number of observation points increases.232

4.4. Bayesian inference using Markov Chain Monte Carlo233

There exist many techniques for performing Bayesian inference, that is, obtaining234

the posterior distributions of the model parameters given the observations. Describing235

them is out of the scope of this paper. For our work, since we do not have a closed ex-236

pression for the full posterior of the phenological parameters, we will use Markov Chain237

Monte Carlo (MCMC) to obtain samples from it. More precisely, we use Hamiltonian238

Monte Carlo as per the NUTS algorithm [27] as implemented in the NumPyro library239

[28,29].240

4.5. A Bayesian model for phenology241

As stated above, in order to implement Bayesian inference through MCMC we need242

to define the likelihood for the observed data. Since we know that the double logistic243

model is an approximation, we will model the observations as a noisy version of such a244

model:245

NDVI(t) = m(t|θ) + ε(t), (11)

where ε(t) is an i.i.d. Gaussian noise. Therefore:246

NDVI(t) ∼ N (µ(t), σ2) (12)

µ(t) = m(t, maxNDVI , minNDVI , SoS, Mat, Sen, EoS), (13)

where m(t, maxNDVI , minNDVI , SoS, Mat, Sen, EoS) was defined at the end of sec-
tion 3. With this model, the vector of parameters is

~θ = (σ, maxNDVI , minNDVI , SoS, Mat, Sen, EoS)

and includes the variance of the noise. Given this model, we can simulate NDVI profiles247

by choosing values for the parameters, obtaining the mean µ(t) and sampling a Gaussian248

distribution.249

We now need to choose prior distributions for all the parameters to be estimated.250

We will choose uniform distributions for simplicity. These are rather uninformative251

priors.252

For σ, which represents the standard deviation of the noise in the observations, we253

will chose a maximum value of 0.1 which corresponds to 10% of the maximum expected254

range for NDVI values. For minNDVI , we will define a range between 0 (bare soil) and255

0.4 (presence of vegetation). The maximum value of NDVI will be defined relative to256

the minimum value: we assume that a crop with a typical phenology value will have a257

maxNDVI at least 0.3 higher than minNDVI , and that the highest value will not be higher258

than 1.259
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The 4 dates for the phenological stages are each one defined in terms of the previous260

as follows: EoS is allowed to be right after Sen and up to 90 days later. Sen is defined in261

the same way with respect to Mat, and Mat follows the same rationale with respect to262

SoS.263

For SoS we would need to give a very wide prior to take into account winter264

and summer crops. Instead of doing that, we introduce an additional (latent) variable265

SummerLike which will model the probability of summer crop. This probability is used to266

adjust the starting point of the interval of prior values for SoS. We assume that the earliest267

SoS for a winter crop is on day 30 (end of January) and that the earliest summer crop can268

have an SoS of 120 (late April). It is interesting to note that this latent variable will be269

available after the inference, and therefore, the algorithm also provides a classification270

output for winter and summer crops if we threshold this probability.271

With the above considerations, the priors for the parameters are set as follows:

σ ∼ U (0, 0.1) (14)

minNDVI ∼ U (0, 0.4) (15)

maxNDVI ∼ U (minNDVI + 0.3, 1) (16)

EoS ∼ U (Sen, Sen + 90) (17)

Sen ∼ U (Mat, Mat + 90) (18)

Mat ∼ U (SoS, SoS + 90) (19)

SoS ∼ U (∆SoS, ∆SoS + 90) (20)

SummerLike ∼ U (0, 1) (21)

∆SoS = 90× SummerLike + 30 (22)

4.6. Prior predictive checks272

To assess the ability of our model to represent realistic crop NDVI profiles, we can273

perform simulations. In the case of Bayesian inference, these are called prior predictive274

checks. Using equations 14 through 22, we can sample values of the parameters, use275

them in equation 13 to produce an NDVI profile and finally sample an observation using276

equation 12.277

An illustration of such prior predictive checks is given in figure 2. The legends278

show the values for maxNDVI , minNDVI , SoS, Mat, Sen, EoS and green (resp. red) plots279

indicate a probability of Summer crop lower (resp. higher) than 0.5.280

One can observe a wide variety of behaviors in terms of growing rates, dates, noise281

level and NDVI dynamics.282

5. Data sets283

To illustrate the application of phenological parameter extraction using the pro-284

posed Bayesian model, 2 different data sets will be used. The first one is a real data285

set composed of satellite observations of annual crops and will be used for qualitative286

validation. A second data set, composed of simulated crop NDVI time profiles will be287

used for quantitative validation of the approach.288

5.1. Real data set289

The real data set is extracted from the public data sets built for the Sentinel-2290

Agriculture project [30]. The data collection procedure and protocol are described in291

[31].292

For this paper, we will use a smaller subset of 25 crop fields of the France MiPy293

site (near Toulouse in South-West France) for which SPOT Take 5 [32] and Landsat-8294

acquisitions were available. Three types of crops are present: winter wheat, sunflower295

and maize. The number of acquisition dates for one year range between 12 and 18296

depending of the field.297
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Figure 2. Prior predictive checks of the Bayesian phenology model. The legends show the values
for maxNDVI , minNDVI , SoS, Mat, Sen, EoS, σ and green (resp. red) plots indicate a probability of
Summer crop lower (resp. higher) than 0.5.

Although no reference data for the phenological variables is available for these time298

series, the results can be visually inspected to assess the usefulness and validity of the299

Bayesian estimations.300

5.2. Simulated data set301

The generation of a synthetic but realistic data set is important to provide a quanti-302

tative assessment of the performances of the method. If generating NDVI time profiles is303

straightforward with the model used for the prior predictive checks, an additional step304

is needed in order to obtain data close to what a satellite may observe. Although having305

a regular revisit cycle, optical satellites suffer from the presence of clouds. For instance,306

the 5-day revisit cycle of the Sentinel-2 constellation provides, on average, about 20 clear307

acquisitions per pixel over Metropolitan France, instead of the 73 theoretically possible308

(these values are doubled on the areas where 2 orbits overlap).309

In order to simulate this irregular acquisition pattern, we will generate NDVI310

profiles with a 5 day time step and then randomly choose N dates.311

Figure 3 illustrates some simulations. The blue solid lines correspond to the full312

time profiles and the red lines correspond to the sub-sampled profiles. In these examples,313

a time step of 5 days followed by a random selection of 20 dates is shown. The red314

dots correspond to the observed dates. As one can see, the irregular sampling may lead315

to missing the phenological key dates and produce distortions on the shape of the316

underlying double logistic function.317

We simulated 3 data sets with the same sampling step of 5 days and different318

number of observed dates (15, 20 and 30) in order to assess the performances of the319

method for cases representative of Sentinel-2 acquisitions. Each data set contains 5000320

samples.321

6. Results322

We present the results of the experiments on both the synthetic and the real data323

sets. For all experiments the NUTS algorithm [27] as implemented in the NumPyro324

library [28,29] was used with 10000 samples after the generation of 100 warming steps.325
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Figure 3. Simulation examples of crop NDVI time profiles using the double logistic model, noisy
observations and 20 random dates on a 5 day revisit cycle. The red dots are joined by straight lines
to emphasize the missing information due to missing dates.

6.1. Synthetic data set326

As stated in section 5.2, 3 simulated data sets corresponding to 15, 20 and 30327

available dates on a 5 day revisit cycle are used to give a quantitative assessment of the328

performances of the methods. For this validation, only the simulations for which the329

NDVI amplitude (maximum minus minimum) is greater than 0.3 are considered, since330

smaller amplitudes barely represent the phenology of real crops.331

The quantitative assessment is based on 2 metrics. The first one is the mean absolute332

error (MAE) of a point estimate of each variable of the phenological model. This error333

is expressed in the units of the variable (a probability for SummerLike, an NDVI value334

for NDVImax, NDVImin and σ, and days for the 4 phenological dates SoS, Maturity,335

Senescence and EoS). For this point estimate we choose to use the median of the posterior336

marginal distributions.337

Since one of the interests of using a Bayesian approach is the availability of a full338

posterior distribution, the second metric evaluates the frequency with which the real339

value falls within the 5th and the 95th quantiles of the posterior distribution of each340

variable.341

Table 1 provides the results of the quantitative validation on the simulated data set342

for the 3 temporal samplings and the 2 metrics. As one can observe, the errors on the343

NDVI values (min and max) are lower than 0.05 and the errors on the dates are always344

lower than the average revisit cycle, which is of 24 days for 15 dates, 18 days for 20 dates345

and 12 days for 30 dates. It is worth noting that doubling the number of acquisitions346

(from 15 to 30) only improves the dates estimations by about 2 days.347

In terms of uncertainty estimation, the chosen interval covers the real values in348

more than 80% of the cases. The coverage increases when the number of observed dates349

decreases, probably due to the increase of uncertainty with the reduction of observations.350

6.2. Real data set351

Figures 4 through 8 illustrate the results for the 25 real NDVI time profiles. Each352

pane in each figure presents the results of the Bayesian inference for an individual profile.353

For each profile, the inference is performed with 1/4, 1/2, 3/4 of the observations and354

the full time profile to simulate the inference during the season. This corresponds to355

each row of each pane. The 4 leftmost columns of each pane present the posterior356

distributions of the phenological dates (SoS, Mat, Sen and EoS). The second rightmost357
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Table 1: Quantitative performances of the Bayesian inference for 15, 20 and 30 dates. Mean absolute error (MAE) of
the point estimate using the median and proportion of estimates falling between the 5th and the 95th quantiles of the
posterior marginal distributions. The MAE is measured in probability units for SummerLike, in NDVI units for NDVImax,
NDVImin and σ and in days for SoS, Mat, Sen and EoS.

MAE (15d) 5-95th (15d) MAE (20d) 5-95th (20d) MAE (30d) 5-95th (30d)
SummerLike 0.19 88.68 0.18 87.60 0.18 87.72
NDVImax 0.05 88.04 0.05 86.32 0.04 84.74
NDVImin 0.02 85.28 0.02 83.44 0.01 82.56
SoS 9.93 84.88 8.79 83.38 7.49 81.42
Mat 11.91 84.82 10.72 83.84 9.51 82.52
Sen 12.39 83.22 11.70 81.74 10.26 80.22
EoS 12.65 83.26 11.71 82.02 10.52 79.52
σ 0.01 86.00 0.01 84.92 0.01 81.80

column corresponds to the posterior distribution of the latent variable representing the358

probability of a Summer crop. The rightmost column shows in blue the observations359

(the real NDVI data) and the 50% (dark orange) and 95% (light orange) probability360

intervals of the posterior predictive distributions. The posterior predictive distributions361

are obtained by running the phenological model with samples drawn from the joint362

posterior distribution of the model parameters.363

In order to help the reader interpret the figures, let’s take the profile number 6,364

at the top of figure 5. On the first row, the inference with only 4 dates early in the365

year is presented. In this case we observe a wide distribution for all variables: SoS is366

between day 50 and day 200, Mat between 70 and 300, Sen between 100 and 350 and EoS367

between 100 and 400. The probability of Summer crop is nearly uniformly distributed368

between 0 and 1, with a slight skew towards Summer, due to the fact that the 4 available369

dates have a low NDVI value. The posterior predictive highest density intervals (HDI)370

in the rightmost column show this wide spread of uncertainty. On the second row, 4371

additional dates are used for the inference. Since these dates confirm the low NDVI372

values, the probability of Summer crop increases significantly. As a consequence, the373

uncertainty on SoS is reduced and most of the probability is between day 150 and day 200.374

The uncertainty on the other 3 phenological dates is also reduced, but this narrowing375

decreases for dates further in the season, which is expected, since it is more difficult376

to predict further in the future. The HDI in the posterior predictive distribution are377

narrowed close to the observed dates and widen afterwards. On the third row, 12 dates378

are used and SoS and Mat are fully observed. This greatly reduces the spread of the379

posterior distributions of these variables as illustrated in the 2 leftmost columns. Almost380

all probability of Summer crop is above 0.5, which is correct for a Sunflower crop in the381

study area. The posterior distributions for Sen and SoS are also narrower, but with a long382

tail towards later dates, since these dates are not yet observed. The slight decrease in383

NDVI could be caused by observation noise. This is reflected in the wide intervals on384

the posterior predictive distribution on the decreasing slope. The fourth row illustrates385

the inference with 16 dates representing the full season. We see that these additional386

observations do not reduce the uncertainties on SoS and Mat which were already fully387

observed, but the posterior distributions of Sen and SoS get narrower. It is interesting to388

note that the uncertainties for Mat and Sen are significantly larger than for SoS and EoS389

due to the fact that the maturity plateau is nearly non existent for this time profile. Also,390

the spread of SoS posterior values is greater than those of EoS due to the slight increase391

of NDVI between days 50 an 100 (probably due to vegetation regrowth before the spring392

tillage). These events are not taken into account by the simple double logistic model, but393

the Bayesian inference is able to detect the issue.394

For well behaved profiles, the Bayesian inference produces very narrow distribu-395

tions at the end of the season. This is the case for instance for profile 24 in figure 8, which396

corresponds to an irrigated maize crop. The reduction of the spread of the posterior397
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predictive distribution (rightmost column) as a consequence gives nearly a perfect fit of398

the observed profile, indicating that the double logistic model is a good approximation399

in this case. This behavior is observed for all maize crops (profiles 17 through 25) except400

for profiles 17 and 18 which show important vegetation presence at the beginning and401

the end of the season, resulting in higher uncertainties for SoS and EoS. Again, this402

shows the interest of having full posterior distributions of the phenological variables to403

assess the adequacy of the model to the observed data. The same kind of conclusions404

can be derived from winter wheat crops (profiles 1 through 5) where the vegetation can405

emerge before day of year 1, and therefore it is not observed.406

7. Discussion407

The results presented in section 6.2 illustrate the power of the Bayesian approach.408

On one hand, the model is defined in terms of the application domain (equations (12)409

through (14)) in a way that is independent of the inference approach. This allows to410

introduce all prior knowledge about the parameters of the model. On the other hand,411

the inference is able to provide full posterior distributions of the parameters given412

the available observations. The uncertainties are easy to interpret and can be used in413

downstream models if needed.414

There is however one drawback to the inference approach used here. The MCMC415

technique has a high computational cost, since a Markov chain has to be used for each416

time profile, which implies generating hundreds of Monte Carlo samples of the joint417

probability distribution of the parameters. This approach will therefore not scale to an418

estimation over large geographical areas. However, it can be used at the individual field419

level in precision agriculture applications.420

In order to be able to scale the Bayesian inference, other algorithms than MCMC421

should be used. One approach would be using variational inference [33,34] where the422

posterior distributions would be approximated by a parametric family (for instance423

normal distributions) and gradient descent optimization would be used to estimate the424

parameters of these distributions (mean and standard deviation in the case of normal425

distributions). This approach can still be costly, since the optimization has to be run for426

each time profile. Another approach would be using amortized variational inference,427

where the optimization is replaced by a regression which is trained offline: for instance,428

a neural network is used to estimate the parameters of the variational distributions of the429

parameters (mean and standard deviation) from the observed time profiles. The training430

data can be generated with the phenological model (synthetic data) or the training can431

be done using real data and variational auto-encoders [35].432

The trade-off between accuracy of the posterior distributions (the variational fam-433

ilies are just approximations of the real posteriors) and computational cost has to be434

analyzed for each application case.435

8. Conclusion436

In this paper, we have proposed a Bayesian approach for the estimation of crop437

phenological parameters using vegetation indices derived from high resolution optical438

satellite image time series. The phenological model is based on a 6 parameter double439

logistic function which is well suited for annual crops in temperate areas. The interest of440

such a phenological model is providing a direct link between the mathematical function441

and the phenological markers. Performing Bayesian inference through Markov Chain442

Monte Carlo (MCMC), one can obtain samples of the joint posterior distribution of443

the parameters given the observation. In this way, the full distribution is available for444

each vegetation index time profile, which allows to perform point estimates as in other445

estimation procedures, but provides a very rich characterization of the uncertainties.446

The proposed approach has been applied to simulated data to provide a quantitative447

assessment of the expected performances. The results show that the key phenological448

dates can be estimated with an accuracy higher than the average sampling rate of449
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Figure 4. Incremental inference of real profiles 1 - 5
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Figure 5. Incremental inference of real profiles 6 - 10
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Figure 6. Incremental inference of real profiles 11 - 15
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Figure 7. Incremental inference of real profiles 16 - 20
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Figure 8. Incremental inference of real profiles 21 - 25
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the sensor. The uncertainties provided by the method are highly correlated with the450

theoretical confidence intervals. The application to real satellite data illustrates the use451

of the method in real-time situations where the phenology parameters are estimated452

during the agricultural season. The uncertainties are reduced with the use of consecutive453

image acquisitions and the posterior predictive distributions can be used to forecast the454

evolution of the vegetation.455

The main limitation of the approach proposed in this paper is its computational cost.456

Indeed the MCMC needs drawing hundreds of samples per time profile. Amortized457

variational approaches could be used to scale the procedure to pixel-based inference458

over large geographical areas.459
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