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Abstract: The Sentinel-2 constellation provides high spatial, spectral and temporal resolution optical1

imagery of the continental surfaces since 2015. The spatial and temporal resolution improvements2

that Sentinel-2 brings with respect to previous systems has been demonstrated in both the literature3

and operational applications. On the other hand, the spectral capabilities of Sentinel-2 appear to have4

been exploited to a limited extent only. At the moment of definition of the new generation of Sentinel-25

satellites, an assessment of the usefulness of the current available spectral bands seems appropriate. In6

this work, we investigate the unique information contained by each 20 m resolution Sentinel-2 band. A7

statistical quantitative approach is adopted in order to yield conclusions which are application agnostic:8

multivariate regression is used to reconstruct some bands using the others as predictors. We conclude9

that, for most observed surfaces, it is possible to reconstruct the reflectances of most Red Edge or NIR10

bands from the rest of observed bands with an accuracy within the radiometric requirements of Sentinel-11

2. Removing two of those bands could be possible at the cost of slightly higher reconstruction errors. We12

also identify mission scenarios for which several of the current Sentinel-2 bands could be removed for13

the next generation of sensors.14

Keywords: spectral bands; Sentinel-2; regression; spectral band reconstruction; spectral band selection15

1. Introduction16

The Sentinel-2 constellation constitutes a revolution in the remote sensing field in terms17

of data quantity, quality and availability. The high spatial and temporal resolutions of Sentinel-18

2 [1] have been demonstrated to be crucial for many applications that have been reported19

in the scientific literature and validated by operational applications covering a wide range of20

use cases like land cover mapping, snow extent mapping, biophysical parameter estimation,21

agriculture monitoring, etc.22

Sentinel-2 provides 13 spectral bands with spatial resolutions from 10m to 60m and a23

5-day revisit cycle.24

The particularities of Sentinel-2 with respect to pre-existing comparable systems are:25

• in the temporal domain, a systematic acquisition plan (unlike tasked satellites which26

acquire scenes on demand) with a high revisit frequency (5 days compared to the 16 days27

of Landsat);28

• in the spatial domain, a higher resolution than Landsat (10 m to 20 m compared to 30 m);29

• in the spectral domain, an increased number of bands with respect to both the classical30

Blue, Green, Red, NIR band set and Landsat (4 visible, 1 NIR, 2 SWIR), with the novelty of31

3 red edge (RE) bands, although a lack of thermal band with respect to Landsat.32

However, as we show in section 1.4, very few published works have made full use of the33

spectral richness of Sentinel-2 and, often, these uses have not been demonstrated to be the34

only way to extract the target information.35

After 5 years of operations, the work on the new generation of Sentinel-2 satellites (S2NG)36

has started, and one of the tasks is to identify the set of spectral bands. The question of «which37

additional spectral bands could be put on board of S2NG» has to be balanced with the one of38
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the «S2 possible useless bands», that is, the current available bands which could be removed39

for S2NG. Adding spectral bands to a satellite bears a cost which could impact the trade-off40

with other mission requirements, like temporal revisit needing an additional satellite.41

Of course, all current Sentinel-2 bands contain potentially useful information, since they42

sample different intervals of the electro-magnetic spectrum, and except for the pair B8-B8A43

(see section 1.1), there is no significant overlap between the different spectral ranges. However,44

since there exists a high amount of redundance in the underlying observed nature, one can45

expect high degrees of correlation between the different bands, allowing us to question the46

true usefulness of some bands.47

With 5 years of data collection and exploitation, it is now possible to quantitatively assess48

the usefulness of the different bands on board of Sentinel-2. This could be done in terms49

of the quality of the results of downstream processing (biophysical parameter estimation,50

land-cover mapping, etc.) but this would need to address a huge number of application51

domains with experiments and validation data without the guaranty of exhaustivity or chances52

of replicability.53

On the other hand, if we address the problem from the information content point of view,54

we only have to deal with data at the sensor level. We therefore choose to pose the problem55

as a data reconstruction one: if one band can be reconstructed – within a predefined error56

margin – from the other bands, it can be removed from the satellite without quantitative loss57

of information.58

One could argue that, what matters is the estimation of physical parameters and that an59

imperfect reconstruction of a particular band can have no impact for many applications. This60

would allow to go further in terms of spectral band removal. We agree with this point of view,61

but all downstream processing entails the use of (imperfect by construction) models, and, the62

closer we get to the sensor, the most application independent the conclusions of the study will63

be.64

The aim of this paper is to leverage this interband correlation and assess which bands65

could be removed from future iterations of the Sentinel-2 constellation with a minimal impact66

on the usefulness of the acquired data. To do so, we predict the reflectances of missing bands67

with non-linear regression algorithms that use the other spectral bands as predictors. In68

order to produce results which are representative of real settings and which are generalizable,69

we build a data set by sampling pixels from Sentinel-2 acquistions with a wide variety of70

geographic areas and dates. We therefore take an empirical, data-driven approach.71

We choose not to leverage the spatial and the temporal dimensions and carry out a mono-72

date, pixel-based analysis. We understand that temporal and spatial correlations would reduce73

the errors in the reconstruction of missing bands. The goal of the work is not to propose an74

optimal regression algorithm, but rather showing that band reconstruction is possible using75

regression. The results of this work can be seen as a lower bound in terms of reconstruction76

quality and therefore encourage the pursuit of further studies.77

1.1. The Sentinel-2 spectral bands78

Table 1 gives the name and the central wavelength for each band acquired by Sentinel-2.79

There are 4 bands at 10m resolution, the 3 usual visible bands (B2-B4) and a wide NIR band80

(B8). The 20m resolution bands are 3 narrow bands in the red edge (B5-B7), one narrow NIR81

(B8A) and 2 SWIR bands (B11, B12). Finally, the 60m resolution bands are aimed at radiometric82

corrections (B1 for aerosol content estimation, B9 for water vapor and B10 for cirrus detection).83

Figure 1 illustrates the relative spectral responses of the 10m, 20m and 60m resolution bands.84

1.2. S2 Radiometric Requirements85

The Sentinel-2 Mission Requirements Document (MRD) [2] states that for the applica-86

tions covered by this mission, the radiometric accuracy at top of atmosphere (TOA) has to87

be not worse than 3% (goal) to 5% (threshold). For inter-band radiometric calibration, 3%88

accuracy is also required.89
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Figure 1. Sentinel-2A relative spectral responses from https://sentinels.copernicus.eu/documents/247904/685211/S2-SRF_COPE-GSEG-EOPG-

TN-15-0007_3.0.xlsx

These requirements allow to define error bounds for the band reconstruction tasks that90

we assess in this work. For TOA reflectances, we can aim the 3% reconstruction error. In terms91

of surface reflectance, the accuracy of the MAJA (MACCS-ATCOR Joint Algorithm) processor92

[3][4] is 0.01 (not in %, but in reflectance values) and we can use this value as requirement.93

Given the fact that there are other errors in the measure (geometric registration between94

bands, MTF (Modulation Transfer Function) differences, etc.), achieving these error bounds95

can be considered rather ambitious.96

https://sentinels.copernicus.eu/documents/247904/685211/S2-SRF_COPE-GSEG-EOPG-TN-15-0007_3.0.xlsx
https://sentinels.copernicus.eu/documents/247904/685211/S2-SRF_COPE-GSEG-EOPG-TN-15-0007_3.0.xlsx


Version May 19, 2022 submitted to Remote Sens. 4 of 24

Table 1: Name and central wavelength for the Sentinel-2 spectral bands [1].

Band Central wavelength (nm) Spatial resolution (m)
1 – Coastal aerosol 442.7 60
2 – Blue 492.4 10
3 – Green 559.8 10
4 – Red 664.6 10
5 – Vegetation red edge 704.1 20
6 – Vegetation red edge 740.5 20
7 – Vegetation red edge 782.8 20
8 – NIR 832.8 10
8A – Narrow NIR 864.7 20
9 – Water vapour 945.1 60
10 – SWIR – Cirrus 1373.5 60
11 – SWIR 1613.7 20
12 – SWIR 2202.4 20

Other approaches to define the reconstruction requirements could be used. For instance97

[5] presents a Radiometric Uncertainty Tool which allows to estimate the radiometric uncer-98

tainty associated with each pixel of a Sentinel-2 image in the TOA images provided by ESA.99

The approach integrates all the errors from the TOA reflectance to the L1C product and typical100

values are greater than 10% for open sea, 5% to 15% in rice fields covered by water and 2% to101

4% in land areas. We see that the 3% specification is very strict.102

1.3. Directional effects103

Since the reflectance of surfaces depends on the observation and illumination directions104

[6], particular attention has to be payed to the acquisition geometry. Directional effects are105

specially important in (nearly) specular reflections, but also in the case of shadow or volume106

effects.107

The MSI (MultiSpectral Instrument) is composed of 2 focal planes covering the VNIR108

and the SWIR channels respectively, each one having an array of 12 detectors. Due to the109

shifted positioning of the detectors along the track direction on the focal planes, angular110

differences between the two alternating odd and even clusters of detectors are induced in111

the measurements. The parallax Base/Height (B/H) ratio ranges between 0.022 and 0.059. A112

similar issue occurs between the VNIR and SWIR detectors, resulting in an inter-band B/H113

which is less than 0.01 for the VNIR channels and less than 0.018 for the SWIR.114

The values of the solar and sensor angles on a 5 km grid are provided in the L1C product115

meta-data. We will leverage this information in the band reconstruction algorithms that will116

be used in this work.117

1.4. Specific uses of S2 bands118

The spectral bands of Sentinel-2 allow the computation of a large variety of spectral119

indices other than NDVI which are useful for different applications. Table 2 presents a selection120

of several of them.121

The RE bands have been proposed for chlorophyll estimation, burnt severity assessment122

[7], LAI estimation [8] and non photosynthetic vegetation [9]. The SWIR bands have been123

proposed for dry mass vegetation [11] and water or moisture indices [13].124

Although a thorough review of the literature is out of the scope of this paper, a bibliometric125

analysis shows that very few papers published after the launch of Sentinel-2 make an explicit126

use of the spectral particularities (RE and SWIR bands). Furthermore, a recent review about127

phenology monitoring using Sentinel-2 [14] shows that only 1 out of 4 published papers uses128

other spectral information than NDVI.129

Some studies as for instance [15] claim that RE and SWIR bands during vegetation130

senescense appear as being important for machine learning based classification. The concept131

of importance has to be nuanced, since it measures the errors made when the reflectance of132
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Table 2: Spectral indices leveraging Sentinel-2 spectral bands for applications related to vege-
tation and water surfaces.

Index Formula Application Reference
C Ir ed−ed g e

( B7
B5

)−1 Chlorophyll, burnt areas [7]
C Ig r een

( B7
B3

)−1 " "

REP 705+35
(B4+B7)

2 −B5
B6−B5 " "

MTC I B6−B5
B5−B4 " "

N DRE1 B6−B5
B6+B5 " "

N DRE2 B7−B5
B7+B5 " "

T RB I B12+B6
B8A LAI estimation [8]

N SSI B8A−B7
B8A+B7 Non photosynthetic vegetation [9]

PSRI B4−B2
B6 Senescent vegetation [10]

ST I B11
B12 Tillage, dry vegetation [11]

N DW I B3−B8A
B3+B8A Water bodies [12]

N DW I B8−B11
B8+B11 " [13]

N DW I B8−B12
B8+B12 " "

those bands are replaced by random values. In order to have an accurate assessment of the133

usefulness of those variables, the classifiers should have to be re-trained without them. On the134

other hand, the same work shows that PSRI, which is computed from red, green and NIR is135

also important, which may indicate a high correlation (and therefore redundancy) with RE136

bands.137

Another work supporting the interest of RE and SWIR bands is [16], where they are138

shown to be useful for Gross Primary Productivity estimation in grasslands. Using regression139

approaches, the authors show that those bands are useful to predict the target variable, but140

do not study whether using more complex regressors, the error without those bands could be141

reduced.142

It is interesting to note that other works like for instance [17], show that NDVI is best143

suited to monitor grass phenology than more sophisticated VIs using RE and SWIR bands.144

Another example is [18], where it is shown that the RE bands of Sentinel-2 do not perform145

well for the estimation of chlorophyll content changes in certain crops. One should note that,146

before the launch of Sentinel-2 the same community had great expectations for these bands147

and for the same application [19]. However, at the time, the authors already suggested that148

using the green band in C Ig r een also seemed very promising and therefore further research149

was required.150

The apparent contradictions between these different works are likely due to the fact that151

different experimental settings, different data and different applications were involved.152

Also, we find that the works on the usefulness of spectral bands are usually addressed153

only from the point of view of demonstrating that a particular phenomenon has a signature in154

a particular band. For instance, a recent publication [20] proposed additional bands in the155

SWIR in order to detect non photosynthetic vegetation and crop residues. The study shows156

indeed that these objects can not be detected with the SWIR bands of Landsat-8. However the157

cited work does not analyze how the complete set of Landsat-8 bands could be used to retrieve158

a signature of the phenomenon at hand.159

At the moment of this writing, and to the best of our knowledge, the most thorough study160

of the usefulness of Sentinel-2’s spectral bands is [21]. This reference is actually a detailed161

litterature review of the use of hyperspectral imagery with the goal of proposing synergies with162

Sentinel-2 in order to overcome the limitations of space-borne hyperspectral sensors (spatial163

resolution, revisit time and signal to noise ratio). Interestingly, the review shows how the164

current set of Sentinel-2 bands constitutes in itself a very wise choice for many applications.165

However, the limit of such a meta-analysis, is that there can’t be a wholistic view of the problem,166

since the pertinence of each spectral range is performed in isolation in the reviewed litterature.167

Indeed, this prevents from discovering redundancies between different bands. For instance,168
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this reference excludes uses for geological and lithological mapping like [22], [23] or [24], where169

the the higher resolution of Sentinel-2’s NIR bands is assessed for the estimation of iron oxides.170

We think that this supports the idea of performing a pure data driven approach over a171

large data set and with an application agnostic point of view. However, the work presented172

in this paper is just a modest demonstration of what could be done by exploiting the existing173

Sentinel-2 archive.174

Finally, we will stress again the fact that we don’t claim that some Sentinel-2 bands do not175

contain useful information. We want to assess the possibility of reconstructing this information176

by leveraging redundancies among the complete set of spectral bands. This reconstruction177

will of course contain errors, and the goal here is to give bounds allowing to inform design178

trade-offs for future systems.179

2. Materials and methods180

2.1. Data preparation181

For this study, a set of 128 Sentinel-2 tiles was used. Figure 2 illustrates the geographic182

distribution of these tiles. For each tile, a single date was used and the selection was random183

on the period going from early 2016 to the end of 2020. The goal was to cover a wide range184

of geographic areas and seasons. For each acquisition, the data was obtained at 2 processing185

levels: 1C (from PEPS, CNES’ mirror of Sentinel data) and 2A (from Theia’s catalogue), the186

latter having been produced by the MAJA processor. This allows us to use accurate masks at187

the pixel level for clouds, cloud shadows and saturation effects.188

Figure 2. Geographic distribution of the tiles used for the study

For each acquisition, 100,000 pixels where sampled. Only non-saturated pixels were189

selected, regardless of their cloud or shadow status. Pixel positions were selected on the 20m190

resolution grid. For each 20m pixel position, the following information was recorded:191

• whether the pixel was detected as a cloud or a shadow (without distinction of these 2192

states),193

• the reflectance in the 20m bands for levels 1C and 2A,194

• the reflectance of the 4 corresponding pixels of each of the 10m resolution bands for levels195

1C and 2A,196

• the reflectance at the 20m pixel position of the 60m resolution bands after bicubic resam-197

pling for level 1C,198

• the solar and viewing angles for each pixel.199
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For the analyses performed in the following sections, we split the data at the tile level.200

This means that all the pixels used for testing purposes (measures of accuracy of the reconstruc-201

tions) belong to tiles for which no pixel was used for training or even intermediate validation.202

In the experiences carried out in this work, we randomly select 100 tiles and we do a203

80%/20% split at the tile level for training and testing purposes. This means that training and204

testing pixels come from different tiles and dates. The training set is further split in proper205

training samples (80%) and validation samples (20%), the latter being used for monitoring206

the convergence of the training. For each experiment (i.e. set of predicted bands and set of207

predictor bands) the experiment is repeated 10 times by selecting a different set of 100 tiles208

among the 128 available. This allows to check for possible selection biases and allows to further209

assess the robustness of the regressions.210

Also, only clear pixels (non cloudy nor shadow) are used for training and validating211

models. This reduces the number of available pixels. In average, each experiment uses212

3.86928e+06 training samples, 967320 validation samples and 1.2582e+06 testing samples and213

is repeated 10 times.214

The dataset has been made public [25] and is available for other researchers to reproduce215

and improve the work presented in this paper.216

2.2. Regression model217

As stated in the introduction, we aim at estimating a subset of the Sentinel-2 bands from218

the other ones. This estimation will be done using regression techniques. The regression219

algorithms will be calibrated and validated using the data described in section 2.1. In this220

section we describe the regression approach chosen.221

2.2.1. Reflectance estimation with associated uncertainties222

The regression problem is posed as the estimation of one or several spectral bands as a223

nonlinear combination of a disjoint set of the available bands. For the prediction of a single224

band, this can be written as:225

ρ̂i = f ({ρ j 6=i },~θ),

that is, the prediction of the reflectance of band i is a function of the measured re-226

flectances of the other bands and a set of parameters~θ containing other pertinent information,227

like solar and sensor angles. The regression can jointly estimate several spectral bands in a set228

I :229

{ρ̂i }i∈I = f ({ρ j } j∉I ,~θ) (1)

The regression procedure should also produce a credibility interval1 of the estimation of230

the target variable. In order to do this, instead of regressing over the expected mean, we can231

implement a regression of the mean and the variance of the target variable. Estimating a mean232

and a variance means that we are assuming a Gaussian error model.233

At inference (estimation) time, the mean will be used as the variable estimation (in a234

Gaussian model the mean is the value with the highest probability), and the variance will be235

used to give the credibility interval.236

Given a target value y (in our case that would be ρi ) and the estimates µ̂ and σ̂, the237

predictive likelihood of the target value given the estimates is the Gaussian distribution whose238

probability density function is239

p(y |µ̂, σ̂) = 1p
2πσ̂2

e
(y−µ̂)2

2σ̂2

1 We use the term credibility interval instead of confidence interval because we adopt a Bayesian point of view: we consider that the estimated value is a random
variable and that the bounds of the interval al fixed, while the use of confidence intervals considers the bounds as random variables that result from repeated
measures.
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Figure 3. A multi-layer perceptron with 1 input layer, 1 hidden layer and 1 output layer. Diagram adapted

from https://github.com/PetarV-/TikZ

We can therefore pose the regression problem as the minimization of a cost function240

given by the negative log-likelihood [26]. The log-likelihood takes the form:241

log
(
p(y |µ̂, σ̂)

)=−1

2
log(2π)− 1

2
log σ̂2 − (y − µ̂)2

2σ̂2

And therefore, after removing the constant term and a multiplicative factor, the cost242

function to be minimized is:243

L =∑
i

log σ̂2
i +

(yi − µ̂i )2

σ̂2
i

where the sum is taken over the training samples.244

Beyond being the correct theoretical loss under a Gaussian error model, this penalty245

function can be intepreted as follows :246

• the term (yi − µ̂i )2 penalizes the errors between the target value and the estimated mean;247

• these errors, are weighted by the uncertainty estimation: larger errors will need larger248

values of σi to lower the penalty;249

• in order to avoid allowing large errors on µi by always estimating large values of σi , large250

values of σi are also penalized by the first term in the loss.251

2.2.2. Regression algorithm252

The regression algorithm will have to find the approximation to the function f in equa-253

tion 1 minimizing the cost function described above. Since we don’t have prior knowledge254

about the shape of f , we choose to use a non parametric approach. Among the non parametric255

algorithms for regression, feed-forward neural networks (Multi-Layer Perceptrons, MLP) seem256

a good choice because they are universal function approximators [27] which can be used in257

a multi-variate input and output setting and with custom cost functions. Conversely, other258

choices have limitations. For instance, linear and logistic regressions impose a strong prior on259

the shape of f and Random Forest regression can’t predict several targets. The main drawback260

of neural networks is their lack of interpretability.261

MLP are composed of fully connected linear layers (sets of neurons computing linear262

combinations of the inputs) followed by nonlinearities φ called activation functions. Figure 3263

illustrates an MLP with a single hidden layer with 5 neurons. A large number of layers with264

different numbers of neurons can be used. Training such a network consists in finding the set265

of weights wi that minimize the loss function for the set of training samples. The optimization266

is done by stochastic gradient descent.267

Another interesting property of MLPs is that they can be combined as elementary bricks268

in more complex architectures. This will allow to introduce some structure in the processing,269

which brings interpretability and the possibility of introducing some prior knowledge. We will270

develop this point in the next section.271

https://github.com/PetarV-/TikZ
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Figure 4. Overview of the nonlinear regression of a set of spectral bands using other bands and angular

information as predictors assuming a Gaussian error model.

2.2.3. Network architecture272

As stated above, the regression neural network will produce an estimation of the re-273

flectances of the target bands using the reflectances of the other bands as predictors. All274

computations are performed for individual pixels. In order to take into account BRDF effects,275

the solar and sensor angles (both azimuth and zenith, as described in 1.3) are also used as276

predictors. More precisely, the sinus and cosinus of each angle are used.277

Instead of using all predictors (reflectances and angles) together in a flat vector as input278

of an MLP as in figure 3, we use an attention mechanism where the angular information mod-279

ulates the spectral values. This is implemented as illustrated in figure 4. First, the spectral and280

angular information are fed to the Angular MLP which is used to generate an attention mask.281

An attention mask is a vector of real numbers in [0,1] with the same number of components282

as the data on which the attention is being applied. In our case, this is the vector of spectral283

bands. The Angular MLP is a standard MLP, with a single hidden layer containing 8 neurons284

and a SoftMax layer as output. The SoftMax function is an exponential normalization that285

maps a set of values to the unit interval (simplex in more than one dimension) σ : RK → [0,1]K
286

and is defined by:287

σ(z)i = ezi∑K
j=1 ez j

for i = 1, . . . ,K and z = (z1, . . . , zK ) ∈RK ,

where the zi are the outputs of the layer preceding the SoftMax.288

Therefore, the Angular MLP learns a set of multiplicative weights (this operation is289

represented by the ⊗ symbol in figure 4) that will be applied to the input reflectances in order290

to perform an angular correction. It is interesting to note that this angular correction takes291

into account the spectral information itself, that is, the reflectances and the angles are both292

used for the estimation of the correction. It is therefore a kind of self-attention mechanism293

[28].294

A residual connection (a simple elementwise addition represented by ⊕ in figure 4) is295

used after the attention mask in order to keep spectral information that could be excessively296

removed by the attention mechanism before entering the Backbone MLP. The latter is used to297

embed the predictors into a feature space that will be used to feed the 2 modules used for the298

estimation of the target values and their uncertainties respectively.299

The backbone part (a 3 hidden layer MLP with 10 neurons per layer) allows to model300

the correlation between the target variables and their uncertainties. The independent MLP301

branches (with the same architecture as the backbone) for µ and σ get specialized into the302

estimation of each of the informations. Performing the regression for several target variables303

with the same network is a kind of multi-task learning which is able to leverage the correlation304

between target variables and is more efficient than preforming single target regressions.305

For numerical stability and positivity constraints, instead of estimating the σ or σ2, we306

estimate logσ.307

The output activation functions for the mean and the variance estimations are hyperbolic308

tangents so that the values are contained in the [−1,1] interval. The output value is then309

rescaled into a pre-defined interval which is [−0.2,1.3] for µ and [1e − 5,1.5] for σ2. The310

rescaling for µ allows to take into account the fact that L2A reflectances can sometimes be311

negative due to over-corrections. Reflectances can also be higher than 1 in specular conditions.312

The rescaling intervals could be learned from the data, but we set them for simplicity.313
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The regression of several bands simultaneously is done by a straightforward extension of314

the single target case. The output layers, for both the means and the variances will have as315

many neurons as target variables. The loss function is just de sum of the losses for each target316

variable.317

The network is trained for 100 epochs using an Adam optimizer [29] with a learning rate318

of 0.001 and a batch size of 256.319

2.3. Measuring redundancies in Sentinel-2 bands320

To assess the quality of the spectral regression approaches, we will analyze the statistical321

dependence between all the pairs of Sentinel-2 bands. Instead of measuring correlations,322

which are limited to linear (Pearson correlation) or monotonic (Spearman correlation) depen-323

dencies, we will use the mutual information, I . It measures a dissimilarity between the joint324

distribution of a pair of variables and the product of the marginals. It is therefore a measure of325

the distance to general statistical independence:326

I (X ;Y ) = DK L(P(X ,Y )‖PX ⊗PY ),

where DK L is the Kullback-Leibler divergence. The mutual information can also be327

written in terms of entropies (H) as follows:328

I (X ;Y ) = H(X ,Y )−H(X |Y )−H(Y |X ) = H(Y )−H(Y |X ) = H(X )−H(X |Y ),

and it is therefore a measure of the amount of uncertainty about one variable once the329

other is known. The mutual information is positive, but is not upper bounded. Therefore, we330

use a normalized version using the entropies of each variable:331

Inor m(X ;Y ) = I (X ;Y )p
H(X )H(Y )

We will study this measure for both the L1C and the L2A data.332

3. Results333

3.1. Redundancies in Sentinel-2 bands334

As stated in section 2.3, we start by analyzing the redundancies in Sentinel-2 spectral335

bands. Figure 5 displays the values of the normalized mutual information correlation for all336

the pairs of bands of L1C (left) and L2A (right) data.337

Both levels of processing show the same patterns and nearly the same values, although338

L2A has slightly lower values of dependence. This may indicate that the atmospherical correc-339

tions are able to remove effects with high correlation across bands.340

We observe high values for the red edge bands, between B5 and the red band, and between341

the 2 SWIR bands. Interestingly, B5 presents a relatively low dependence with respect to B6342

and B7 and there is very small redundancy between B8 and B8A (it is for instance lower than343

between green and B5).344

The highest values of mutual information are obtained between adjacent bands of the B6,345

B7, B8A triplet, B7 being the most similar to the others. B7 seems therefore a good candidate346

for reconstruction from other bands.347

One limitation of this analysis is that only pairs of bands are compared, and therefore, it is348

impossible to assess if the redundancies between, for instance, B7 and B6 are complementary349

to those between B7 and B8A, which would allow a better reconstruction of B7 from the other350

2 than if these redundancies were the same.351

It is also interesting to note that B5 has all values higher than 0.4 (except for B8), which352

may indicate, either a possibility of reconstruction from the other bands, or conversely, being353

some sort of pivotal band to reconstruct the others.354
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Figure 5. Normalized mutual information

The relatively low value of the mutual information between B8 and B8A may seem355

surprising since the latter is a subset of the former. Actually, this value is the same for B7 and356

B8, which are adjacent (see figure 6). However, B8A has a width of less than 20% of that of B8.357

Figure 6. Red Edge and NIR bands

This means that these measures of mutual information are lower bounds of the amount358

of information that could be reconstructed from other bands.359

3.2. Single band regression360

We present in this section the performances of the reconstruction of each spectral band361

by applying the neural network regression algorithm described in section 2.2. As stated before,362

only the 20 m bands are reconstructed and the following data is used as predictors:363

• the sinus and cosinus of the 4 observation angles364

• all the 20 m bands except the target one365

• the values of the 4 10 m pixels for B2, B3, B4 and B8 associated to the 20 m target pixel366

• and only for L1C, the value of the 3 60 m bands interpolated (with a bicubic interpolator)367

to the coordinate of the center of the 20m pixel.368
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Each regression case is repeated 10 times using the protocol described at the end of369

section 2.1.370

3.2.1. Analysis of errors371

Validation metrics are computed across all experiments and reported on tables 3 and 4372

for L1C and L2A data respectively. The tables present the root mean square error (RMSE), the373

mean absolute error (MAE), the relative error (RE) and the coefficient of determination (R2).374

The rows of the tables are sorted by increasing values of RE for L1C and RMSE for L2A.375

Table 3: Single band regression results for L1C. The colors in the RE (relative error) column
indicate whether the specification is fulfilled (light gray), nearly fulfilled (middle gray) or
unfulfilled (dark gray).

Band RMSE MAE RE R2

B07 7.17e-03 3.90e-03 2.96e-02 9.96e-01
B06 1.82e-02 4.77e-03 3.61e-02 9.88e-01
B8A 1.57e-02 5.33e-03 3.69e-02 9.91e-01
B05 1.57e-02 4.46e-03 3.79e-02 9.92e-01
B12 1.50e-02 9.18e-03 9.35e-02 9.83e-01
B11 1.83e-02 1.26e-02 1.51e-01 9.85e-01

Table 4: Single band regression results for L2A. The colors in the RMSE (relative error) column
indicate whether the specification is fulfilled (light gray), nearly fulfilled (middle gray) or
unfulfilled (dark gray).

Band RMSE MAE RE R2

B5 7.33e-03 4.96e-03 2.07e-01 9.95e-01
B6 8.26e-03 5.04e-03 1.28e-01 9.96e-01
B7 8.42e-03 5.02e-03 1.18e-01 9.97e-01
B8A 1.11e-02 6.14e-03 2.23e-01 9.95e-01
B12 1.49e-02 9.49e-03 2.41e-01 9.75e-01
B11 2.06e-02 1.36e-02 4.05e-01 9.81e-01

In section 1.2 we concluded that 3% error for L1C and 0.01 in surface reflectance values376

for L2A were good targets for band reconstruction. Of course, we are measuring reconstruction377

errors using data which itself may have errors, even if they are below the radiometric specifica-378

tions. Therefore, the error bounds need not to be taken very strictly. Finally, Sentinel-2 can be379

considered to be over-specified in terms of radiometric quality for most applications, which380

makes using these error bands rather conservative from our point of view.381

We see that, for L1C, only the reconstruction of B7 has a RE lower than 3%, although the382

other red edge and NIR bands are below 3.8%. For L2A, B5, B6 and B7 have an RMSE lower383

than 0.01, and B8A is only slightly above this level.384

Estimating the noise in surface reflectances using the RMSE can suffer from strong385

outliers. The MAE gives a measure which is robust to these cases and shows that even B12386

could be considered for reconstruction.387

The error values presented on tables 3 and 4 are averages over the validation samples388

and don’t show the proportion of pixels that do not fulfill the radiometric requirements. For389

this purpose, tables 5 and 6 show the percentage of pixels whose error is lower than a given390

threshold.391

Table 5 presents, for each L2A band, the percentage of pixels whose error is larger than a392

given threshold (from 0.01, which is the accuracy of the L2A processor, up to 0.025). We see,393

that even for the best predicted bands (in the Red Edge), less than 90% of the pixels fulfill the394

requirements. However, lowering the requirement accuracy to 0.015, a 95% compliance is395

achieved for these 3 bands.396
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Table 5: Percentage of pixels beyond a given absolute error threshold (L2A)

Band 0.01 0.015 0.02 0.025
B5 13.09 4.76 1.94 0.91
B6 12.60 5.35 2.67 1.51
B7 12.47 5.31 2.60 1.39
B8A 19.19 8.73 4.40 2.47
B11 46.75 34.45 25.03 18.11
B12 33.81 22.00 14.96 10.41

Table 6: Percentage of pixels beyond a given absolute error threshold (L1C)

Band 0.01 0.015 0.02 0.025
B05 6.86 2.37 1.21 0.78
B06 8.09 3.07 1.42 0.79
B07 8.95 3.15 1.19 0.51
B8A 13.49 4.83 1.87 0.82
B11 43.70 30.51 20.97 14.35
B12 30.20 20.38 14.14 9.75

Table 6 shows the same results for L1C data. The performaces seem to be much better397

than for L2A, but we must remember that the requirements for L1C are given as relative errors398

(the error must not exceed 3%).399

Table 7: Percentage of pixels beyond a given relative error threshold (L1C)

Band 0.03 0.05 0.1
B05 37.23 20.44 5.34
B06 26.50 10.74 2.36
B07 21.99 8.97 2.10
B8A 30.11 13.16 3.66
B11 69.33 51.53 22.93
B12 73.79 58.25 30.10

Table 7 shows the percentage of validation pixels compliant with different error thresholds.400

We see that the requirement has to be lowered from 3% to 10% in order to get 95% compliance401

for the Red Edge and NIR bands. These bad performances are mainly due to high relative402

errors in the low reflectances. Tables 8 through 12 show the compliance with relative error403

thresholds for different intervals of reflectances. The results confirm that reflectances lower404

than 0.1 contain most of the errors.405

Figures 7 and 8 display scatterplots of predicted versus real reflectance values for the L1C406

and L2A bands respectively. For clarity in the visualization, these scatterplots are generated407

with a small random sample of the validation data. They show nevertheless the general408

behaviour and are coherent with the metrics presented in the tables above.409

To complete the analysis of the errors, we present the histograms of the errors (true410

reflectance minus the predicted one) using the complete validation data set (about 5 million411

pixels). Figure 9 shows the histograms for the L1C bands and figure 10 for the L2A bands.412
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Table 8: Percentage of pixels beyond a given relative error threshold for reflectances in [0,0.1]
(L1C)

Band 0.03 0.05 0.1
B05 49.66 29.34 7.85
B06 39.48 16.89 2.25
B07 45.16 23.58 4.94
B8A 48.46 27.90 7.02
B11 75.16 60.25 32.95
B12 74.92 60.26 33.89

Table 9: Percentage of pixels beyond a given relative error threshold for reflectances in [0.1,0.25]
(L1C)

Band 0.03 0.05 0.1
B05 35.01 17.53 3.58
B06 25.18 8.93 1.04
B07 21.63 8.11 1.05
B8A 30.70 12.17 1.69
B11 69.40 51.48 20.39
B12 73.14 57.22 27.93

Table 10: Percentage of pixels beyond a given relative error threshold for reflectances in
[0.25,0.5] (L1C)

Band 0.03 0.05 0.1
B05 7.98 2.69 0.37
B06 16.71 5.98 0.42
B07 14.57 4.03 0.26
B8A 19.82 4.63 0.24
B11 65.31 45.43 15.98
B12 70.94 52.66 19.58

Table 11: Percentage of pixels beyond a given relative error threshold for reflectances in
[0.5,0.75] (L1C)

Band 0.03 0.05 0.1
B05 10.06 3.15 0.29
B06 10.20 2.93 0.22
B07 17.32 4.88 1.13
B8A 20.40 5.26 0.25
B11 53.24 27.82 3.57
B12 52.10 31.80 5.49

Table 12: Percentage of pixels beyond a given relative error threshold for reflectances in [0.75,1]
(L1C)

Band 0.03 0.05 0.1
B05 13.94 8.35 1.36
B06 5.30 1.17 0.07
B07 3.87 1.30 0.73
B8A 6.61 0.86 0.02
B11 85.90 75.64 51.28
B12 92.86 90.00 81.43
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Figure 7. Scatterplots for the single band regression (L1C). The colors indicate the density of points.

3.2.2. Analysis of the uncertainty estimation413

As explained in section 2.2.1, the regression model is also able to estimate the uncertainty414

of the predicted value by associating a variance to it. Since this variance is an estimation itself,415

its meaningfulness needs to be assessed.416

The loss function used to train the model was chosen assuming a Gaussian error model.417

The histograms in figures 9 and 10 show that the distributions of the errors are not Gaussian.418

However, these distributions are mono-modal, which may allow using the estimated variance419

as a good proxy for the uncertainty of the estimation. In order to check this hypothesis, we will420

measure the proportion of pixels having errors higher than a given proportion of the variance.421

In the case of a Gaussian distribution, we have that P (µ−1σ ≤ X ≤ µ+1σ) ≈ 68.27%,422

P (µ−2σ≤ X ≤µ+2σ) ≈ 95.45% and P (µ−3σ≤ X ≤µ+3σ) ≈ 99.73%.423

We can therefore compute the proportion of pixels having an absolute error lower than σ,424

2σ and 3σ and compare to the probability values above.425

Tables 13 and 14 present the above-mentioned proportions of pixels whose errors are426

within the bounds given by the estimated sigma. We see that, although not identical, the427

proportions are relatively similar to what one should get in the Gaussian case.428

It is important to understand that the value of σ is provided by the regression algorithm429

as a prediction. These results show that this prediction of σ is indeed a good proxy for the430
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Figure 8. Scatterplots for the single band regression (L2A). The colors indicate the increasing density of points.

Table 13: Probability of the absolute error being lower than n ×σ (L1C)

Band σ (68.27%) 2σ (95.45%) 3σ (99.73%)
B05 68.80 92.26 98.29
B06 70.23 93.14 98.53
B07 70.82 93.27 98.43
B8A 70.36 91.99 97.57
B11 56.86 84.11 94.94
B12 61.57 87.50 96.23

Table 14: Probability of the absolute error being lower than n ×σ (L2A)

Band σ (68.27%) 2σ (95.45%) 3σ (99.73%)
B5 65.68 90.00 96.87
B6 71.84 93.85 98.70
B7 74.28 94.50 98.69
B8A 70.07 92.13 97.93
B11 56.18 81.51 93.04
B12 64.70 91.15 97.91
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Figure 10. Histograms of the errors (true value minus prediction) for the L2A bands.

Figure 9. Histograms of the errors (true value minus prediction) for the L1C bands.

probability of the reflectance estimation of being in the predicted interval. Therefore, the431

estimation of σ can be thresholded and used as a validity mask for the estimations.432

3.3. Double band regression433

We present here the results for the case were 2 bands are predicted from the others. This434

case will of course produce higher estimation errors because for each predicted band there is435

one fewer predictor.436
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Table 15: Double band regression results for L1C. The colors in the RE (relative error) columns indicate whether the specification
is fulfilled (light gray), nearly fulfilled (middle gray) or unfulfilled (dark gray).

Band RMSE MAE RE R2 Band RMSE MAE RE R2

B06 9.28e-03 4.79e-03 2.67e-02 9.93e-01 B07 1.07e-02 4.93e-03 2.64e-02 9.93e-01
B07 1.68e-02 5.49e-03 3.47e-02 9.89e-01 B8A 1.95e-02 7.84e-03 4.34e-02 9.84e-01
B05 9.31e-03 3.96e-03 5.12e-02 9.94e-01 B06 1.01e-02 4.22e-03 4.07e-02 9.94e-01
B05 6.52e-03 3.58e-03 3.88e-02 9.94e-01 B11 1.66e-02 1.12e-02 7.57e-02 9.86e-01
B06 1.52e-02 4.85e-03 3.24e-02 9.92e-01 B11 1.75e-02 1.16e-02 9.04e-02 9.82e-01
B06 4.38e-02 1.58e-02 1.00e-01 9.47e-01 B8A 1.90e-02 5.88e-03 7.06e-02 9.92e-01
B05 8.20e-03 4.16e-03 3.64e-02 9.94e-01 B07 4.34e-02 1.66e-02 1.21e-01 8.41e-01
B05 3.79e-02 8.14e-03 9.38e-02 8.74e-01 B12 1.92e-02 1.07e-02 1.27e-01 9.66e-01
B05 9.64e-03 4.24e-03 3.93e-02 9.96e-01 B8A 4.63e-02 1.93e-02 1.31e-01 9.45e-01
B07 1.74e-02 4.45e-03 4.05e-02 9.88e-01 B11 5.92e-02 2.88e-02 1.97e-01 8.47e-01
B8A 2.66e-02 7.06e-03 5.44e-02 9.73e-01 B12 1.64e-02 1.00e-02 2.26e-01 9.72e-01
B07 1.93e-02 5.07e-03 4.74e-02 9.87e-01 B12 5.17e-02 2.00e-02 2.37e-01 7.91e-01
B06 7.30e-03 3.88e-03 3.07e-02 9.95e-01 B12 3.63e-02 1.78e-02 2.52e-01 8.59e-01
B8A 5.70e-02 1.47e-02 1.25e-01 8.87e-01 B11 6.20e-02 2.80e-02 2.79e-01 7.51e-01
B11 3.73e-02 2.45e-02 2.93e-01 9.18e-01 B12 3.26e-02 2.03e-02 2.24e-01 9.05e-01

Table 16: Double band regression results for L2A. The colors in the RE (relative error) columns indicate whether the specification
is fulfilled (light gray), nearly fulfilled (middle gray) or unfulfilled (dark gray).

Band RMSE MAE RE R2 Band RMSE MAE RE R2

B5 7.38e-03 4.96e-03 1.77e-01 9.95e-01 B8A 9.31e-03 6.22e-03 1.38e-01 9.96e-01
B5 1.11e-02 6.07e-03 1.80e-01 9.95e-01 B6 1.33e-02 6.37e-03 1.25e-01 9.94e-01
B6 8.68e-03 5.07e-03 1.91e-01 9.96e-01 B12 1.53e-02 9.59e-03 3.52e-01 9.77e-01
B6 1.24e-02 6.70e-03 5.37e-01 9.89e-01 B7 1.54e-02 7.70e-03 1.51e-01 9.85e-01
B5 1.26e-02 5.35e-03 2.03e-01 9.94e-01 B11 1.72e-02 1.15e-02 1.94e-01 9.85e-01
B7 7.30e-03 4.72e-03 1.23e-01 9.96e-01 B12 1.74e-02 1.11e-02 1.97e-01 9.78e-01
B7 1.13e-02 5.98e-03 1.10e-01 9.94e-01 B8A 1.74e-02 7.70e-03 1.65e-01 9.87e-01
B8A 1.21e-02 6.10e-03 1.91e-01 9.95e-01 B12 1.79e-02 1.08e-02 3.03e-01 9.75e-01
B8A 1.07e-02 6.74e-03 1.09e-01 9.94e-01 B11 1.93e-02 1.31e-02 2.22e-01 9.79e-01
B6 9.79e-03 5.60e-03 1.47e-01 9.95e-01 B8A 1.99e-02 8.58e-03 2.10e-01 9.81e-01
B11 4.14e-02 2.89e-02 3.29e-01 9.01e-01 B12 3.54e-02 2.36e-02 4.86e-01 8.90e-01
B7 3.74e-02 1.41e-02 5.18e-01 9.21e-01 B11 4.98e-02 2.50e-02 2.37e-01 8.56e-01
B5 5.80e-02 1.17e-02 2.11e-01 8.73e-01 B12 1.71e-02 1.09e-02 4.36e-01 9.76e-01
B6 6.55e-02 1.44e-02 7.58e-01 8.01e-01 B11 4.06e-02 1.88e-02 3.21e-01 8.75e-01
B5 7.70e-02 4.45e-02 2.87e-01 8.35e-01 B7 9.79e-03 5.83e-03 9.24e-02 9.96e-01

Tables 15 and 16 present the results for the L1C and the L2A data. Each row in the tables437

presents the results for a pair of bands jointly predicted. The same quality metrics as for the438

single band regression are presented. Each table has 15 rows, since we evaluate all the possible439

combinations of pairs of bands.440

The rows in table 15 are sorted in increasing order of the maximum relative error of the441

pair of bands. This allows to quickly see that only one pair of L1C bands (B06 and B07) can be442

predicted with less than 3% error and that another pair (B07 and B8A) is slightly above this443

threshold.444

For the L2A data presented in table 16, the rows are sorted by increasing RMSE using the445

maximum of the pair in each row. In this case, only the pair (B5, B8A) fulfills the 0.01 error446

threshold, although the pair (B5, B6) is not much above this threshold.447

Figure 11 presents the scatterplots for the 2 best pairs of bands in the L1C case (the 2 first448

rows in table 15. Altough the scatterplots are generated by subsampling the test data set for449

readability, one can see that the estimations are unbiased and with a small dispersion around450

the regression lines. One can also see that part of the error comes from pixels with reflectances451

higher than 1, for which there is an underestimation. Since the regression algorithm is config-452
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Figure 11. Scatterplots for the double band regression (L1C). Each row in the figure corresponds to a row in table 15. The colors indicate

the increasing density of points.

ured to yield reflectances in the [−0.2,1.3] interval, we can expect that the error in this interval453

is smaller than what is reported in the tables.454

For L2A data, figure 12 presents the scatterplots for the pairs of bands in the 3 first rows of455

table 16. As for the L1C case, the scatterplots show unbiased estimations with small dispersions,456

except for the B12 band in the 3rd pair. The random sample of the test set used for generating457

these scatterplots does not contain pixels showing the underestimation of reflectances higher458

than 1, but they also exist.459

It is difficult to give an explanation for these results. First of all, the pairs of bands that are460

predicted the best differ between L1C and L2A. This was already the case for the regression of461

a single band, but in that case, we could clearly define 2 groups, the Red-Edge-NIR and the462

SWIR. In the case of 2 bands, one could have expected that, for a pair of bands to be correctly463

reconstructed, they would have to be non-adjacent, so that the missing information could be464

reconstructed using the neighbouring bands. However, we see that the best pair in L1C is (B06,465

B07) and that the second best pair in L2C is (B5, B6).466

With the same kind of reasoning, one could have expected that the pair (B11, B12) should467

be the one with the largest errors, since reconstructing the SWIR bands usin only the VIS-NIR468

range should be nearly impossible. This is the case in terms of relative error, but not in terms of469

RMSE, which makes the SWIR a better candidate for L2A reconstruction than more spectrally470

distant pairs.471
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Figure 12. Scatterplots for the double band regression (L2A). Each row in the figure corresponds to a row in table 16. The colors indicate

the increasing density of points.

Figure 13 presents the scatterplots for the prediction of the SWIR bands in L1C (top row)472

and L2A (bottom row). Although the dispersions are important, there is no systematic bias in473

the estimation, which confirms the redundancy of spectral information for most surfaces.474
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Actually, if the scatterplots of figure 13 were obtained for biophysical parameter estima-475

tions, as for instance LAI, chlorophyll, biomass, etc. they would be considered as very good476

(see for instance [30] or [18]). Of course, image quality criteria need to be more strict than477

those of downstream tasks, but this kind of result suggests that the impact of reflectance noise478

in downstream applications needs to be assessed.479

4. Conclusions and further studies480

In this paper, we have investigated the possibility of reconstructing one or two of the 20m481

resolution bands from Sentinel-2 using the remaining bands. The goal of the study was to482

assess the possibility of removing some of the current Sentinel-2 spectral bands for the next483

generations of similar satellites.484

The interest of working on band reconstruction is that the approach is independent of485

the application. The main rationale is that, if a band can be reconstructed with errors which486

are within the radiometric requirements of the sensor, downstream applications can use a487

reconstructed band instead of a real measure.488

Conclusions489

The main findings of the study are that, at least, one of the bands among B5, B6, B7 and490

B8A could be removed from next generation sensors as all of them can be reconstructed with491

small errors when the others are available. Removing two bands could be possible at the cost492

of slightly higher reconstruction errors.493

We have also shown that the estimation of a credibility interval for the predicted re-494

flectances is possible and can therefore be used as a quality mask.495

This study has however several limitations that would need to be addressed in the future.496

First, an analysis of the errors per type of surface (material, land cover, vegetation status,497

etc.) should be carried out in order to assess the impact on different types of applications.498

Although the spatial sampling of the data for this study contained enough variability for the499

results to be general, particular types of surfaces with specificities may need special attention.500

Furthermore, selecting the appropriate samples in the areas of most interest for particular501

applications can allow a fine tuning of the regression algorithm and improve the performances502

of the estimations.503

A second limitation is related to the choice of regression algorithm for the study. The504

goal of the work was not to propose an optimal regression algorithm, but rather showing that505

band reconstruction was possible using regression. The choice of the neural network with a506

negative log-likelihood as a loss function was made for simplicity in terms of implementation,507

the possibility of performing multi-target regression and the generation of uncertainties508

associated to the estimations. Other approaches could yield better results and even produce a509

different set of bands candidate for removal.510

All of the above suggests that replication of the study by other teams would be useful.511

For this purpose, the dataset has been published [25] and the source code is available for512

inspection and download2.513

A third limitation is the pixel-based approach taken here. Reconstructing a missing band514

from the reflectances of the other bands of the same pixel assumes unicity of the solution:515

one combination of observed bands can only correspond to one value of the missing band.516

Although the results of this study tend to show that this is the case, there are pixels for which517

the error is high. In the current setting, the regression algorithm is able to flag these pixels by518

reporting a high uncertainty, but this is not fully satisfactory. One way of lifting the ambiguity519

would be to add some spatial context for the regression, so that the observations of neighbour-520

ing pixels, and therefore the local texture, helps the prediction. This could be implemented521

with spatial convolutional layers in the regression algorithm.522

In the same way, a multitemporal extension of the algorithm could improve the esti-523

mations. However, this extension is less straightforward than adding spatial context, since524

2 http://gitlab.cesbio.omp.eu/Jordi/mmdc/blob/master/mmdc/spectral_regression.py

http://gitlab.cesbio.omp.eu/Jordi/mmdc/blob/master/mmdc/spectral_regression.py


Version May 19, 2022 submitted to Remote Sens. 22 of 24

Figure 13. Scatterplots for the double band regression of the SWIR bands in L1C (top) and L2A (bottom). The colors indicate the

increasing density of points.

clouds and cloud shadows introduce an irregular temporal sampling that should be taken into525

account. Also, the relative geometric accuracy of multi-temporal series should be taken into526

account in this case.527

Perspectives528

If the next generation of Sentinel-2 had one or several bands removed, one could argue529

that the approach presented in this work couldn’t be applied, since the regression calibration530

(i.e. the neural network training) needs the target band. Several responses can be given to this531

argument. If the bands used as predictors remain the same in the new sensor, the regressions532

calibrated with the current Sentinel-2 data should be applicable.533

If the bands used as predictors for this study were not available in the next generation of534

satellites, one could constitute enough training data by using acquisitions from a hyperspectral535

mission like CHIME [31]. The appropriate spectral bands (predictors and targets) could be536

generated using the relative spectral responses of the next generation of Sentinel-2.537

Finally, given the temporal revisit of Sentinel-2, it would be interesting to evaluate the538

possibility of having different bands in different satellites of the constellation, so that the539

band predictions could be temporally interleaved. For instance, with 2 satellites, one could540

imagine removing B6 in the A unit and removing B7 in the B unit. In this configuration, the541

reconstruction of B6 at a given date could use the other bands for this acquisition, as well542
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as the most recent acquisiton of the other satellite for which B6 would have been observed.543

This kind of scenario would allow for interesting configurations where one satellite of the pair544

could have the SWIR bands absent. Indeed, the variance observed in figure 13 could be highly545

reduced if the 2 SWIR bands for a previous date were available. Of course, for surfaces where546

the SWIR signature can change quickly during cloudy periods (snow falls), the impact of this547

kind of settings should be studied. Fortunately, the available Sentinel-2 data in the archives548

allows to do that.549

Other interesting possibility of the approaches presented in this paper is the addition of550

new bands, but only in some satellites of the constellation. On this topic, we should stress the551

comments on [32] we did in section 1.4: the fact that a particular phenomenon has a signature552

in a particular band, does not mean that this same phenomenon can not be detected by using553

a (non-linear) combination of other bands. The results presented in this paper indicate that554

the question can be reversed.555

The attentive reader will have understood that many options are open to reduce costs and556

hardware complexity for the successors of the current Sentinel-2 system by leveraging spectral,557

spatial and temporal correlations of the observed surfaces through ground data processing.558

This work is just an example of what could be done by using the richness of the Sentinel-2559

archives. We think that, with the help of other scientists, further studies could be defined. For560

instance, a subset of geographic areas and dates for each target application, together with561

ground measures could be made available. This would allow the objective assessment of errors562

due to the lack of particular bands.563
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