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ABSTRACT
Recent works by the authors on homogeneous MPPs have highlighted the structural damping
capabilities of MPPs in the low frequency range. The developed theoretical approach was based
on the analogy between an MPP and a porous plate. The added damping is due to visco-thermic
effects coupled to fluid-structure interactions. The added damping maxes out at a characteristic
frequency depending on perforation diameter. In order to reduce plate vibrations, it was advised
to match the characteristic frequency to a plate mode. It is proposed here to maximize the added
damping effect on several vibration modes by focusing on MPPs with multiple-sized perforations
and with spatial distribution of perforations. As an extension of the previous analytical model, an
approach based on the electro-acoustic analogy is established to capture the effect of multiple-sized
perforations. Moreover, a perforation ratio gradient is included in the approach to model an MPP
with inhomogeneous spatial distribution of perforations. Experimental measurements on MPPs
validate the proposed analytical model. Results show that: (i) MPP with multiple-sized perforations
increases the frequency band of the effective damping; (ii) the added damping increases when the
perforations are distributed around the antinodes of the considered mode, (iii) the two effects can be
combined.

1. INTRODUCTION
Microperforated plates (MPP) are widely used structures in the field of acoustics. These simple
structures are simple, lightweight and are currently used in many industrial fields such as the transport
sector. For example, MPP is used as acoustic absorber in launcher fairings [1]. Models characterizing
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the acoustic absorption of these structures have been proposed: (1) models based on the Kirchhoff

equations [2]; (2) models based on fluid-equivalent method using Johnson-Allard approach [3, 4].
In order to improve the sound absorption of MPPs in this acoustic context, some research works
have proposed different MPP designs. In this way, different configurations of MPP with multi-sized
perforation were proposed [5, 6]. Electro-acoustic model was used by Qian et al. [7]. Experimental
investigation on the sound absorption performance of an MPP with multi-sized perforation was also
performed by Miasa et al. [5]. Their results showed that multi-sized MPP absorbers can exhibit high
sound absorption over a wider frequency range than uniformly sized MPPs. On another way, Temiz
et al. [8] explored numerically the effect of spatial distribution of perforation on sound absorption by
assuming a discrete impedance patches model [9,10]. They noted that the distribution of perforations
on the MPP could have a substantial effect on the viscous damping mechanism.

On the other hand, the authors were recently interested on the dynamic behaviour of these
structures in a previous work [11]. They showed that the MPP exhibited additional damping in the
low frequency range. They showed that this effect was maximal at a characteristic frequency and that
it acted on a range of surrounding frequencies. However, this previous study was done for MPPs with
a single set of perforations and with homogeneous perforation distributions.

In this paper, it is proposed: (i) to maximize the added damping by using a spatial perforation
distribution, (ii) to widen the frequency band of effective damping by different sized of perforation
spatial distributed on MPP surface. To this end, Section 2 recalls the analytical model proposed by
the authors in [11] while Section 3 proposes an analytical model to capture the effect of MPP with
multiple spatially distributed perforations on the plate response based on the combination of: (i) a
homogenization approach for MPP with multi-sized perforations; (ii) a model definition of a spatial
perforation ratio. The models and analyses proposed in the rest of the paper will be detailed in a
future publication submitted in May 2023 [12].

2. STRUCTURAL DYNAMIC OF FINITE-SIZE MPP

2.1. Governing equations: general case
Based on an alternative form of Biot’s theory, an analytical model of the vibration of a finite size MPP
is developed by the authors [11] by identifying the MPP with an equivalent porous plate an [4]. The
resulting equations are based on [13] and take the form of the following coupled system :

(
D +

α2Mfh3

12

)
∇4ws(x, y, t) + h(ρẅs(x, y, t) + ρfẅ(x, y, t)) = fext(x, y, t), (1a)

αMf∇
2ws(x, y, t) +

(
ρfẅs(x, y, t) +

ρfα∞
φ(0) ẅ(x, y, t)

)
+ σ(0)ẇ(x, y, t) = 0, (1b)

with ∇ is the differential operator defined so that ∇2(·) =
∂2(·)
∂x2 +

∂2(·)
∂y2 and ∇4(·) = ∇2(·)2. The external

load is noted fext(x, y, t). Equation 1 are obtained under the low-frequency assumption for a finite-size
MPP saturated by a light fluid. The MPP is here considered as two equivalent homogeneous plates:
(1) an equivalent solid plate without perforations with equivalent bending stiffness coefficient D and
equivalent density of fluid-solid mixture ρ; (2) an equivalent fluid plate which corresponds to the
fluid present in the microperforations. Solving Equation 1 lead to the solid displacement ws(x, y, t)
and the relative fluid-solid motion w(x, y, t). Equation 1a corresponds to the elastic response of the
equivalent non-perforated homogeneous solid plate, and Equation 1b to the coupling fluid-solid. JCA
(Johnson-Champoux-Allard) macroscopic parameters such as airflow resistivity σ(0), porosity called
perforation ratio in an MPP case φ(0) and tortuosity α∞ are adapted to the case of a microperforated
plate and are only a function of perforation diameter σ(0). In this context, the airflow resistivity writes



σ(0) =
ς

φ(0) with ς =
32µf

d2 . (2)

In addition, to account for fluid distortion at the perforation end and perforation interaction, an
empirical correction is applied to the tortuosity, which is rewritten [4]

α∞ = 1 + B(1 − 1.14
√
φ(0)) with B =

0.48
h

√
πd2. (3)

In order to consider the effect of the microperforation on the plate response, bending stiffness is
adapted and become a φ(0)-function. The bending stiffness therefore depends on φ(0) as follows:

D =
Eh3

12(1 − ν2)
(1 − φ(0))2

1 + (2 − 3ν)φ(0) . (4)

where E is the non-perforated plate Young modulus and ν the Poisson’s coefficient. For an MPP
saturated by a light fluid, the density of the fluid-solid mixture is also written as a function of the
perforation ratio, such that ρ = ρs(1 − φ(0)).

Equation 1 are solved by a modal analysis, the reader is invited to refer to [11, 12] for more
information on the resolution procedure.

2.2. Biot’s frequency and maximum added damping
Fluid-solid interactions coupled with visco-thermal interactions in the boundary layers of
microperforations lead to substantial added damping as exhibited by [11]. These dissipation
mechanisms involved in an MPP reach a maximum at the particular characteristic frequency already
defined in the context of porous materials [13, 14]. The characteristic frequency

fc =
32µf

2πα∞ρfd2 (5)

is only a function of perforation diameter d and the fluid parameters ρf and µf. The added damping
provided by the MPP can be maximized at a particular resonance frequency by matching the natural
resonance frequency of the plate with fc through adjustment of the perforation diameter. The added
damping is maximal at fc but acts on a range around this characteristic frequency.

3. ADDED DAMPING MAXIMIZATION
In this section, the added damping effect is maximized by proposing design of MPP in each section.
In Section 3.1, the frequency band of effective damping is widened by using an MPP with multi-sized
of perforation. In Section 3.2, the added damping is maximized on a particular mode by using spatial
distribution of perforations. In Section 3.3, an MPP combining the both effect is proposed.

3.1. MPP with multi-size perforation diameter: analytical model
The added damping presented by the MPP is closely related to the diameter of the perforation, which
when properly chosen reduces the vibrations around a resonance frequency of the plate. Using an
MPP with several perforation diameters would increase the frequency range where the added damping
is significant. This is the reason why, a multi-sized perforation MPP with N different perforation
diameters denoted dk with k = 1, 2, · · · ,N is considered. The vibratory response of an MPP with
multi-sized perforation is model by using a homogenization procedure. In this context, 2N equivalent
plate is defined in the same mathematical spatial domain: (1) N equivalent homogeneous solid plate;
(2) N equivalent homogeneous fluid plate. An example of an MPP with two perforation diameters,
i.e. N = 2 is given in Figure 1. Each equivalent plate is related to its perforation ratio φ(0)

k and its
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Figure 1: MPP with two perforation diameters. The MPP given in (a) is decomposed into two MPPs
each associated with a diameter and a perforation ratio as shown in (b). Each MPP of (b) through a
homogenization approach is equivalent to two plates, one of equivalent fluid and one of equivalent
solid, as shown in (c).

perforation diameter dk. The overall perforation ratio φtot of the MPP writes

φ(0)
tot =

N∑
k=1

φ(0)
k . (6)

The overall airflow resistivity is defined using a homogenization approach [6, 15, 16]:

1
σ

=

N∑
k=1

1
σk
, (7)

where σk is obtained through Equation 2 applied on dk. The bending stiffness is defined as a function
of φtot. Equation 6 and Equation 7 are inserted in Equation 1 to obtain the response of an MPP with
multi-sized perforation diameter.

3.2. MPP with spatial distribution: analytical model
The additional damping is due to relative movement between the fluid in the perforation and the

structure. The more relative motion there is, the more interaction there is, so to improve the additional
damping effect it is possible to concentrate the perforations on the antinodes of the modes whose
amplitude is to be reduced. In order to explore the influence of the spatial distribution of perforations
on the MPP surface, the model presented in Section 1 is extended by defining the perforation ratio as
a spatial function :

φ(x, y) = φ(0) Ih(x, y). (8)

The term φ(0) is the maximal local perforation ratio obtain when the normalized inhomogeneity
function Ih(x, y) is equal to 1. The perforation ratio become a local variable, and the overall perforation
ratio is defined via a surface integral. The bending stiffness coefficient and the tortuosity are also
defined as a φ(x, y)-function such as

D(x, y) =
Eh3

12(1 − ν2)
(1 − φ(x, y))2

1 + (2 − 3ν)φ(x, y)
and α∞(x, y) = 1 + B(1 − 1.14

√
φ(x, y)) (9)

where B is defined in Equation 3. By injecting Equation 8 and Equation 9 into Equation 1 and
replacing w(x, y, t) with its expression w(x, y, t) = φ(x, y)[wf(x, y, t) − ws(x, y, t)], the coupled system
becomes:

D(x, y)∇4ws + h(ρs(1 − φ(x, y))ẅs + ρfφ(x, y)ẅf) = 0, (10a)

αMf∇
2ws + ρf((1 − α∞(x, y))ẅs + α∞(x, y)ẅf) + ς(ẇf − ẇs) = 0. (10b)



The new coupled system is also solved by modal analysis after an appropriate projection and
discretization on the basis of the non-perforate plate.

3.3. Both effect combined: experimental validation
In this section, the models presented in Section 3.1 and Section 3.2 are combined and experimentally
validated using 195 mm × 30.7 mm × 1.17 mm MPP samples presented in Figure 2. Four plates
are considered: an non-perforated reference plate; two spatially homogeneous MPPs with a single
perforation diameter size, MPP 1O associated with d1 = 1.3 mm and φ(0) = 10 % and MPP 2O
associated with d2 = 0.7 mm and φ(0) = 10 %; MPP 3O, whose configuration is explained in the
following. MPP 3O has two different sizes of perforation (d1 and d2), which are distributed by zone
according to the maximum of deflection for the mode 1 for the diameter d1 mm and for the mode 2
for the diameter d2 mm. The diameter of the perforation d1 is fixed in order to maximize the added
damping on the resonance frequency of mode 1: f1. The same is done for d2 which corresponds to
the resonance frequency of mode 2: f2. The MPP in Figure 2 is decomposed in 3 subdomains each
associated with perforation diameter, perforation ratio and inhomogeneity function such that:

φ1(x) = φ(0)
1 Π1(x) with Π1(x) =

1 if x
Lx
≥ 0.695,

0 otherwise
and φ(0)

1 = 33 %, (11a)

φ2(x) = φ(0)
2 Π2(x) with Π2(x) =

1 if x
Lx
≥ 0.8,

0 otherwise
and φ(0)

2 = 11 %, (11b)

φ3(x) = φ(0)
3 Π3(x) with Π3(x) =

1 if 0.165 ≤ x
Lx
≤ 0.695,

0 otherwise
and φ(0)

3 = 16 %. (11c)

Experimental measurements are performed with an Oberst test bench2. The sample is fixed at x = 0
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Figure 2: MPP samples used in experimental validation. The spatial distribution of MPP 3O is given
in Equation 11.

and excited at x = Lx (see Figure 2). Results are provided in Figure 3. In Figure 3a, the measured

2The reader is referred to Section 5 of [11] for more details on the experimental setup.
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Figure 3: Experimental measurement of MPP presented in Figure 2. In Figure 3a the experimental
and analytical mobility of MPP 3O are compared to this one obtained for the non-perforated case and
for the reference MPP case, i.e: MPP 1O. In Figure 3b the loss factor of the three MPP of Figure 2 are
given for each mode i with i ≤ 4.

mobility of the MPP is compared to that of the non-perforated plate that acts as reference. In order
to validate the analytical model, the experimental results are compared with model results for MPP
3O. Figure 3a show that MPP 3O exhibits a magnitude reduction of about 12 dB on the first mode and
a magnitude reduction of about 10 dB on the second mode compared to the non-perforated reference
plate. In Figure 3b, experimental loss factor for MPP of Figure 2 are given for i ≤ 4 with i ∈ N is the
mode index. Results shows that for MPP 3O the loss factor of mode 1 is multiplied by 1.4 compared
to MPP 1O and by 1.98 compared to the non-perforated plate. The loss factor of mode 2 for MPP
3O is equivalent to that of MPP 2O that is multiplied by 1.93 compared to the non-perforated plate
case. The use of multiple size microperforations paired with a spatial distribution of perforations has
two advantages: (1) depending on the diameters chosen, the additional damping is effective over a
wider frequency band compared to a plate with a single set of perforations; (2) the distribution of
perforations over the areas of interest also maximizes the additional damping.

4. CONCLUSIONS
This paper is a synthesis of [12] and provides as an extension of [11] analytical models to
characterize the vibrational behaviour of MPP with: (i) multi-sized perforation; (ii) spatial
distribution of perforation; (iii) a combination of (i) and (ii) that corresponds to an MPP with spatial
distribution of multi-sized perforation. Experimental measurements validate the analytical models
and show that: (i) MPPs with multiple perforations can broaden the frequency band of effective added
damping; (ii) MPPs with spatial distribution of perforations can maximize the added damping on one
mode; and (iii) the two effects can add up. For a well-chosen perforation diameter, the frequency
band of the effective damping is extended. In addition, the distribution of perforations around the
antinodes of the considered mode maximizes the added damping compared to a homogeneous MPP.
In practice, it is recommended to concentrate the perforations with an appropriate diameter on the
maximum deflection areas of the plate. More details and investigation on each proposed MPP
modifications is detailed and more examples are proposed in [12].
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