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Induced polarization of clay-rich materials — Part 1: The effect of
desiccation

André Revil1, Ahmad Ghorbani2, Damien Jougnot3, and Béatrice Yven4

ABSTRACT

A petrophysical model describing spectral induced polariza-
tion (IP) has been developed for clay rocks accounting for
the Maxwell-Wagner polarization. It is also used to connect
the complex conductivity to the relative permeability of the
material. This model is applied to the Callovo-Oxfordian clay
rock of the Paris Basin (France) where the Meuse/Haute-Marne
Underground Research Laboratory is located. Laboratory ex-
periments are performed using eight clay-rock cores to study
the effect of desiccation on their spectral-IP response. The mea-
surements are performed along the foliation plane. Complex
conductivity spectra are measured over a frequency range

of 1 mHz to 45 kHz. These spectra are fitted with a double Cole-
Cole model to extract the evolution of the Cole-Cole parameters
with the saturation during the desiccation process. The low-
frequency Cole-Cole model corresponds to IP phenomena,
whereas the high-frequency Cole-Cole model corresponds to
the Maxwell-Wagner contribution. We obtain the value of the
first and second Archie’s exponents and we check the relation-
ship between the surface conductivity and the cation exchange
capacity of the clay rocks. We are also able to connect the rel-
ative permeability curve to the second (saturation) Archie’s ex-
ponent. The monitoring of the complex conductivity can be used
to predict how the permeability of the clay-rock formation
changes with the water content.

INTRODUCTION

The monitoring of the excavation damaged zone (EDZ) around
galleries used for long-term repositories of radioactive wastes is an
important task for evaluating their safety (Volckaert et al., 2004). In
the Meuse/Haute-Marne Underground Research Laboratory (URL,
Paris Basin, France), the French national agency for radioactive
waste management (Agence Nationale pour la gestion des Déchets
RadioActifs [ANDRA]) has developed an extensive research pro-
gram to understand the evolution of the EDZ and its properties
(Armand et al., 2014). This URL is built in the Callovo-Oxfordian
(COx) clay-rock formation of the Paris Basin. This formation is
mainly composed of clay minerals (20%–55% of the rock), tecto-
silicates (25%–35%), calcite (15%–30%), and secondary minerals
(less than 5% of the total; Vinsot et al., 2014). The secondary min-
erals include dolomite, feldspar, hematite, and small proportions of
pyrite (see Yven et al., 2007; Vinsot et al., 2014; see Figure 1). Clay

minerals consist mostly of a mixture of illite and micas, interstra-
tified illite/smectite, kaoline, and chlorite in various proportions de-
pending on the depth (Yven et al., 2007).
In the past, electrical conductivity tomography has been applied

to the EDZ (e.g., Kiewer, 2000; Yaramanci and Kiewer, 2000;
Kruschwitz, 2002). Subsequently, preliminary works have been per-
formed to see how induced polarization (IP) can be used to study the
EDZ (Kruschwitz and Yaramanci, 2004; Jougnot et al., 2010a,
2010b; Okay et al., 2013). IP can be seen as an extension of the elec-
trical conductivity/resistivity method but accounts for the polarization
mechanisms of the porous materials and therefore for the frequency
dependence of the electrical conductivity itself (Bleil, 1948, 1953).
The term “IP” is mostly related to low-frequency (<10 kHz) polari-
zation phenomena affecting insulating grains coated by their electri-
cal double layer (Jougnot et al., 2010a; Okay et al., 2013). In
addition, the presence of semiconductors (e.g., pyrite and magnetite)
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may play a role in the low-frequency complex conductivity response
of these rocks (Okay et al., 2013; Revil et al., 2015a, 2015b); how-
ever, in the COx formation, the amount of pyrite is low (a few percent
at most). Tartrat et al. (2019) show that pyrite influences complex
conductivity only at very low water contents. The Cole-Cole para-
metric model offers a good starting model to fit the complex conduc-
tivity spectra (e.g., Dias, 1972, 2000; Flekkøy, 2013).
The research questions tackled in this paper are the following.

(1) Can we fit the complex conductivity spectra with a double
Cole-Cole model? (2) How do the Cole-Cole parameters evolve
with the desiccation of the clay rock? (3) Can we predict or explain
the observed trends between the Cole-Cole parameters and satura-
tion to the light of a physics-based model? (4) Can we predict the
evolution of the relative permeability of the formation from the
parameters derived from the complex conductivity spectra?
To respond to these fundamental questions, we first develop a

descriptive parametric model for the complex conductivity of clay
rocks. Then, we present experimental data showing complex con-
ductivity spectra obtained in a broad saturation range using eight
core samples of the COx formation. These spectra are inverted
in terms of a double Cole-Cole model, and then the dependence
of the Cole-Cole parameters with the saturation and the cation
exchange capacity (CEC) are analyzed and discussed. Finally,
we focus on the COx formation relative permeability curve to dem-
onstrate that this curve can be predicted from the saturation expo-
nent derived from the complex conductivity spectra.

THEORY

A combined polarization model

We consider an isotropic, homogeneous, and linear elementary
representative volume of a porous material. The total current density
J (A m−2) that is defined through Ampère’s law (actually the form
of Ampère’s law derived by James Clerk Maxwell including the
displacement current) is given by

∇ ×H ¼ J; (1)

where H denotes the auxiliary magnetic field (A m−1) and the total
current density J is the sum of a conduction current, a diffusion
current (the driving force for the movement of the ionic charge car-
riers is an electrochemical potential; see Jamnik and Maier, 2001;
Revil, 2013), and a displacement current density. The conduction
and diffusion current densities can be combined in an equivalent
Ohm’s law with a complex conductivity (e.g., Leroy et al.,
2008). This yields

J ¼ σ�Eþ ∂D
∂t

: (2)

The electric displacement field D (electric induction, in C m−2) is
related to the electrical field E by D ¼ ε�E, where ε� denotes the
dielectric constant or permittivity (F m−1) of the material including
the Maxwell-Wagner polarization effect as discussed next. The ex-
pression of the effective conductivity σ̂� (or the effective complex
permittivity ε̂�) of the porous material entering Ampère’s law is

∇ ×H ¼ σ̂�Eð¼ iωε̂�EÞ; (3)

where i denotes the pure imaginary number (i2 =−1) and we assume
that all the fields are harmonic E ¼ E0 expðiωtÞ.
We assume K-dielectric polarization mechanisms and N-IP mech-

anisms. The Cole-Cole model is a parametric function initially used
to describe dielectric phenomena (Cole and Cole, 1941). It assumes
that the distribution of the microheterogeneities responsible for the
distribution of the relaxation times is approximately a log-normal
distribution. Assuming that each polarization mechanism can be ap-
proximated by a Cole-Cole function, the expression of the effective
complex permittivity is given by

ε̂� ¼ −i
σ̂�

ω
; (4)

ε̂� ¼ ε∞þ
XK
k¼1

ε0k− ε∞k
1þðiωτkÞck

−
i
ω

 
σ∞−

XN
n¼1

σ∞n −σ0n
1þðiωτnÞcn

!
;

(5)

where the high-frequency conductivity and low-frequency dielectric
constant are given by

σ∞ ¼
XN
n¼1

σ∞n ; (6)

σ0 ¼
XN
n¼1

σ0n; (7)

ε∞ ¼
XK
k¼1

ε∞k ; (8)

ε0 ¼
XK
k¼1

ε0k; (9)

where τk (s) denotes a relaxation time for the dielectric polarization
process k (including alpha and delta polarization phenomena
corresponding to the IP and Maxwell-Wagner polarization phenom-
ena, respectively); ε0k and ε∞k denote the low- and high-frequency
dielectric constants for the polarization process labeled k, respec-
tively (Δεk ¼ ε0k − ε∞k is called the dielectric increment); and
0 ≤ ck ≤ 1 denotes the Cole-Cole exponent for dielectric polariza-
tion process k. The last term in equation 5 corresponds to α-polari-
zation phenomena and can be associated for instance with different
grain-size distributions modeled by log-normal distributions
(e.g., fine and coarse grains) and the presence of semiconductors
(pyrite and magnetite). In this contribution, σ0 denotes the direct
current (DC) conductivity; σ0n and σ∞n denote the low- and high-fre-
quency conductivities associated with contribution n, respectively
(Mj

n ¼ σ∞j − σ0j is called the partially normalized chargeability of
contribution j); τn denotes the relaxation time for the α-contribution
n; and 0 ≤ cn ≤ 1 denotes the Cole-Cole exponent n. Equation 5
works if we have polarization processes working in different fre-
quency ranges, which is generally the case as discussed next with
specific examples.
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In porous media, the mechanisms of polarization in the fre-
quency range of 1 mHz to 10 GHz are limited to the mechanisms
of the IP associated with the polarization of the electrical double-
layer-coating insulating grains and the polarization of the metallic
particles. In addition, we have two other mechanisms of dielectric
polarization called the Maxwell-Wagner polarization and the
polarization of the sorbed water and the free water molecules at
high frequencies (GHz range; see Grosse, 2002). If we are dealing
with two (i.e., K = 2) dielectric polarization mechanisms, namely,
the Maxwell-Wagner polarization and the polarization of the water
molecules (gamma polarization, see Appendix A), and two mech-
anisms of IP (i.e., N = 2), namely, the polarization of pyrite and the
polarization of the clay minerals, we have the following formula:

ε̂� ¼ ε∞ þ ε0MW − ε∞MW

1þ ðiωτMWÞcMW
þ ε0W − ε∞W

1þ iωτw

−
iσ∞
ω

�
1 −

XK
k¼1

Mk

1þ ðiωτkÞck
�
; (10)

Mk ¼
σ∞k − σ0k

σ∞
; (11)

σ0 ¼ σ∞

 
1 −

XK
k¼1

Mk

!
; (12)

τMW ¼ εS þ 2εw
σS þ 2σw

; (13)

where cMW denotes the Cole-Cole exponent for the Maxwell-Wag-
ner relaxation process; Mk, σ∞k , σ

0
k, and ck denote the chargeability,

instantaneous conductivity, DC conductivity, and Cole-Cole expo-
nent associated with the IP process k, respectively; and σ∞ denotes
the total instantaneous conductivity of the material for the combined
effects of the IP mechanisms.
In equation 13, the quantities εS and εw are the dielectric con-

stants for the solid and water phases, respectively (εS ≪ 2εw),
and σS (surface conductivity) and σw are the grain and pore water
conductivity, respectively. The expression of the relaxation time in
equation 13 for the Maxwell-Wagner polarization is from Grosse
(2002). At low salinities, it can be approximated by τMW ¼ 2εw=σS
¼ 160 × 8.854 × 10−12 C=Vm=3 × 10−2 S=m ≈ 5 × 10−8 s. When
the pore water conductivity dominates the surface conductivity,
the relaxation time is given by the well-known formula
τMW ¼ εw=σw. For a pore water conductivity of 10−3 S/m, we have
τMW ¼ εw=σw ¼ 80 × 8.854 × 10−12C=Vm=10−3S=m ¼ 7 × 10−7s.
Note that at higher salinities, this relaxation time would be even
smaller. Therefore, the Maxwell-Wagner polarization is occurring
at very high frequencies quite above the frequency range investi-
gated in this paper (<45 kHz) but it may overlap with the IP of the
clay grains, which is the main contributor in the investigated fre-
quency range. The role of the Maxwell-Wagner polarization in
clay-rich materials is underlined by Cosenza et al. (2008).

Simplified model

We are interested now in IP phenomena below a frequency of
45 kHz and therefore the polarization of the water molecules can
be safely neglected. We consider two IP processes and we write
an expression for the effective conductivity of the clay rock as

σ̂�≍σ∞

�
1 −

M1

1þ ðiωτ1Þc1
−

M2

1þ ðiωτ2Þc2
�
; (14)

σ∞ ¼ σ∞1 þ σ∞2 ; (15)

σ0 ¼ σ∞ð1 −M1 −M2Þ; (16)

whereM1 andM2 are the chargeabilities (dimensionless), c1 and c2
are the two Cole-Cole exponents (dimensionless), and τ1 and τ2 are
the (relaxation) time constants (expressed in s). Indices 1 and 2 refer
to two dispersion processes, respectively. If the total chargeability is
defined by M ¼ ðσ∞ − σ0Þ=σ∞, we have M ¼ M1 þM2.
In our model, one of the two mechanisms of polarization

(e.g., mechanism 1) corresponds to the polarization of the electrical
double layer associated with the insulating grains, whereas the sec-
ond mechanism (mechanism 2) corresponds to the Maxwell-Wag-
ner polarization. The first (low-frequency) polarization mechanism
is discussed and described in the next section.

Matrix contribution to IP

Using a volume-averaging approach, Revil (2013) obtains two
expressions for the high- and low-frequency conductivities of a
clay-rich material. The current situation is further complicated
by the fact that the clay rock is considered to be partially saturated
by desiccation. In this case, the salt remains segregated in the liquid
pore water and salinity increases with the decrease of the saturation
during desiccation. The conductivity of the pore water σwðswÞ scales
therefore as σw=sw (σw denotes the conductivity of the pore water
when the sample is fully saturated, which is the initial pore water
conductivity in the drying experiment). Accounting for
this effect, the model of Revil (2013, their equations 61 and 62)
is modified and leads to the following expressions for the instanta-
neous conductivity and DC conductivity of the COx formation:
respectively,

σ∞1 ¼ sn−1w

�
1

F
σw þ

�
1

Fϕ

�
ρgBCEC

�
; (17)

σ01 ¼ sn−1w

�
1

F
σw þ

�
1

Fϕ

�
ρgðB − λÞCEC

�
; (18)

where n > 1 (dimensionless) denotes the saturation exponent (also
called the second Archie’s exponent), sw (dimensionless) denotes
the liquid pore water saturation, σw (S m−1) denotes the initial pore
water conductivity at full saturation, F (dimensionless) denotes
the intrinsic formation factor related to the connected porosity ϕ
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(dimensionless) by the first Archie’s law F = ϕ−m where m > 1
(dimensionless) is called the porosity or first Archie’s exponent
(Archie, 1942), ρg is the grain density (usually ρg = 2650 kg m−3),
and CEC denotes the cation exchange capacity (C kg−1 or
meq/100 g with 1 meq/100 g = 963.20 C kg−1). The quantity B
(expressed in m2 s−1 V−1) denotes the apparent mobility of the coun-
terions for surface conduction and λ (expressed in m2s−1 V−1) de-
notes the apparent mobility of the counterions for the polarization
associated with the quadrature conductivity (see Revil et al., 2017a,
2017b). A dimensionless number R is also introduced by R ¼ λ=B
(see Revil et al., 2017a, 2017b, 2017c). From Ghorbani et al.
(2018), we have β(Na+, 25°C) = 3.1 ± 0.3 × 10−9 m−2 s−1 V−1

and λ(Na+, 25°C) = 3.0± 0.7 × 10−10 m−2 s−1 V−1 and R is typically
approximately 0.09 ± 0.01 (independent of the temperature and
saturation). This dimensionless number also is the ratio of the nor-
malized chargeability to the surface conductivity. Note that the
dependence of the surface conductivity and normalized chargeabil-
ity (or quadrature conductivity) with saturation are consistent with
the model and data sets discussed in Waxman and Smits (1968) and
Vinegar and Waxman (1984).
From equations 11, 17, and 18, we obtain the following expres-

sion of the chargeability of the COx formation (neglecting the effect
of pyrite):

M1 ¼
ρgλCEC

ϕσw þ ρgBCEC
≤ R ≡

λ

B
: (19)

This equation shows explicitly the dependence among the back-
ground chargeability M1, the pore water conductivity, and the

CEC. Therefore, the background chargeability is generally quite
small (less than 10% or 100 mV/V).
The Cole-Cole time constant τ1 is associated with characteristic

pore size Λ according to (Revil and Florsch, 2010; Revil et al.,
2012)

τ1 ¼
s2wΛ2

2DS
ðþÞ

; (20)

whereDS
ðþÞ (m

2 s−1) denotes the diffusion coefficient of the counter-
ions in the Stern layer. The value of this diffusion coefficient is
DS

ðþÞ ¼ 3.8 × 10−12 m2 s−1. In terms of access size from mercury
porosimetry, we have measured rc ¼ 20 nm. This size is related
to pore size Λ by rc ¼ 5.3 Λ (Revil et al., 2014). Therefore, it yields
Λ ¼ 4 nm. Here, τ1 ¼ 2 × 10−6 s, which is comparable to the re-
laxation time associated with the Maxwell-Wagner polarization. In
other words, it would be difficult to say if the mechanism labeled 2
in equation 14 is related to the polarization of the clay minerals or
the Maxwell-Wagner polarization.
Another lower frequency mechanism can be associated with the

large grains present in the COx formation (see Figure 1). For the
large grains, the associated relaxation time is given by (Revil
et al., 2021)

τ1 ¼
d2s2wϕ2

16DS
ðþÞ

: (21)

Using DS
ðþÞ ¼ 2.5 × 10−9 m2 s−1, ϕ = 0.20, d = 90 μm yields

τ2 ≈ 10−2 s. Thus, the large grains are responsible for a low-fre-
quency polarization mechanism that can be fully observed in the
frequency range investigated in our study. An increase in the relax-
ation time with saturation also is observed in Binley et al. (2005).

Connection to permeability

We discuss now the connection between the permeability and the
electrical properties described previously. The permeability k (m2)
at a given water saturation sw is given by the product of the per-
meability at saturation and relative permeability kr (dimensionless):

kðswÞ ¼ krðswÞkS: (22)

The permeability at saturation kS is typically related to porosity and
pore size. In the present case, we use a clay content estimate based
on the CEC. We follow Sen et al. (1990) in obtaining the permeabil-
ity at saturation from the CEC (C kg−1) and the formation factor F
according to

kS ¼ k0

�
1

FQV

�
c
; (23)

where k0 and c are the two fitting parameters, F ¼ ϕ−m, and
QV ¼ ρgð1 − ϕÞCEC=ϕ with ρg ¼ 2650 kgm−3 (grain density of
the solid phase composed of silicates). For instance, for volcanic
rocks from the White islands (New Zealand), Revil et al. (2020)
obtain k0 = 1.46 × 106 and c = 2.88. Using these parameters with
F = 30 and QV = 300 × 106 C m−3 (using ϕ = 0.15 and
CEC = 20 meq/100 g), we obtain a permeability for the COx of

Pore water

Grain

 Porous 
 matrix

Air

Air

Mixture

Matrixa)

Pyritized fossil

Pyritized fossils and veins

Macroscopic grains

Clay particles

Pyritized veins in the COx

b)

Figure 1. Clay rock considered as a composite of a partially satu-
rated background plus pyrite grains. (a) The polarization is coming
from the clay particles plus an effect of the pyrite grains. We want to
study the IP signature of this composite undergoing desiccation.
(b) X-ray tomography reveals that pyrite is usually associated with
fossils and vugs corresponding to bioturbation.
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0.6 × 10−20 m2, which is the correct order of magnitude for the
permeability of the COx (see the companion paper Revil et al.,
forthcoming). The quantity QV denotes the total excess of charge
per unit pore volume (C m−3). The relative permeability is given by
(see Revil, 2013)

krðswÞ ¼
�
sw − siw
1 − siw

�
nþ2

; (24)

where siw (dimensionless) is the irreducible water saturation. We test
equation 24 in the next section. The saturation exponent n and the
value of the irreducible water saturation siw are independently ob-
tained from the complex conductivity data.

MATERIALS AND METHODS

We use eight core samples: three core samples (EST59676,
EST59674, and EST59620) from the COx formation and five core
samples from the study by Jougnot et al. (2010a) (samples
EST27906, EST28144, EST29296, EST29300, and EST30749).
The properties of the core samples are presented in Table 1. The
CEC and specific surface area Ssp (based on the Brunauer–Em-
mett–Teller, BET), theory of the COx are correlated and compared
with the literature data for clay minerals and soils in Figure 2. The
samples are put in a desiccation chamber and the complex conduc-
tivity spectra are obtained with a ZEL-SIP04-V02 impedance meter
working in the frequency range of 1 mHz to 45 kHz (Figure 3). The
formation factors and surface conductivity data are obtained by
plotting the in-phase conductivity data at 1 Hz versus the pore water
conductivity and fitting a linear conductivity model from which the
formation factor and the surface conductivity can be determined us-
ing analysis in a log-log scale (for a recent analysis and a complete
description of the methodology, see Revil et al., 2022).
The samples contain the in situ pore water solution and were not

resaturated with synthetic pore water. Due to transport issues, the core
samples were not fully saturated (sw < 0.80) and were estimated
afterward using the procedure described by Jougnot et al. (2010a).
Complex conductivity measurements were performed at different
water saturations using changes in the relative humidity of the des-

iccation chamber. Figure 4 shows the desiccation-saturation pro-
cedure for a given core sample. For the lower saturation, we use
the approach proposed by Cosenza et al. (2007). The samples were
prepared in an oven (for 24 h at 70°C, 90°C, and 105°C) and brought
back at ambient temperature before performing the measurements.

RESULTS AND INTERPRETATION

Complex conductivity spectra

In Figures 5, 6, and 7, we show the complex conductivity spectra
at different water saturations. The plain lines correspond to the fit of
the data with the double Cole-Cole model discussed in Appendix B.
First, we note that this complex conductivity parametric model fits
the data very well at nearly all the saturations. The values of the
Cole-Cole parameters are provided in Tables 2, 3, 4, 5, and 6.
The relaxation times τ1 and τ2 are typically approximately 10−1

and 10−6 s, respectively. This implies that the highest relaxation
times (low-frequency polarization) could be associated with the
coarser grains, whereas the lowest relaxation time could be associ-
ated with the clay grains and the Maxwell-Wagner polarization.

Cole-Cole parameters versus saturation

In Figure 8, we plot the instantaneous conductivity of the
rock sample as a function of the saturation. We fit the data using
σ∞ ¼ sn−1w σ∞ðsw ¼ 1Þ (from equation 17). This power-law rela-
tionship provides the value of the instantaneous conductivity of

Table 1. Petrophysical parameters for the eight core samples.

Sample Depth (m) ϕ CEC (meq/100 g) BET Ssp (m2/g)

EST27906 518.16 0.157 24.7 25

EST28144 582.16 0.176 42.4 48

EST29296 617.52 0.163 41.9 53

EST29300 624.38 0.146 43.2 50

EST30749 608.07 0.181 42.5 48

EST59676 490.00 0.203 16.8 30

EST59674 490.00 0.229 16.9 30

EST59620 490.00 0.253 21.8 29

There are three core samples, EST59676, EST59674, and EST59620 from the COx
formation, and five core samples from the study of Jougnot et al. (2010a; samples
EST27906, EST28144, EST29296, EST29300, and EST30749). The new samples
also belong to different facies with respect to the former samples. Samples
EST59676, EST59674, and EST59620 are from horizontal wells drilled in the
underground laboratory. BET Ssp denotes the specific surface area of the core
samples.
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Figure 2. Specific surface area versus CEC (expressed in meq g−1

with 1 meq g−1 = 96,320 C kg−1). The two lines correspond to a
surface charge density of 1–3 elementary charges per unit surface
area. The figure shows a comparison between the data for pure
clays, soils, and core samples from the COx formation. The trend
corresponds to a surface charge density of 4–5 elementary charges
per nm2.
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the rock at saturation σ∞ðsw ¼ 1Þ and the saturation exponent n. We
observe that the value of n is constant over three distinct saturation
ranges and that the trend of the conductivity is different above and
below a critical saturation value of siw ¼ 0.36. This value will be
considered to be the irreducible water saturation hereinafter. From
near saturation to this critical saturation, the value of the saturation
exponent is n = 2.6 ± 0.1. Below the critical saturation of 0.20, for
which further desaturation is obtained by heating, the saturation ex-
ponent is close to n = 4.7 ± 0.9 probably because of the formation
of microcracks and an increase in the local heterogeneity of the core
sample (see also the discussion in Ghorbani et al., 2009). For the
intermediate saturation range (between 0.20 and 0.36), the conduc-
tivity versus saturation conforms also to a second Archie’s law with
a saturation exponent of n = 4.1 ± 0.1.
In Figure 9, we plot the two Cole-Cole exponents versus the

pore water saturation. The low-frequency Cole-Cole exponent c1
(Figure 9a) also exhibits three domains in the saturation range in-
vestigated in this study. Again, we see clearly the two critical sat-
urations discussed previously (0.20 and 0.36). Above the residual
water saturation of 0.36, the low-frequency Cole-Cole exponent

Amplifier unit

 Function

generator

A, B Current electrodes, 

M, N Potential electrodes

Clayrock core sample

Spring

Fixed Mobile

Tape

Current electrodes

A and B

Tape

a) b) 

c) 

Complex conductivity cell                                       ZEL-SIP04-V02

Humidity chamber

Core sample

Analytical balance (Mettler Toledo SAG 204)

Ruber gasket seal

Acrylic chamber

O-ring seal

Influent gas line

Displacement measurement system

Ruber seal

Humidity/temperature probe

Figure 3. Impedance meter and electrodes used for
the complex conductivity spectra. (a) Setup show-
ing the carbon film electrodes with hydrogel for in-
jection (A and B) and the Ag-AgCl nonpolarizable
electrode for potential (M and N). (b) ZEL-SIP04-
V02 impedance meter (Zimmermann et al., 2007,
2008) working in the frequency range of 1 mHz
to 45 kHz. (c) Detail of the automated humidity sys-
tem of the environmental chamber (modified from
Likos and Lu, 2003).
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Figure 5. Complex conductivity spectra of core
samples EST27906 and EST28144. The plain
lines correspond to the fit with a double Cole-Cole
model described in Appendix A. The very states
below 20% saturation are obtained by heating the
core samples, which is likely responsible for
mechanical damage through the formation of
microcracks.

Figure 6. Complex conductivity spectra of core
samples EST29296 and EST29300. The plain lines
correspond to the fit with a double Cole-Cole
model. Similar to Figure 3, we can observe a
low-frequency polarization peak. The double
Cole-Cole model is a very good model that is able
to represent the complex conductivity of the COx
formation very well.
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c1 is 0.48 (close to the value of 0.50 corresponding to a Warburg
function). This could mean that the grain-size distribution associ-
ated with the coarse grains is very narrow. Below the critical water
saturation of 0.20, the Cole-Cole exponent decreases with the sat-
uration indicating that the broadness of heterogeneities associated
with IP is increasing. A possible explanation is that when the core
samples are highly saturated (sw > 0.36), the polarization is mostly
associated with the coarse grains, which have a relatively narrow
grain-size distribution. For lower saturations, the water remains es-

sentially in the small pores and the polarization is dominated by the
clays. The grain- and pore-size distributions are broader for the
clayey fraction of the material.
Regarding the second Cole-Cole exponent c2 (Figure 9b), we see

a smooth and slight increase in the value of this Cole-Cole exponent
with the desiccation process with a mean value around c2 = 0.50
(the Warburg model). It is difficult to explain this trend in terms
of underlying physics except if we consider that it is associated with
the polarization of the clay grains.
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Figure 7. Complex conductivity spectra of sample
EST30749. The plain lines correspond to the fit
with a double Cole-Cole model. Again we can ob-
serve a clear polarization peak at low frequencies.
Its position seems independent of saturation.

Table 2. Inversion of the Cole-Cole parameters for the core sample EST27906.

sw τ1 (s) τ2 (s) c1 c2 M1 M2 σ∞ (S/m) rms (%)

0.8 0.035 3.00e-06 0.43 0.48 0.059 0.08 0.061 0.31

0.76 0.047 7.40e-07 0.44 0.39 0.051 0.12 0.064 0.24

0.64 0.029 3.00e-06 0.42 0.55 0.057 0.08 0.057 0.43

0.56 0.043 6.20e-07 0.45 0.42 0.043 0.14 0.05 0.28

0.52 0.032 1.30e-06 0.43 0.51 0.048 0.12 0.046 0.44

0.46 0.026 1.40e-06 0.43 0.53 0.05 0.11 0.041 0.45

0.42 0.042 5.40e-07 0.45 0.46 0.043 0.16 0.041 0.36

0.39 0.05 1.20e-06 0.45 0.49 0.05 0.14 0.032 0.36

0.37 0.048 1.10e-06 0.45 0.51 0.052 0.14 0.03 0.39

0.28 0.05 4.70e-07 0.39 0.52 0.064 0.24 0.022 0.4

0.26 0.038 2.60e-07 0.37 0.56 0.063 0.34 0.023 0.26

0.25 0.034 6.10e-07 0.35 0.58 0.078 0.26 0.019 0.3

0.22 0.034 6.80e-07 0.34 0.61 0.082 0.31 0.016 0.34

0.21 0.051 4.60e-07 0.34 0.6 0.079 0.45 0.01 0.73

0.2 0.041 6.10e-07 0.34 0.6 0.098 0.36 0.012 0.41

0.19 0.04 3.00e-07 0.33 0.57 0.088 0.44 0.013 0.37

0.18 0.051 5.90e-07 0.35 0.62 0.089 0.44 0.012 0.52

0.17 0.059 4.30e-07 0.35 0.58 0.078 0.45 0.01 0.75

0.17 0.045 6.70e-07 0.32 0.62 0.11 0.42 0.0089 0.6

0.16 0.069 3.00e-07 0.35 0.57 0.094 0.48 0.0091 0.67

0.15 0.057 4.60e-07 0.35 0.6 0.096 0.5 0.0081 0.92

0.09 0.31 1.00e-06 0.27 0.65 0.15 0.55 0.0031 0.34

0.06 0.068 8.90e-07 0.17 0.72 0.17 0.67 0.002 0.41

0.005 — 7.40e-07 0.095 0.66 0.31 0.81 0.00079 0.55
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Figure 10 shows the low-frequency normalized chargeability
M1

n ¼ σ∞1 − σ01 (Figure 10a) and the high-frequency chargeability
(Figure 10b) of the clay rock versus saturation. The low-frequency
normalized chargeability exhibits the same trends as the instanta-
neous conductivity (Figure 8). This behavior is expected from
the model and we recover more or less the same values of the sat-

uration exponents as expected from equations 17 and 18. In
Figure 10b, we plot the chargeability associated with the high-fre-
quency polarization process versus the saturation. We observe a
smooth increase in the chargeability with the desiccation process.
Here again, this trend remains difficult to explain with respect to the
underlying physics of the polarization processes.

Table 3. Inversion of the Cole-Cole parameters for the core sample EST28144.

sw τ1 (s) τ2 (s) c1 c2 M1 M2 σ∞ (S/m) rms (%)

0.8 0.0097 1.20e-05 0.39 0.52 0.035 0.082 0.051 0.28

0.79 0.058 9.90e-06 0.49 0.41 0.02 0.11 0.051 0.51

0.78 0.043 6.60e-06 0.52 0.43 0.022 0.12 0.046 0.41

0.61 0.04 1.00e-05 0.47 0.48 0.03 0.11 0.039 0.35

0.52 0.051 3.20e-06 0.4 0.45 0.034 0.15 0.034 0.25

0.45 0.07 4.80e-07 0.42 0.44 0.029 0.29 0.031 0.85

0.4 0.071 1.50e-06 0.36 0.43 0.032 0.21 0.025 0.51

0.35 0.23 6.70e-07 0.3 0.38 0.032 0.28 0.019 0.51

0.32 0.098 8.20e-07 0.25 0.43 0.038 0.31 0.014 0.6

0.29 0.39 6.40e-07 0.26 0.41 0.035 0.35 0.012 0.62

0.27 0.45 5.10e-07 0.26 0.42 0.031 0.45 0.01 0.61

0.26 0.81 1.70e-06 0.27 0.43 0.036 0.37 0.0078 0.86

0.18 0.1 9.20e-06 0.33 0.59 0.043 0.34 0.0032 0.71

0.07 0.17 4.10e-06 0.18 0.66 0.022 0.87 0.00049 1

Table 4. Inversion of the Cole-Cole parameters for the core sample EST29296.

sw τ1 (s) τ2 (s) c1 c2 M1 M2 σ∞ (S/m) rms (%)

0.77 0.02231 4.10e-07 0.47268 0.43078 0.03082 0.13497 0.048086 0.55121

0.74 0.0289 3.02e-07 0.49075 0.41848 0.030138 0.15394 0.041307 0.53843

0.6 0.0317 6.85e-07 0.53267 0.45444 0.032415 0.1448 0.031602 0.9117

0.5 0.0267 4.32e-07 0.54529 0.4716 0.03589 0.18545 0.023628 0.69151

0.42 0.02122 3.21e-07 0.51112 0.4939 0.038545 0.2195 0.0211 0.4394

0.38 0.01426 8.13e-07 0.47689 0.59797 0.048274 0.18935 0.016994 0.4233

0.38 0.0153 7.92e-07 0.46835 0.6073 0.051201 0.21937 0.014013 0.39853

0.32 0.02036 4.46e-07 0.466 0.54768 0.050326 0.29122 0.011454 0.42308

0.29 0.02208 7.75e-07 0.46598 0.581 0.053838 0.28047 0.009458 0.37418

0.28 0.02133 5.45e-07 0.45427 0.56043 0.054212 0.33649 0.008406 0.45689

0.27 0.0193 9.83e-07 0.46599 0.59598 0.056847 0.30776 0.007341 0.4709

0.26 0.0227 1.17e-06 0.46343 0.59535 0.058298 0.30421 0.006478 0.56835

0.24 0.02653 1.44e-06 0.4703 0.58386 0.059078 0.33732 0.004601 0.57318

0.22 0.03142 8.90e-07 0.45887 0.57612 0.05751 0.41006 0.004442 0.51518

0.21 0.02628 1.24e-06 0.44061 0.61357 0.06604 0.41066 0.003672 0.65674

0.2 0.03233 1.59e-06 0.4395 0.6163 0.068048 0.42772 0.002822 0.67724

0.2 0.02385 1.48e-06 0.42172 0.63747 0.069186 0.45175 0.002945 0.55203

0.19 0.03782 1.12e-06 0.43634 0.59826 0.057344 0.52393 0.002665 0.55173

0.19 0.03433 1.53e-06 0.41177 0.62748 0.066616 0.52432 0.002067 0.60055

0.18 0.05491 1.39e-06 0.39793 0.62039 0.056479 0.64762 0.001558 0.65789
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Table 5. Inversion of the Cole-Cole parameters for the core sample EST29300.

sw τ1 (s) τ2 (s) c1 c2 M1 M2 σ∞ (S/m) rms (%)

0.75 0.026 7.60e-07 0.45 0.43 0.057 0.14 0.041133 0.51

0.74 0.024 7.10e-07 0.44 0.42 0.058 0.14 0.038632 0.42

0.69 0.023 7.00e-07 0.42 0.45 0.066 0.15 0.034844 0.43

0.55 0.031 1.20e-06 0.47 0.5 0.064 0.15 0.026195 0.63

0.52 0.024 1.10e-06 0.44 0.53 0.07 0.15 0.025091 0.43

0.47 0.026 6.90e-07 0.45 0.51 0.071 0.19 0.02257 0.39

0.41 0.033 1.00e-06 0.46 0.52 0.078 0.2 0.016494 0.5

0.37 0.03 1.10e-06 0.44 0.56 0.085 0.21 0.013567 0.53

0.34 0.03 6.90e-07 0.44 0.53 0.082 0.25 0.013117 0.51

0.31 0.034 9.10e-07 0.44 0.55 0.086 0.25 0.01125 0.54

0.3 0.032 9.90e-07 0.4 0.56 0.096 0.26 0.00943 0.3

0.27 0.046 9.30e-07 0.44 0.53 0.084 0.3 0.007783 0.7

0.26 0.046 1.20e-06 0.43 0.55 0.09 0.3 0.006851 0.62

0.25 0.046 1.20e-06 0.42 0.55 0.092 0.32 0.005993 0.61

0.24 0.059 6.90e-07 0.43 0.52 0.082 0.39 0.005987 0.65

0.21 0.067 7.70e-07 0.42 0.52 0.091 0.42 0.004188 0.65

0.2 0.054 1.30e-06 0.4 0.59 0.1 0.4 0.003604 0.65

0.19 0.066 1.50e-06 0.39 0.59 0.099 0.42 0.002908 0.68

0.19 0.055 2.20e-06 0.37 0.62 0.11 0.41 0.00251 0.75

0.18 0.057 2.20e-06 0.38 0.64 0.11 0.41 0.002515 0.75

0.17 0.088 2.00e-06 0.4 0.6 0.11 0.46 0.002149 0.72

0.17 0.095 1.60e-06 0.39 0.6 0.1 0.52 0.00193 0.64

0.16 0.11 1.40e-06 0.38 0.6 0.092 0.6 0.001673 0.66

Table 6. Inversion of the Cole-Cole parameters for the core sample EST30749.

sw τ1 (s) τ2 (s) c1 c2 M1 M2 σ∞ (S/m) rms (%)

0.75 0.026 1.8872e-07 0.29 0.46 0.042 0.14906 0.081 0.45

0.65 0.038 1.8277e-06 0.58 0.47 0.030 0.11631 0.067 1.1

0.57 0.043 2.6513e-06 0.35 0.56 0.043 0.11824 0.064 0.49

0.52 0.027 1.0785e-06 0.50 0.49 0.027 0.14291 0.051 0.54

0.48 0.034 1.0413e-06 0.49 0.47 0.030 0.12549 0.047 0.47

0.46 0.022 1.0158e-06 0.47 0.51 0.033 0.16574 0.044 0.34

0.40 0.025 1.3898e-06 0.51 0.59 0.035 0.17091 0.029 0.99

0.38 0.030 1.6882e-06 0.44 0.55 0.041 0.19807 0.026 0.48

0.36 0.029 1.0971e-06 0.42 0.56 0.039 0.23866 0.024 0.45

0.35 0.031 1.0093e-06 0.43 0.57 0.041 0.28192 0.022 0.44

0.34 0.038 6.8433e-07 0.45 0.56 0.038 0.34370 0.020 0.70

0.32 0.043 1.1048e-06 0.44 0.56 0.040 0.32041 0.015 0.78

0.31 0.050 6.4349e-07 0.48 0.54 0.036 0.40424 0.015 1.1

0.30 0.035 9.9181e-07 0.41 0.60 0.052 0.35115 0.014 0.60

0.30 0.064 8.0818e-07 0.49 0.54 0.038 0.44896 0.010 1.0

0.28 0.043 8.7294e-07 0.44 0.59 0.049 0.47544 0.0087 0.66
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In Figure 11, we plot the two relaxation times as a function of the
pore water saturation. The low-frequency relaxation time is fairly
constant above the water saturation of 0.20. Its value is around
0.035 s (Figure 11a). It does not display the expected trend with
the saturation τ1ðswÞ ∼ s2w and therefore would be more related
to the grain sizes rather than the pore sizes. Below the critical sat-
uration of 0.20, the increase in the relaxation time could be asso-
ciated with the formation of microcracks filled with air that would
play the role of macroscopic heterogeneities. In Figure 11b, the re-
laxation time τ2 ≈ ð8� 4Þ × 10−6 s is independent of the satura-
tion. This may indicate either a control by the clay minerals or a
Maxwell-Wagner polarization process as mentioned previously.

Formation factor porosity relationship

The formation factor depends on the porosity according to
Archie’s law (Archie, 1942) F ¼ ϕ−m where m is called the poros-
ity exponent. Figure 12 shows the trends obtained using the data
from the present study and other data from the literature. According
to Figure 12,m is comprised between 2 and 3 for the COx clay rock,
which is consistent with the findings from Jougnot et al. (2009). It
follows that the approximation m ≈ n ≈ 2.6 ± 0.4 is probably a
good approximation for the COx clay rock for water saturation
above the irreducible water saturation of 0.36.

Influence of the CEC

Figure 13 shows the surface conductivity of various rocks and
soils plotted as a function of the CEC divided by the tortuosity
(product of the formation factor by the connected porosity). The

data for the COx formation fall exactly on the trend obtained with
the data set.
Figure 14 shows the relationship between normalized chargeabil-

ity and surface conductivity for various porous media. If we take the
data from Table 1 assuming that the surface conductivity is close to
the conductivity of the material at the in situ pore water conduc-
tivity, then the COx core sample falls on the trend predicted by
the theory (note our procedure implies that the surface conductivity
is likely a bit overestimated, which explains why the data fall on the
right side of the trend).
Figure 15 shows that the dependence of the surface conductivity

with the CEC for the COx is consistent with other data sets for a
broad variety of natural porous materials. Similarly, Figure 16
shows that the dependence of the quadrature conductivity with
the CEC for the COx is consistent with other data sets. These trends
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confirm that the COx clay rock is characterized by a very high sur-
face conductivity and polarization with respect to other rocks be-
cause of its high CEC.

Relative permeability curve

The relative permeability curve is built thanks to the data from
Homand et al. (2004), Pham (2006), and Jougnot et al. (2010b)
(see Figure 17). This data set is fitted with equation 24. The fitted
value of the saturation exponent n = 2.5 is consistent with the
value obtained from the complex conductivity measurements
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Figure 10. Low- and high-frequency chargeability effects. (a) Low-
frequency normalized chargeability versus saturation. (b) High-fre-
quency chargeability versus saturation. This high-frequency charge-
ability is related to the Maxwell-Wagner polarization. The presence
of air in the pore space increases the surface area of contact between
different phases of distinct electrical properties increasing the Max-
well-Wagner polarization when the saturation decreases.

Table 7. Properties of the core samples at saturation (sw = 1,
T = 25°C, and saturated under vacuum with brines).

Sample σ∞ (S/m) Mn (S/m) F σS (S/m)

EST27906 0.083 0.00498 44.6 0.0498

EST28144 0.062 0.00217 80.7 0.0217

EST29296 0.060 0.00180 80.0 0.0180

EST29300 0.053 0.00302 42.6 0.0302

EST30749 0.123 0.00517 38.0 0.0516

EST59676 0.095 0.00171 33.4 0.0171

EST59674 0.100 0.00260 19.1 0.0260

EST59620 0.138 0.00201 26.2 0.0201

The formation factor F and the surface conductivity σS are determined at 1 Hz using
the in-phase conductivity (see the procedure in Jougnot et al., 2010a).
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Figure 11. Relation times versus saturation. (a) Low-frequency re-
laxation time. The increase of the low-frequency relaxation times
below the saturation 0.20 is likely related to the formation of micro-
cracks because of the heating process used to reach this low satu-
ration level. (b) High-frequency relaxation time associated with the
Maxwell-Wagner polarization. This relaxation time seems indepen-
dent of the saturation of the water phase.
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(n = 2.5 ± 0.1). Similarly, the fitted value of the irreducible water
saturation siw ¼ 0.30 is consistent with the value obtained from the
complex conductivity measurements (siw ¼ 0.36).
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CONCLUSION

We investigated the complex conductivity of eight core samples
from the COx formation of the Paris Basin in France at different
saturations in the range of 0.20–0.80. The complex conductivity

spectra were obtained in the frequency range of 1 mHz to 45 kHz.
All the data can be fitted by a double Cole-Cole parametric model.
The Cole-Cole parameters are investigated as a function of the
(water) saturation. The instantaneous conductivity and the normal-
ized chargeability display Archie’s type behavior with a saturation
exponent n = 2.6 ± 0.1 in the saturation range of 1.0 down to 0.36
and n = 4.0 ± 0.1 in the saturation range of 0.36–0.20. Below a
water saturation of 0.20, heating is required to decrease further sat-
uration. The heating process is generating microcracks. The satu-
ration exponent reaches n = 4.7 ± 0.1. The irreducible water
saturation is close to 0.36, which is confirmed by the relative per-
meability curve for the COx core samples. The low-frequency Cole-
Cole exponent (close to 0.45 ± 0.03) is essentially independent of
the saturation, whereas the high-frequency Cole-Cole exponent de-
creases slightly with saturation from 0.6 to 0.4. The low- and high-
frequency relaxation times are essentially independent of saturation.
The low-frequency relaxation time is 0.035 ± 0.015 s above a
water saturation of 0.20, whereas the high-frequency relaxation
time is (8 ± 4) × 10−7 s.
The results obtained in this work can be applied to the permeability

monitoring of the EDZ. For that purpose, we need to instrument short
boreholes and the surface of the galleries to acquire time-lapse com-
plex conductivity data and use the petrophysical model developed in
this paper to obtain the water content and the CEC and then to obtain
the permeability. In the companion paper, we discuss the effect of
anisotropy on the complex conductivity of the COx formation.

ACKNOWLEDGMENTS

We thank E. Zimmermann for his impedance meter. We thank
the French National Radioactive Waste Management Agency
(ANDRA) for its financial support and for providing the core sam-
ples used in this study. A. Revil thanks the French National
Research Agency (ANR) through the HYDROGEODAM project
under grant no. ANR-17-CE06-0016 for funding his contribution.
We thank the editor J. Blanch, V. Lapenna, and an anonymous re-
viewer for their fruitful comments on our manuscripts.

DATA AND MATERIALS AVAILABILITY

Data associated with this research are available and can be
obtained by contacting the corresponding author.

APPENDIX A

POLARIZATION OF THE WATER MOLECULES

The expression for the effective complex pore water conductivity
is (Grosse, 2002)

σ̂w
� ¼ σw þ iωεw�; (A-1)

where σw describes the conductivity of the pore water associated
with the electromigration of the charge carriers. The dielectric con-
stant εw� is complex because of the polarization of the water mol-
ecules at very high frequencies. This polarization can be written as

εw
� ¼ ε∞w þ εw − ε∞w

1þ iωτw
; (A-2)

where εw denotes the low-frequency (ω ≪ 2π=τw) permittivity of
water (78.4ε0 at 298.15 K) also called the static permittivity of
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high-porosity core samples.
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water, ε∞w is its high-frequency (ω ≫ 2π=τw) limit (5.0ε0 at
298.15 K), ε0 is the dielectric constant of vacuum
(8.85418781 : : : × 10−12 F·m−1), and τw is the relaxation time
(8.27 × 10−12 s at 298.15 K) associated with the dipolar orientation
of the water molecules in an alternating electrical field. It is there-
fore clear that this polarization process can be neglected with re-
spect to the frequency band investigated in the present paper
(less than 45 kHz).

APPENDIX B

INVERSION OF THE COLE-COLE PARAMETERS

The complex conductivity data are fitted with the double Cole-
Cole relationship

σ� ¼ σ∞

�
1 −

M1

1þ ðiωτ1Þc1
−

M2

1þ ðiωτ2Þc2
�
; (B-1)

where M1 and M2 (dimensionless) denote the chargeabilities, c1
and c2 (dimensionless) are the two Cole-Cole exponents, and τ1
and τ2 are the (relaxation) time constants (s). Indices 1 and 2 refer
to lower and higher frequency dispersions, respectively. The high-
frequency polarization corresponds to the sum of the clay polariza-
tion and Maxwell-Wagner polarization. The low-frequency polari-
zation corresponds to the sum of the large grains and pyrite
contributions. With the decrease of the saturation, the pore water
conductivity increases so the relaxation time associated with pyrite
must decrease (e.g. Martin et al., 2021). Because this effect is not
observed in the data, the pyrite polarization can be safely neglected
except perhaps at the lowest saturations. Note that the phase for the
COx core samples is typically in the range of 10–100 mrad (see
Jougnot et al., 2010a, their Figure 13).
The complex conductivity spectra are inverted using a Markov

chain Monte Carlo sampling algorithm and a Bayesian approach
(Mosegaard and Tarantola, 1995). The model vector of unknown
parameters is m = [log(σ0);M1; c1; log(τ1);M2; c2; log(τ2)]. Then,
the algorithm combines this information with the observed data vec-
tor and with the information provided by the double Cole-Cole
model to obtain optimal realizations of the model vectors. The
root-mean-square (rms) error is given as

rms2 ¼ 1

M

XM
i¼1

�
giðmÞ − diobs

diobs

�
2

; (B-2)

where M denotes the number of data used in the fitting process and
m is the model vector obtained once the inversion has converged.
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