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The Sentinel-2 constellation provides high spatial, spectral and temporal resolution optical 1 imagery of the continental surfaces since 2015. The spatial and temporal resolution improvements 2 that Sentinel-2 brings with respect to previous systems has been demonstrated in both the literature 3 and operational applications. On the other hand, the spectral capabilities of Sentinel-2 appear to have 4 been exploited to a limited extent only. At the moment of definition of the new generation of Sentinel-2 5 satellites, an assessment of the usefulness of the current available spectral bands seems appropriate. In 6 this work, we investigate the unique information contained by each 20 m resolution Sentinel-2 band. A 7 statistical quantitative approach is adopted in order to yield conclusions which are application agnostic: 8 multivariate regression is used to reconstruct some bands using the others as predictors. We conclude 9 that, for most observed surfaces, it is possible to reconstruct the reflectances of most Red Edge or NIR 10 bands from the rest of observed bands with an accuracy within the radiometric requirements of Sentinel-11 2. Removing two of those bands could be possible at the cost of slightly higher reconstruction errors. We 12 also identify mission scenarios for which several of the current Sentinel-2 bands could be removed for 13 the next generation of sensors. 14

Introduction 16

The Sentinel-2 constellation constitutes a revolution in the remote sensing field in terms 17 of data quantity, quality and availability. The high spatial and temporal resolutions of Sentinel-18 2 [START_REF] Drusch | Sentinel-2: ESA's Optical High-Resolution Mission for GMES Operational Services[END_REF] have been demonstrated to be crucial for many applications that have been reported Sentinel-2 provides 13 spectral bands with spatial resolutions from 10m to 60m and a 23 5-day revisit cycle.

24

The particularities of Sentinel-2 with respect to pre-existing comparable systems are: However, as we show in section 1.4, very few published works have made full use of the 33 spectral richness of Sentinel-2 and, often, these uses have not been demonstrated to be the 34 only way to extract the target information.

35

After 5 years of operations, the work on the new generation of Sentinel-2 satellites (S2NG)

36

has started, and one of the tasks is to identify the set of spectral bands. The question of «which 37 additional spectral bands could be put on board of S2NG» has to be balanced with the one of Table 1 gives the name and the central wavelength for each band acquired by Sentinel-2.

79

There are 4 bands at 10m resolution, the 3 usual visible bands (B2-B4) and a wide NIR band 80 (B8). The 20m resolution bands are 3 narrow bands in the red edge (B5-B7), one narrow NIR 81 (B8A) and 2 SWIR bands (B11, B12). Finally, the 60m resolution bands are aimed at radiometric 82 corrections (B1 for aerosol content estimation, B9 for water vapor and B10 for cirrus detection). The Sentinel-2 Mission Requirements Document (MRD) [START_REF] Team | GMES Sentinel-2 Mission Requirements Document[END_REF] states that for the applica-86 tions covered by this mission, the radiometric accuracy at top of atmosphere (TOA) has to 87 be not worse than 3% (goal) to 5% (threshold). For inter-band radiometric calibration, 3% 88 accuracy is also required. These requirements allow to define error bounds for the band reconstruction tasks that 90 we assess in this work. For TOA reflectances, we can aim the 3% reconstruction error. In terms 91 of surface reflectance, the accuracy of the MAJA (MACCS-ATCOR Joint Algorithm) processor 92 [START_REF] Hagolle | A Multi-Temporal Method for Cloud Detection, Applied To Formosat-2, VENµS, Landsat and Sentinel-2 Images[END_REF][4] is 0.01 (not in %, but in reflectance values) and we can use this value as requirement.

93

Given the fact that there are other errors in the measure (geometric registration between 94 bands, MTF (Modulation Transfer Function) differences, etc.), achieving these error bounds 95 can be considered rather ambitious. 4 20 Other approaches to define the reconstruction requirements could be used. For instance 97 [START_REF] Gorroño | A Radiometric Uncertainty Tool for the Sentinel 2 Mission[END_REF] presents a Radiometric Uncertainty Tool which allows to estimate the radiometric uncer-98 tainty associated with each pixel of a Sentinel-2 image in the TOA images provided by ESA.

99

The approach integrates all the errors from the TOA reflectance to the L1C product and typical 100 values are greater than 10% for open sea, 5% to 15% in rice fields covered by water and 2% to 101 4% in land areas. We see that the 3% specification is very strict. 

114

The values of the solar and sensor angles on a 5 km grid are provided in the L1C product 115 meta-data. We will leverage this information in the band reconstruction algorithms that will 116 be used in this work. The RE bands have been proposed for chlorophyll estimation, burnt severity assessment 122 [START_REF] Fernández-Manso | Sentinel-2a Red-Edge Spectral Indices Suitability for Discriminating Burn Severity[END_REF], LAI estimation [START_REF] Pasqualotto | Multi-Crop Green Lai Estimation With a New Simple Sentinel-2 Lai Index (SeLI)[END_REF] and non photosynthetic vegetation [START_REF] Tian | A Novel Spectral Index for Estimating Fractional Cover of Non-Photosynthetic Vegetation Using Near-Infrared Bands of Sentinel Satellite[END_REF]. The SWIR bands have been

123

proposed for dry mass vegetation [START_REF] Jacques | Monitoring Dry Vegetation Masses in Semi-Arid Areas With Modis Swir Bands[END_REF] and water or moisture indices [START_REF] Gao | A normalized difference water index for remote sensing of vegetation liquid water from space[END_REF].

124

Although a thorough review of the literature is out of the scope of this paper, a bibliometric 125 analysis shows that very few papers published after the launch of Sentinel-2 make an explicit 126 use of the spectral particularities (RE and SWIR bands). Furthermore, a recent review about 127 phenology monitoring using Sentinel-2 [START_REF] Misra | Status of Phenological Research Using Sentinel-2 Data: a Review[END_REF] shows that only 1 out of 4 published papers uses 128 other spectral information than NDVI.

129 Some studies as for instance [START_REF] Sitokonstantinou | Scalable Parcel-Based Crop Identification Scheme Using Sentinel-2 Data Time-Series for the Monitoring of the Common Agricultural Policy[END_REF] claim that RE and SWIR bands during vegetation 130 senescense appear as being important for machine learning based classification. The concept 131 of importance has to be nuanced, since it measures the errors made when the reflectance of do not study whether using more complex regressors, the error without those bands could be 141 reduced.
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142

It is interesting to note that other works like for instance [START_REF] Gómez-Giráldez | Monitoring Grass Phenology and Hydrological Dynamics of an Oak-Grass Savanna Ecosystem Using Sentinel-2 and Terrestrial Photography[END_REF], show that NDVI is best 143 suited to monitor grass phenology than more sophisticated VIs using RE and SWIR bands.

144

Another example is [START_REF] Clevers | Using Sentinel-2 Data for Retrieving Lai and Leaf and Canopy Chlorophyll Content of a Potato Crop[END_REF], where it is shown that the RE bands of Sentinel-2 do not perform 145 well for the estimation of chlorophyll content changes in certain crops. One should note that, 146 before the launch of Sentinel-2 the same community had great expectations for these bands 147 and for the same application [START_REF] Clevers | Remote Estimation of Crop and Grass Chlorophyll and Nitrogen Content Using Red-Edge Bands on Sentinel-2 and -3[END_REF]. However, at the time, the authors already suggested that 148 using the green band in C I g r een also seemed very promising and therefore further research 149 was required.

150

The apparent contradictions between these different works are likely due to the fact that 151 different experimental settings, different data and different applications were involved.

152 Also, we find that the works on the usefulness of spectral bands are usually addressed 153 only from the point of view of demonstrating that a particular phenomenon has a signature in 154 a particular band. For instance, a recent publication [START_REF] Hively | Evaluation of Swir Crop Residue Bands for the Landsat Next Mission[END_REF] Sentinel-2 in order to overcome the limitations of space-borne hyperspectral sensors (spatial 163 resolution, revisit time and signal to noise ratio). Interestingly, the review shows how the 164 current set of Sentinel-2 bands constitutes in itself a very wise choice for many applications.

165 However, the limit of such a meta-analysis, is that there can't be a wholistic view of the problem, 166 since the pertinence of each spectral range is performed in isolation in the reviewed litterature.

167 Indeed, this prevents from discovering redundancies between different bands. For instance, this reference excludes uses for geological and lithological mapping like [START_REF] Van Der Meer | Potential of Esa's Sentinel-2 for Geological Applications[END_REF], [START_REF] Van Der Werff | Sentinel-2 for Mapping Iron Absorption Feature Parameters[END_REF] or [START_REF] Roberts | Exposed Soil and Mineral Map of the Australian Continent Revealing the Land At Its Barest[END_REF], where 169 the the higher resolution of Sentinel-2's NIR bands is assessed for the estimation of iron oxides.

170

We think that this supports the idea of performing a pure data driven approach over a 171 large data set and with an application agnostic point of view. For the analyses performed in the following sections, we split the data at the tile level.

200

This means that all the pixels used for testing purposes (measures of accuracy of the reconstruc- 214

The dataset has been made public [START_REF] Inglada | Sentinel-2 L1C and L2A pixel samples for band regression[END_REF] and is available for other researchers to reproduce 215 and improve the work presented in this paper. 

Regression model 217

As stated in the introduction, we aim at estimating a subset of the Sentinel-2 bands from 218 the other ones. This estimation will be done using regression techniques. The regression 219 algorithms will be calibrated and validated using the data described in section 2.1. In this 220 section we describe the regression approach chosen. 

{ ρ i } i ∈I = f ({ρ j } j ∉I , θ) (1) 
The regression procedure should also produce a credibility interval 1 of the estimation of 230 the target variable. In order to do this, instead of regressing over the expected mean, we can 231 implement a regression of the mean and the variance of the target variable. Estimating a mean 232 and a variance means that we are assuming a Gaussian error model.

233

At inference (estimation) time, the mean will be used as the variable estimation (in a 234

Gaussian model the mean is the value with the highest probability), and the variance will be 235 used to give the credibility interval.

236

Given a target value y (in our case that would be ρ i ) and the estimates μ and σ, the 1 We use the term credibility interval instead of confidence interval because we adopt a Bayesian point of view: we consider that the estimated value is a random variable and that the bounds of the interval al fixed, while the use of confidence intervals considers the bounds as random variables that result from repeated measures.

Σ φ We can therefore pose the regression problem as the minimization of a cost function

+1 x 1 x 2 x 3 x n w 0 w 1 w 2 w 3 w n φ w 0 + n i =1 w i x i . . .
240
given by the negative log-likelihood [START_REF] Nix | Estimating the Mean and Variance of the Target Probability Distribution[END_REF]. The log-likelihood takes the form:

241 l og p(y| μ, σ) = - 1 2 log(2π) - 1 2 log σ2 - (y -μ) 2 2 σ2
And therefore, after removing the constant term and a multiplicative factor, the cost 242 function to be minimized is:

243 L = i log σ2 i + (y i -μi ) 2 σ2 i
where the sum is taken over the training samples. in more complex architectures. This will allow to introduce some structure in the processing,

269

which brings interpretability and the possibility of introducing some prior knowledge. We will 270 develop this point in the next section. 

{ρ j } j ∉I θ Angular MLP ⊗ ⊕ Backbone MLP µ MLP σ MLP µ { ρ i } i ∈I σ { ρ i } i ∈I

277

Instead of using all predictors (reflectances and angles) together in a flat vector as input 278 of an MLP as in figure 3, we use an attention mechanism where the angular information mod-279 ulates the spectral values. This is implemented as illustrated in figure 4. First, the spectral and 280 angular information are fed to the Angular MLP which is used to generate an attention mask.

281

An attention mask is a vector of real numbers in [0, 1] with the same number of components 282 as the data on which the attention is being applied. In our case, this is the vector of spectral and is defined by:

287 σ(z) i = e z i K j =1 e z j for i = 1, . . . , K and z = (z 1 , . . . , z K ) ∈ R K ,
where the z i are the outputs of the layer preceding the SoftMax.

288

Therefore, the Angular MLP learns a set of multiplicative weights (this operation is 289 represented by the ⊗ symbol in figure 4) that will be applied to the input reflectances in order 290 to perform an angular correction. It is interesting to note that this angular correction takes 291 into account the spectral information itself, that is, the reflectances and the angles are both 292 used for the estimation of the correction. It is therefore a kind of self-attention mechanism 293 [START_REF] Vaswani | Attention is All you Need[END_REF].

294

A residual connection (a simple elementwise addition represented by ⊕ in figure 4) is 295 used after the attention mask in order to keep spectral information that could be excessively 296 removed by the attention mechanism before entering the Backbone MLP. The latter is used to 297 embed the predictors into a feature space that will be used to feed the 2 modules used for the 298 estimation of the target values and their uncertainties respectively. rescaling for µ allows to take into account the fact that L2A reflectances can sometimes be 311 negative due to over-corrections. Reflectances can also be higher than 1 in specular conditions.

312

The rescaling intervals could be learned from the data, but we set them for simplicity.

The regression of several bands simultaneously is done by a straightforward extension of 314 the single target case. The output layers, for both the means and the variances will have as 315 many neurons as target variables. The loss function is just de sum of the losses for each target 316 variable.

317

The network is trained for 100 epochs using an Adam optimizer [START_REF] Kingma | a Method for Stochastic Optimization[END_REF] with a learning rate 318 of 0.001 and a batch size of 256. 

I (X ; Y ) = D K L (P (X ,Y ) P X ⊗ P Y ),
where D K L is the Kullback-Leibler divergence. The mutual information can also be 327 written in terms of entropies (H ) as follows:

328

I (X ; Y ) = H (X , Y ) -H (X |Y ) -H (Y |X ) = H (Y ) -H (Y |X ) = H (X ) -H (X |Y ),
and it is therefore a measure of the amount of uncertainty about one variable once the 329 other is known. The mutual information is positive, but is not upper bounded. Therefore, we 330 use a normalized version using the entropies of each variable:

331

I nor m (X ; Y ) = I (X ; Y ) H (X )H (Y )
We will study this measure for both the L1C and the L2A data. We observe high values for the red edge bands, between B5 and the red band, and between 341 the 2 SWIR bands. Interestingly, B5 presents a relatively low dependence with respect to B6 342 and B7 and there is very small redundancy between B8 and B8A (it is for instance lower than 343 between green and B5).

344

The highest values of mutual information are obtained between adjacent bands of the B6, 345 B7, B8A triplet, B7 being the most similar to the others. B7 seems therefore a good candidate 346 for reconstruction from other bands.

347

One limitation of this analysis is that only pairs of bands are compared, and therefore, it is 348 impossible to assess if the redundancies between, for instance, B7 and B6 are complementary 349 to those between B7 and B8A, which would allow a better reconstruction of B7 from the other 350 2 than if these redundancies were the same.

351

It is also interesting to note that B5 has all values higher than 0.4 (except for B8), which The relatively low value of the mutual information between B8 and B8A may seem 355 surprising since the latter is a subset of the former. Actually, this value is the same for B7 and 356 B8, which are adjacent (see figure 6). However, B8A has a width of less than 20% of that of B8. Each regression case is repeated 10 times using the protocol described at the end of 

387

The error values presented on tables 3 and 4 are averages over the validation samples 388 and don't show the proportion of pixels that do not fulfill the radiometric requirements. For 389 this purpose, tables 5 and 6 show the percentage of pixels whose error is lower than a given 390 threshold.

391

Table 5 presents, for each L2A band, the percentage of pixels whose error is larger than a 392 given threshold (from 0.01, which is the accuracy of the L2A processor, up to 0.025). We see,

393

that even for the best predicted bands (in the Red Edge), less than 90% of the pixels fulfill the 394 requirements. However, lowering the requirement accuracy to 0.015, a 95% compliance is 395 achieved for these 3 bands. Table 7 shows the percentage of validation pixels compliant with different error thresholds.

400

We see that the requirement has to be lowered from 3% to 10% in order to get 95% compliance 

409

To complete the analysis of the errors, we present the histograms of the errors (true

410
reflectance minus the predicted one) using the complete validation data set (about 5 million 411 pixels). Figure 9 shows the histograms for the L1C bands and figure 10 for the L2A bands. 

Analysis of the uncertainty estimation 413

As explained in section 2.2.1, the regression model is also able to estimate the uncertainty 414 of the predicted value by associating a variance to it. Since this variance is an estimation itself, 415 its meaningfulness needs to be assessed.

416

The loss function used to train the model was chosen assuming a Gaussian error model.

417

The histograms in figures 9 and 10 show that the distributions of the errors are not Gaussian.

418

However, these distributions are mono-modal, which may allow using the estimated variance 419 as a good proxy for the uncertainty of the estimation. In order to check this hypothesis, we will 420 measure the proportion of pixels having errors higher than a given proportion of the variance.

421

In the case of a Gaussian distribution, we have that P (µ -1σ ≤ X ≤ µ + 1σ) ≈ 68.27%, 422 P (µ -2σ ≤ X ≤ µ + 2σ) ≈ 95.45% and P (µ -3σ ≤ X ≤ µ + 3σ) ≈ 99.73%.

423

We can therefore compute the proportion of pixels having an absolute error lower than σ, 424 2σ and 3σ and compare to the probability values above.

425

Tables 13 and14 present the above-mentioned proportions of pixels whose errors are 426 within the bounds given by the estimated sigma. We see that, although not identical, the It is important to understand that the value of σ is provided by the regression algorithm 429 as a prediction. These results show that this prediction of σ is indeed a good proxy for the probability of the reflectance estimation of being in the predicted interval. Therefore, the 431 estimation of σ can be thresholded and used as a validity mask for the estimations. 

Double band regression 433

We present here the results for the case were 2 bands are predicted from the others. This 434 case will of course produce higher estimation errors because for each predicted band there is 435 one fewer predictor. It is difficult to give an explanation for these results. First of all, the pairs of bands that are 460 predicted the best differ between L1C and L2A. This was already the case for the regression of 461 a single band, but in that case, we could clearly define 2 groups, the Red-Edge-NIR and the 462 SWIR. In the case of 2 bands, one could have expected that, for a pair of bands to be correctly 463 reconstructed, they would have to be non-adjacent, so that the missing information could be 464 reconstructed using the neighbouring bands. However, we see that the best pair in L1C is (B06, 465 B07) and that the second best pair in L2C is (B5, B6).

466

With the same kind of reasoning, one could have expected that the pair (B11, B12) should 467 be the one with the largest errors, since reconstructing the SWIR bands usin only the VIS-NIR 468 range should be nearly impossible. This is the case in terms of relative error, but not in terms of 469 RMSE, which makes the SWIR a better candidate for L2A reconstruction than more spectrally 470 distant pairs. 

549

Other interesting possibility of the approaches presented in this paper is the addition of 550 new bands, but only in some satellites of the constellation. On this topic, we should stress the 551 comments on [START_REF] Hively | Reflectance spectra of agricultural field conditions supporting remote sensing evaluation of non-photosynthetic vegetation cover[END_REF] we did in section 1.4: the fact that a particular phenomenon has a signature 552 in a particular band, does not mean that this same phenomenon can not be detected by using

19 in

 19 the scientific literature and validated by operational applications covering a wide range of 20 use cases like land cover mapping, snow extent mapping, biophysical parameter estimation, 21 agriculture monitoring, etc.

22

 22 

25 • 27 of Landsat); 28 • 29 •

 25272829 in the temporal domain, a systematic acquisition plan (unlike tasked satellites which 26 acquire scenes on demand) with a high revisit frequency (5 days compared to the 16 days in the spatial domain, a higher resolution than Landsat (10 m to 20 m compared to 30 m); in the spectral domain, an increased number of bands with respect to both the classical 30 Blue, Green, Red, NIR band set and Landsat (4 visible, 1 NIR, 2 SWIR), with the novelty of 31 3 red edge (RE) bands, although a lack of thermal band with respect to Landsat.

32

 32 

  83

Figure 1

 1 Figure 1 illustrates the relative spectral responses of the 10m, 20m and 60m resolution bands.

84 1 . 2 .

 12 S2 Radiometric Requirements85

Figure 1 .

 1 Figure 1. Sentinel-2A relative spectral responses from https://sentinels.copernicus.eu/documents/247904/685211/S2-SRF_COPE-GSEG-EOPG-TN-15-0007_3.0.xlsx

102 1 . 3 .[ 6 ]

 136 Directional effects 103 Since the reflectance of surfaces depends on the observation and illumination directions 104 , particular attention has to be payed to the acquisition geometry. Directional effects are 105 specially important in (nearly) specular reflections, but also in the case of shadow or volume 106 effects. 107 The MSI (MultiSpectral Instrument) is composed of 2 focal planes covering the VNIR 108 and the SWIR channels respectively, each one having an array of 12 detectors. Due to the 109 shifted positioning of the detectors along the track direction on the focal planes, angular 110 differences between the two alternating odd and even clusters of detectors are induced in 111 the measurements. The parallax Base/Height (B/H) ratio ranges between 0.022 and 0.059. A 112 similar issue occurs between the VNIR and SWIR detectors, resulting in an inter-band B/H 113 which is less than 0.01 for the VNIR channels and less than 0.018 for the SWIR.

117 1 . 4 .

 14 Specific uses of S2 bands 118The spectral bands of Sentinel-2 allow the computation of a large variety of spectral 119 indices other than NDVI which are useful for different applications.

  188

Figure 2 . 2 192

 22 Figure 2. Geographic distribution of the tiles used for the studyFor each acquisition, 100,000 pixels where sampled. Only non-saturated pixels were

  201tions) belong to tiles for which no pixel was used for training or even intermediate validation.202In the experiences carried out in this work, we randomly select 100 tiles and we do a 203 80%/20% split at the tile level for training and testing purposes. This means that training and 204 testing pixels come from different tiles and dates. The training set is further split in proper 205 training samples (80%) and validation samples (20%), the latter being used for monitoring 206 the convergence of the training. For each experiment (i.e. set of predicted bands and set of 207 predictor bands) the experiment is repeated 10 times by selecting a different set of 100 tiles 208 among the 128 available. This allows to check for possible selection biases and allows to further 209 assess the robustness of the regressions. 210 Also, only clear pixels (non cloudy nor shadow) are used for training and validating 211 models. This reduces the number of available pixels. In average, each experiment uses 212 3.86928e+06 training samples, 967320 validation samples and 1.2582e+06 testing samples and 213 is repeated 10 times.

  216

221 2 . 2 . 1 .

 221 Reflectance estimation with associated uncertainties 222The regression problem is posed as the estimation of one or several spectral bands as a 223 nonlinear combination of a disjoint set of the available bands. For the prediction of a single 224 band, this can be written as:225 ρ i = f ({ρ j =i }, θ),that is, the prediction of the reflectance of band i is a function of the measured re-226 flectances of the other bands and a set of parameters θ containing other pertinent information, 227 like solar and sensor angles. The regression can jointly estimate several spectral bands in a set 228 I : 229

237

  predictive likelihood of the target value given the estimates is the Gaussian distribution whose 238 probability density function is 239 p(y| μ, σ)

1 O 2 Figure 3 .

 123 Figure 3. A multi-layer perceptron with 1 input layer, 1 hidden layer and 1 output layer. Diagram adapted from https://github.com/PetarV-/TikZ

Figure 4 .

 4 Figure 4. Overview of the nonlinear regression of a set of spectral bands using other bands and angular information as predictors assuming a Gaussian error model.

  283bands. The Angular MLP is a standard MLP, with a single hidden layer containing 8 neurons 284 and a SoftMax layer as output. The SoftMax function is an exponential normalization that 285 maps a set of values to the unit interval (simplex in more than one dimension) σ : R K → [0, 1] K

  286

299

  The backbone part (a 3 hidden layer MLP with 10 neurons per layer) allows to model 300 the correlation between the target variables and their uncertainties. The independent MLP 301 branches (with the same architecture as the backbone) for µ and σ get specialized into the 302 estimation of each of the informations. Performing the regression for several target variables 303 with the same network is a kind of multi-task learning which is able to leverage the correlation 304 between target variables and is more efficient than preforming single target regressions.305For numerical stability and positivity constraints, instead of estimating the σ or σ 2 , we 306 estimate log σ.307The output activation functions for the mean and the variance estimations are hyperbolic 308 tangents so that the values are contained in the [-1, 1] interval. The output value is then 309 rescaled into a pre-defined interval which is [-0.2, 1.3] for µ and [1e -5, 1.5] for σ 2 . The

  310
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 23 Measuring redundancies in Sentinel-2 bands 320 To assess the quality of the spectral regression approaches, we will analyze the statistical 321 dependence between all the pairs of Sentinel-2 bands. Instead of measuring correlations, 322 which are limited to linear (Pearson correlation) or monotonic (Spearman correlation) depen-323 dencies, we will use the mutual information, I . It measures a dissimilarity between the joint 324 distribution of a pair of variables and the product of the marginals. It is therefore a measure of 325 the distance to general statistical independence: 326

1 .

 1 Redundancies in Sentinel-2 bands 334 As stated in section 2.3, we start by analyzing the redundancies in Sentinel-2 spectral 335 bands. Figure 5 displays the values of the normalized mutual information correlation for all 336 the pairs of bands of L1C (left) and L2A (right) data. 337 Both levels of processing show the same patterns and nearly the same values, although 338 L2A has slightly lower values of dependence. This may indicate that the atmospherical correc-339 tions are able to remove effects with high correlation across bands.

  340

352

  may indicate, either a possibility of reconstruction from the other bands, or conversely, being 353 some sort of pivotal band to reconstruct the others.

Figure 5 .

 5 Figure 5. Normalized mutual information

  357

Figure 6 .

 6 Figure 6. Red Edge and NIR bands

359 3 . 2 .

 32 Single band regression 360We present in this section the performances of the reconstruction of each spectral band 361 by applying the neural network regression algorithm described in section 2.2. As stated before, 362 only the 20 m bands are reconstructed and the following data is used as predictors: 363 • the sinus and cosinus of the 4 observation angles 364 • all the 20 m bands except the target one 365 • the values of the 4 10 m pixels for B2, B3, B4 and B8 associated to the 20 m target pixel 366 • and only for L1C, the value of the 3 60 m bands interpolated (with a bicubic interpolator) 367 to the coordinate of the center of the 20m pixel.

401

  for the Red Edge and NIR bands. These bad performances are mainly due to high relative 402 errors in the low reflectances. Tables8 through 12show the compliance with relative error 403 thresholds for different intervals of reflectances. The results confirm that reflectances lower 404 than 0.1 contain most of the errors.

Figures 7 and 8

 8 Figures 7 and 8 display scatterplots of predicted versus real reflectance values for the L1C

Figure 7 .

 7 Figure 7. Scatterplots for the single band regression (L1C). The colors indicate the density of points.

427

  proportions are relatively similar to what one should get in the Gaussian case.

  428

Figure 8 .

 8 Figure 8. Scatterplots for the single band regression (L2A). The colors indicate the increasing density of points.

Figure 10 .

 10 Figure 10. Histograms of the errors (true value minus prediction) for the L2A bands.

Figure 9 .

 9 Figure 9. Histograms of the errors (true value minus prediction) for the L1C bands.

  432

Figure 11 .

 11 Figure 11. Scatterplots for the double band regression (L1C). Each row in the figure corresponds to a row in table 15. The colors indicate the increasing density of points.

  459

Figure 12 .

 12 Figure 12. Scatterplots for the double band regression (L2A). Each row in the figure corresponds to a row in table 16. The colors indicate the increasing density of points.

Figure 13

 13 Figure 13 presents the scatterplots for the prediction of the SWIR bands in L1C (top row)

Figure 13 .

 13 Figure 13. Scatterplots for the double band regression of the SWIR bands in L1C (top) and L2A (bottom). The colors indicate the increasing density of points.

Table 1 :

 1 Name and central wavelength for the Sentinel-2 spectral bands[START_REF] Drusch | Sentinel-2: ESA's Optical High-Resolution Mission for GMES Operational Services[END_REF].

	Band	Central wavelength (nm) Spatial resolution (m)
	1 -Coastal aerosol	442.7	60
	2 -Blue	492.4	10
	3 -Green	559.8	10
	4 -Red	664.6	10
	5 -Vegetation red edge	704.1	20
	6 -Vegetation red edge	740.5	20
	7 -Vegetation red edge	782.8	20
	8 -NIR	832.8	10
	8A -Narrow NIR	864.7	20
	9 -Water vapour	945.1	60
	10 -SWIR -Cirrus	1373.5	60
	11 -SWIR	1613.7	20
	12 -SWIR	2202.	

Table 2

 2 

presents a selection 120 of several of them.

121

Table 2 :

 2 Spectral indices leveraging Sentinel-2 spectral bands for applications related to vegetation and water surfaces.

	Index		Formula	Application	Reference
	C I r ed -ed g e C I g r een		B 7 B 5 -1 B 7 B 3 -1 (B 4+B 7)	Chlorophyll, burnt areas "	[7] "
	RE P	705 + 35	2	

Table 3 :

 3 Single band regression results for L1C. The colors in the RE (relative error) column indicate whether the specification is fulfilled (light gray), nearly fulfilled (middle gray) or unfulfilled (dark gray).

	369				
	370	section 2.1.			
	371	3.2.1. Analysis of errors			
	372	Validation metrics are computed across all experiments and reported on tables 3 and 4
	373	for L1C and L2A data respectively. The tables present the root mean square error (RMSE), the
	374	mean absolute error (MAE), the relative error (RE) and the coefficient of determination (R 2 ).
		The rows of the tables are sorted by increasing values of RE for L1C and RMSE for L2A.
		Band	RMSE	MAE	RE	R 2
		B07	7.17e-03 3.90e-03 2.96e-02 9.96e-01
		B06	1.82e-02 4.77e-03 3.61e-02 9.88e-01
		B8A	1.57e-02 5.33e-03 3.69e-02 9.91e-01
		B05	1.57e-02 4.46e-03 3.79e-02 9.92e-01
		B12	1.50e-02 9.18e-03 9.35e-02 9.83e-01
		B11	1.83e-02 1.26e-02 1.51e-01 9.85e-01

375

Table 4 :

 4 Single band regression results for L2A. The colors in the RMSE (relative error) column indicate whether the specification is fulfilled (light gray), nearly fulfilled (middle gray) or unfulfilled (dark gray).

		Band	RMSE	MAE	RE	R 2
		B5	7.33e-03 4.96e-03 2.07e-01 9.95e-01
		B6	8.26e-03 5.04e-03 1.28e-01 9.96e-01
		B7	8.42e-03 5.02e-03 1.18e-01 9.97e-01
		B8A	1.11e-02 6.14e-03 2.23e-01 9.95e-01
		B12	1.49e-02 9.49e-03 2.41e-01 9.75e-01
		B11	2.06e-02 1.36e-02 4.05e-01 9.81e-01
		In section 1.2 we concluded that 3% error for L1C and 0.01 in surface reflectance values
	381				
	382	We see that, for L1C, only the reconstruction of B7 has a RE lower than 3%, although the
	383	other red edge and NIR bands are below 3.8%. For L2A, B5, B6 and B7 have an RMSE lower
		than 0.01, and B8A is only slightly above this level.	

376

for L2A were good targets for band reconstruction. Of course, we are measuring reconstruction 377 errors using data which itself may have errors, even if they are below the radiometric specifica-378 tions. Therefore, the error bounds need not to be taken very strictly. Finally, Sentinel-2 can be 379 considered to be over-specified in terms of radiometric quality for most applications, which 380 makes using these error bands rather conservative from our point of view.

384

Estimating the noise in surface reflectances using the RMSE can suffer from strong 385 outliers. The MAE gives a measure which is robust to these cases and shows that even B12 386 could be considered for reconstruction.

Table 5 :

 5 Percentage of pixels beyond a given absolute error threshold (L2A)

	Band	0.01 0.015	0.02 0.025
	B5	13.09	4.76	1.94	0.91
	B6	12.60	5.35	2.67	1.51
	B7	12.47	5.31	2.60	1.39
	B8A	19.19	8.73	4.40	2.47
	B11	46.75 34.45 25.03 18.11
	B12	33.81 22.00 14.96 10.41

Table 6 :

 6 Percentage of pixels beyond a given absolute error threshold (L1C)

	Band	0.01 0.015	0.02 0.025
	B05	6.86	2.37	1.21	0.78
	B06	8.09	3.07	1.42	0.79
	B07	8.95	3.15	1.19	0.51
	B8A	13.49	4.83	1.87	0.82
	B11	43.70 30.51 20.97 14.35
	B12	30.20 20.38 14.14	9.75

Table 6

 6 shows the same results for L1C data. The performaces seem to be much better 397 than for L2A, but we must remember that the requirements for L1C are given as relative errors

398

(the error must not exceed 3%). 399

Table 7 :

 7 Percentage of pixels beyond a given relative error threshold (L1C)

	Band	0.03	0.05	0.1
	B05	37.23 20.44	5.34
	B06	26.50 10.74	2.36
	B07	21.99	8.97	2.10
	B8A	30.11 13.16	3.66
	B11	69.33 51.53 22.93
	B12	73.79 58.25 30.10

Table 8 :

 8 Percentage of pixels beyond a given relative error threshold for reflectances in [0,0.1]

	(L1C)			
	Band	0.03	0.05	0.1
	B05	49.66 29.34	7.85
	B06	39.48 16.89	2.25
	B07	45.16 23.58	4.94
	B8A	48.46 27.90	7.02
	B11	75.16 60.25 32.95
	B12	74.92 60.26 33.89

Table 9 :

 9 Percentage of pixels beyond a given relative error threshold for reflectances in [0.1,0.25]

	(L1C)			
	Band	0.03	0.05	0.1
	B05	35.01 17.53	3.58
	B06	25.18	8.93	1.04
	B07	21.63	8.11	1.05
	B8A	30.70 12.17	1.69
	B11	69.40 51.48 20.39
	B12	73.14 57.22 27.93

Table 10 :

 10 Percentage of pixels beyond a given relative error threshold for reflectances in [0.25,0.5] (L1C)

	Band	0.03	0.05	0.1
	B05	7.98	2.69	0.37
	B06	16.71	5.98	0.42
	B07	14.57	4.03	0.26
	B8A	19.82	4.63	0.24
	B11	65.31 45.43 15.98
	B12	70.94 52.66 19.58
	Table 11: Percentage of pixels beyond a given relative error threshold for reflectances in
	[0.5,0.75] (L1C)			
	Band	0.03	0.05	0.1
	B05	10.06	3.15 0.29
	B06	10.20	2.93 0.22
	B07	17.32	4.88 1.13
	B8A	20.40	5.26 0.25
	B11	53.24 27.82 3.57
	B12	52.10 31.80 5.49
	Table 12: Percentage of pixels beyond a given relative error threshold for reflectances in [0.75,1]
	(L1C)			
	Band	0.03	0.05	0.1
	B05	13.94	8.35	1.36
	B06	5.30	1.17	0.07
	B07	3.87	1.30	0.73
	B8A	6.61	0.86	0.02
	B11	85.90 75.64 51.28
	B12	92.86 90.00 81.43

Table 13 :

 13 Probability of the absolute error being lower than n × σ (L1C)

	Band σ (68.27%) 2σ (95.45%) 3σ (99.73%)
	B05	68.80	92.26	98.29
	B06	70.23	93.14	98.53
	B07	70.82	93.27	98.43
	B8A	70.36	91.99	97.57
	B11	56.86	84.11	94.94
	B12	61.57	87.50	96.23

Table 14 :

 14 Probability of the absolute error being lower than n × σ (L2A)

	Band σ (68.27%) 2σ (95.45%) 3σ (99.73%)
	B5	65.68	90.00	96.87
	B6	71.84	93.85	98.70
	B7	74.28	94.50	98.69
	B8A	70.07	92.13	97.93
	B11	56.18	81.51	93.04
	B12	64.70	91.15	97.91

Table 15 :

 15 Double band regression results for L1C. The colors in the RE (relative error) columns indicate whether the specification is fulfilled (light gray), nearly fulfilled (middle gray) or unfulfilled (dark gray).

	Band	RMSE	MAE	RE	R 2 Band	RMSE	MAE	RE	R 2
	B06	9.28e-03 4.79e-03 2.67e-02 9.93e-01	B07 1.07e-02 4.93e-03 2.64e-02 9.93e-01
	B07	1.68e-02 5.49e-03 3.47e-02 9.89e-01	B8A 1.95e-02 7.84e-03 4.34e-02 9.84e-01
	B05	9.31e-03 3.96e-03 5.12e-02 9.94e-01	B06 1.01e-02 4.22e-03 4.07e-02 9.94e-01
	B05	6.52e-03 3.58e-03 3.88e-02 9.94e-01	B11 1.66e-02 1.12e-02 7.57e-02 9.86e-01
	B06	1.52e-02 4.85e-03 3.24e-02 9.92e-01	B11 1.75e-02 1.16e-02 9.04e-02 9.82e-01
	B06	4.38e-02 1.58e-02 1.00e-01 9.47e-01	B8A 1.90e-02 5.88e-03 7.06e-02 9.92e-01
	B05	8.20e-03 4.16e-03 3.64e-02 9.94e-01	B07 4.34e-02 1.66e-02 1.21e-01 8.41e-01
	B05	3.79e-02 8.14e-03 9.38e-02 8.74e-01	B12 1.92e-02 1.07e-02 1.27e-01 9.66e-01
	B05	9.64e-03 4.24e-03 3.93e-02 9.96e-01	B8A 4.63e-02 1.93e-02 1.31e-01 9.45e-01
	B07	1.74e-02 4.45e-03 4.05e-02 9.88e-01	B11 5.92e-02 2.88e-02 1.97e-01 8.47e-01
	B8A	2.66e-02 7.06e-03 5.44e-02 9.73e-01	B12 1.64e-02 1.00e-02 2.26e-01 9.72e-01
	B07	1.93e-02 5.07e-03 4.74e-02 9.87e-01	B12 5.17e-02 2.00e-02 2.37e-01 7.91e-01
	B06	7.30e-03 3.88e-03 3.07e-02 9.95e-01	B12 3.63e-02 1.78e-02 2.52e-01 8.59e-01
	B8A	5.70e-02 1.47e-02 1.25e-01 8.87e-01	B11 6.20e-02 2.80e-02 2.79e-01 7.51e-01
	B11	3.73e-02 2.45e-02 2.93e-01 9.18e-01	B12 3.26e-02 2.03e-02 2.24e-01 9.05e-01

Table 16 :

 16 Double band regression results for L2A. The colors in the RE (relative error) columns indicate whether the specification is fulfilled (light gray), nearly fulfilled (middle gray) or unfulfilled (dark gray).Tables15 and 16present the results for the L1C and the L2A data. Each row in the tables 437 presents the results for a pair of bands jointly predicted. The same quality metrics as for the 438 single band regression are presented. Each table has 15 rows, since we evaluate all the possible The rows in table 15 are sorted in increasing order of the maximum relative error of the

	Band	RMSE	MAE	RE	R 2 Band	RMSE	MAE	RE	R 2
	B5	7.38e-03 4.96e-03 1.77e-01 9.95e-01	B8A 9.31e-03 6.22e-03 1.38e-01 9.96e-01
	B5	1.11e-02 6.07e-03 1.80e-01 9.95e-01	B6 1.33e-02 6.37e-03 1.25e-01 9.94e-01
	B6	8.68e-03 5.07e-03 1.91e-01 9.96e-01	B12 1.53e-02 9.59e-03 3.52e-01 9.77e-01
	B6	1.24e-02 6.70e-03 5.37e-01 9.89e-01	B7 1.54e-02 7.70e-03 1.51e-01 9.85e-01
	B5	1.26e-02 5.35e-03 2.03e-01 9.94e-01	B11 1.72e-02 1.15e-02 1.94e-01 9.85e-01
	B7	4.72e-03 1.23e-01 9.96e-01	B12 1.74e-02 1.11e-02 1.97e-01 9.78e-01
	B7	1.13e-02 5.98e-03 1.10e-01 9.94e-01	B8A 1.74e-02 7.70e-03 1.65e-01 9.87e-01
	B8A	1.21e-02 6.10e-03 1.91e-01 9.95e-01	B12 1.79e-02 1.08e-02 3.03e-01 9.75e-01
	B8A	1.07e-02 6.74e-03 1.09e-01 9.94e-01	B11 1.93e-02 1.31e-02 2.22e-01 9.79e-01
	B6	9.79e-03 5.60e-03 1.47e-01 9.95e-01	B8A 1.99e-02 8.58e-03 2.10e-01 9.81e-01
	B11	4.14e-02 2.89e-02 3.29e-01 9.01e-01	B12 3.54e-02 2.36e-02 4.86e-01 8.90e-01
	B7	3.74e-02 1.41e-02 5.18e-01 9.21e-01	B11 4.98e-02 2.50e-02 2.37e-01 8.56e-01
	B5	5.80e-02 1.17e-02 2.11e-01 8.73e-01	B12 1.71e-02 1.09e-02 4.36e-01 9.76e-01
	B6	6.55e-02 1.44e-02 7.58e-01 8.01e-01	B11 4.06e-02 1.88e-02 3.21e-01 8.75e-01
	B5	7.70e-02 4.45e-02 2.87e-01 8.35e-01	B7 9.79e-03 5.83e-03 9.24e-02 9.96e-01
		441							
		442	pair of bands. This allows to quickly see that only one pair of L1C bands (B06 and B07) can be
		443	predicted with less than 3% error and that another pair (B07 and B8A) is slightly above this
		444	threshold.						
		445	For the L2A data presented in table 16, the rows are sorted by increasing RMSE using the
		446	maximum of the pair in each row. In this case, only the pair (B5, B8A) fulfills the 0.01 error
			threshold, although the pair (B5, B6) is not much above this threshold.

439

combinations of pairs of bands. 440 447 Figure 11 presents the scatterplots for the 2 best pairs of bands in the L1C case (the 2 first 448 rows in table

15

. Altough the scatterplots are generated by subsampling the test data set for 449 readability, one can see that the estimations are unbiased and with a small dispersion around 450 the regression lines. One can also see that part of the error comes from pixels with reflectances 451 higher than 1, for which there is an underestimation. Since the regression algorithm is config-
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Actually, if the scatterplots of figure 13 were obtained for biophysical parameter estima-475 tions, as for instance LAI, chlorophyll, biomass, etc. they would be considered as very good 476 (see for instance [START_REF] Camacho | Crop Specific Algorithms Trained Over Ground Measurements Provide the Best Performance for Gai and Fapar Estimates From Landsat-8 Observations[END_REF] or [START_REF] Clevers | Using Sentinel-2 Data for Retrieving Lai and Leaf and Canopy Chlorophyll Content of a Potato Crop[END_REF]). Of course, image quality criteria need to be more strict than 477 those of downstream tasks, but this kind of result suggests that the impact of reflectance noise 478 in downstream applications needs to be assessed. The interest of working on band reconstruction is that the approach is independent of 485 the application. The main rationale is that, if a band can be reconstructed with errors which The main findings of the study are that, at least, one of the bands among B5, B6, B7 and 490 B8A could be removed from next generation sensors as all of them can be reconstructed with 491 small errors when the others are available. Removing two bands could be possible at the cost 492 of slightly higher reconstruction errors.

493

We have also shown that the estimation of a credibility interval for the predicted re-494 flectances is possible and can therefore be used as a quality mask.

495

This study has however several limitations that would need to be addressed in the future.

496

First, an analysis of the errors per type of surface (material, land cover, vegetation status, 497 etc.) should be carried out in order to assess the impact on different types of applications.

498

Although the spatial sampling of the data for this study contained enough variability for the 499 results to be general, particular types of surfaces with specificities may need special attention. 500 Furthermore, selecting the appropriate samples in the areas of most interest for particular 501 applications can allow a fine tuning of the regression algorithm and improve the performances 502 of the estimations.

503

A second limitation is related to the choice of regression algorithm for the study. The 504 goal of the work was not to propose an optimal regression algorithm, but rather showing that 505 band reconstruction was possible using regression. The choice of the neural network with a 506 negative log-likelihood as a loss function was made for simplicity in terms of implementation, 507 the possibility of performing multi-target regression and the generation of uncertainties 508 associated to the estimations. Other approaches could yield better results and even produce a 509 different set of bands candidate for removal. 510 All of the above suggests that replication of the study by other teams would be useful.

511

For this purpose, the dataset has been published [START_REF] Inglada | Sentinel-2 L1C and L2A pixel samples for band regression[END_REF] and the source code is available for 512 inspection and download 2 .

513

A third limitation is the pixel-based approach taken here. Reconstructing a missing band 514 from the reflectances of the other bands of the same pixel assumes unicity of the solution: 515 one combination of observed bands can only correspond to one value of the missing band.

516

Although the results of this study tend to show that this is the case, there are pixels for which 517 the error is high. In the current setting, the regression algorithm is able to flag these pixels by 518 reporting a high uncertainty, but this is not fully satisfactory. One way of lifting the ambiguity 519 would be to add some spatial context for the regression, so that the observations of neighbour-520 ing pixels, and therefore the local texture, helps the prediction. This could be implemented 521 with spatial convolutional layers in the regression algorithm.

522

In the same way, a multitemporal extension of the algorithm could improve the esti-523 mations. However, this extension is less straightforward than adding spatial context, since