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Abstract—This work analyses the impact of spin-transfer
torque magnetic random access memory (STT-MRAM) cells
based on double-barrier magnetic tunnel junction (DMTJ) on the
performance of a two-layer multilayer perceptron (MLP) neural
network. The DMTJ-based cell is benchmarked against the
conventional single-barrier MTJ (SMTJ) alternative by means
of a comprehensive evaluation carried out through a state-of-
the-art device-to-algorithm simulation framework, considering
the MNIST handwritten dataset, Verilog-A based MTJs compact
models, and 0.8V FinFET technology. Our results point out
that the use of DMTJ-based STT-MRAM cell in a digital
emerging non-volatile memory (eNVM) synaptic core allows
write/read energy and latency improvements of about 53%/61%
and 66%/17%, respectively, as compared to the SMTJ-based
counterpart. This is also achieved by ensuring a learning accuracy
of about 91%. This makes the DMTJ-based STT-MRAM cell a
good eNVM alternative for neuro-inspired computing.

Index Terms—STT-MRAM, Double-barrier magnetic tunnel
junction (DMTJ), multilayer perceptron (MPL), online classifi-
cation, MNIST dataset, energy-efficiency.

I. INTRODUCTION

Neuro-inspired computing systems such as deep neural
networks (DNNs) have been successfully realized in ma-
chine learning (ML) applications including image process-
ing/classification/recognition, natural language processing, and
visual intelligence [1], [2]. Thanks to features such as small
cell area footprint, short programming time, and good en-
durance and data retention [3], there is an increasing interest
in the field of neuro-inspired computing with emerging non-
volatile memories (eNVMs) such as resistive RAM (RRAM),
phase change memory (PCM), spin-transfer-torque magnetic
random access memory (STT-MRAM), and ferroelectric field-
effect transistor (FeFET), allowing flexibility to the devel-
opment of DNNs. Although analog synapse eNVM-based
architecture could be competent in terms of energy and la-
tency, it mainly suffers from low online learning accuracy.
To deal with this, digital synapse based architecture has been
widely considered [3], [4]. As potential eNVM candidate for
digital synapse devices, STT-MRAM cell offers low operating
voltage, high-speed operation, high density, relatively large
endurance, low fabrication cost, low power consumption, and
scability [5]-[7]. Typically, STT-MRAM based DNN imple-
mentations relies on conventional single-barrier MTJ (SMTJ)

devices. However, it is requires high writing currents, limiting
the overall energy-efficiency and latency of DNN. To solve
this, a solution is to use double-barrier MTJ (DMTJ) with two
reference pinned layers, enabling high-speed operation, low
power consumption, and energy-efficient switching process
[71-19].

To evaluate the impact of DMTJ-based STT-MRAM cell on
DNN, we use Cadence-Virtuoso environment for circuit-level
simulations, along with the multilayer perceptron (MLP) +
NeuroSimV3.0 simulator computing-in-memory (CiM) based
neural network accelerator [4]. NeuroSim is used to support a
2-layer MLP neural network to benchmark DNN architecture,
relied on SMTJ-based and DMTJ-based digital synapse de-
vices, in online learning and offline classification with MNIST
handwritten dataset.

Our results points out that the use of DMTJ-based STT-
MRAM cell in a digital eNVM synaptic core allows write/read
energy and latency improvements of about 53%/61% and
66%/17%, respectively, as compared to the SMTJ-based coun-
terpart. This is also achieved by ensuring a learning accuracy
of about 91%, making the DMTJ-based STT-MRAM cell
a promising candidate for digital synapse in neuro-inspired
computing.

This work is organized as follows. Section II details the
simulation framework, its customization and setting from
device-to-algorithm level.

Section III discusses the system level performance evalua-
tion in terms of accuracy, area, latency and energy. Section IV
concludes this work.

II. SIMULATION FRAMEWORK — MLP+NEUROSIMV 3.0

NeuroSim simulator estimates the algorithm-level perfor-
mance by emulating the online learning and offline classifi-
cation scenario with MNIST handwritten dataset in a 2-layer
MLP neural network [4], [10]-[12]. As shown in Fig. 1, its
framework consists from device and bitcell levels to memory
architecture and algorithm levels. The input parameters of
the simulation tool include memory types, non-ideal device
parameters, transistor technology nodes, network topology and
array size, training dataset and traces, etc '. The outputs

IFor the full list of input parameters/variables, the reader is referred to [4].



Device Bitcell ’ Architecture »
Level Level Level
2
3| .
SMTJ oo TTTTTETEE T T T H
S0 Ser | 2TIMT-RC 2TIMTISC | | L e i | i
I 1 . SL. WL s )
1 o : = i 1 L S5 400 100 10 \\
! ile o cell | el | oot cell | N oupue Y,
: —— : = x Hlerrren veremed T Array T ,," 1 \
. BL
DMTJ I H “s . S TR
Sate T Stte 1 1 Lot a= eight| Training
1 i 1 1 1 Update
H " = -| cell I »—‘cell | es »-I cell | E !
e gy B BT IED 16 =y
: 1 - In cells as one synaps4 Win ’/'
1 1 Pid
e [DeC Mux | «
(b) (©) (d)

Fig. 1: Overview of NeuroSim framework from Device to Algorithm-level, (a) STMJ and DMTlJdevice, (b)SMTJ-based and DMTJ-based
bitcell configurations, (c) Circuit block diagram of digital eNVM synaptic core, (d) Training flow of Neural Network, the MNIST images
are crooped and encoded into black and white data for simplification on hardware implementation.

of the simulator include: (1) the memory architecture-level
performance metrics, such as area, latency, dynamic energy,
leakage power consumption, and (2) algorithm-level learning
accuracy in run-time. As for the design options of digital
synaptic arrays, SRAM or eNVM can be used.

A. Device Level

At the device-level, as shown in Fig. 1 (a), we consider
STT-SMTIJ/DMTIJ devices, whose main parameters are listed
in Table I. The STT-MTJs are described through Verilog-A
based compact models [13], [14], calibrated with experimental
data reported in [15].

The MTJ consists of two types of ferromagnetic (FM)
layers, one with fixed magnetization direction called reference
layer (RL), and other with a free magnetization direction
named as free layer (FL), which can be changed by applying a
switching current greater than the critical switching current of
the device [7]. Based on the relative magnetization direction
of the FL and RL, it can reside in one of two stable states:
parallel (P) or antiparallel (AP).

1) SMTJ-based: 1t consists of RL and FL separated by a
thin MgO oxide barrier (¢,;).

If two ferromagnetic layers have the same magnetization
directions, i.e., RL and FL in P, the resistance of the MT]J is

TABLE I: SMTJ and DMTJ device parameters [7].

Parameter Units Value
Diameter (d)* nm 28
Saturation magnetization (Ms)*  A/m 1000 x 103
Magnetic damping (ov)® - 0.025
Spin-polarization factor (n)* - 0.67

FL thickness (tpr,)? nm 1.2
SMT]J oxide thickness nm 0.85
DMT]J top oxide thickness nm 0.85
DMT]J bottom oxide thickness nm 0.4
TMR at 0 V (TMR(0))© % 150

2 Same value for SMTJ and DMTJ devices.
¢ Same value for SMTJ barrier and DMTJ top/bottom barriers

low, indicating a “0” state. Conversely, if the two layers have
different magnetization directions, i.e., RL and FL in AP, the
resistance of the MTJ is high, indicating a “1” state [7].

2) DMTJ-based: The FL is sandwiched between two MgO
oxide barriers, each of them interfaced with one RL. The low
resistance state (“0”) corresponds to FL in P and AP with
respect to the RL top and RL bottom, respectively. As for the
high resistance state (“17), the FL is in AP and P with respect
to RL bottom and RL top, respectively [7].

B. Bitcell- to Memory Architecture-Level

Fig. 1(b) shows the considered SMTJ-based and DMTIJ-
based bitcell configurations designed in a 28nm FinFET tech-
nology featuring a nominal supply voltage of 0.8 V. These are
referred to the two complementary transistors and one MTJ
(2T1MT]J) cells in reverse and standard connection (2T1MT]J-
RC and 2T1MTIJ-SC) for the SMTJ- and DMT]J-based bitcells,
respectively. According to the study carried out in [7], [16],
these are the best write energy-efficient bitcell configurations.

At the architecture level, two synaptic cores of 2-layer
MLP are considered. Each synaptic core is a computation
unit specifically designed for weighted sum and weight update
[4], [10]. Among the available design options for the synaptic
cores, we considered the digital eNVM based on pseudo-
crossbar array.

C. Algorithm Level

At the algorithm level, the standard MNIST benchmark data
is used for online learning (6k images for training dataset and
10k images for testing dataset) and offline classification [4].

The considered MLP is a fully connected neural network,
where each neuron node in one layer connects to every neuron
node in the following layer. The network consists of an input
layer, hidden layer and output layer. The connections between
input-hidden and hidden-output layers represent the weight
matrix Wiy and Wy respectively. As shown in Fig. 1(d),
by default, the network topology contains 400 neurons (20x20



TABLE II: Bitcell-level parameters

Parameter Unit STMJ DTMJ
Cell Area F? 231 131
Resistance ON Q 9513 11370
Resistance OFF Q 16390 22170
Conductance ON/OFF — 1.79 1.97
bitcell Read Voltage \Y% 0.338 0.121
Read Energy fJ 20.9 5.76
Read Pulse Width ns 1.00 1.00
Write Energy fJ 185 4.80
Write Voltage LTD \Y% 0.788 1.09
Write Voltage LTP \Y% 0.898 0.564
Write Pulse Width ns 3.39 1.16

MNIST image) of input layer, 100 neurons of hidden layer,
and 10 neurons (10 classes of digits) of output layer.

III. SIMULATION RESULTS

NeuroSim framework shown in Fig. 1 was properly cali-
brated with the 0.8V FinFET technology parameters, along
with the bitcell electrical characteristics of the considered
2T1MTJ-based bitcells, which are the cells of the pseudo-
crossbar eNVM digital synaptic core. Bitcell-level results
consider both SMTJ/DMT]J and FinFET device-to-device vari-
ability through extensive Monte Carlo simulations. Table II
shows the bitcell-level parameters of the energy-optimal cell
size and configurations (refer to Fig. 1(b)). It is worth to
mention that these results are carried out at parity of tunnel
magnetoresistance ratio (TMR), and t,;, ie., toz,smTs =
tow,7,DMTJ = 0.85nm. Performance results for write and read
operations are obtained, assuring a write-error-rate (WER) of
10~7 and read disturbance rate (RDR) of 10~9, respectively.
From Table 1II, it is clear that thanks to the reduced switching
and read currents, the DMTJ-based bitcell is the most energy-
efficient alternative under write/read operations. Overall, at
bitcell-level, the DMTJ-based alternative shows energy savings
of about 72% and 97% for read and write operations, while as-
suring faster (65.7%) switching in contrast to the conventional
SMT]J-based bitcell.

The parameters reported in Table II were used as input
in NeuroSim in order to evaluate the algorithm-level perfor-
mance.

The number of images in MNIST dataset during training
and testing are 8000 and 1000, respectively, with a total
number of epoch (i.e., iterations) of 15, giving a total of 12000
MNIST images being trained. We used the online learning in
hardware configuration, which handle testing and training for
both weight sum and weight update all in hardware.

A. Performance Analysis

The SMTJ- and DMTJ-based 2-layer MLP neural network
performance is evaluated in terms of learning accuracy versus
latency and energy consumption, calculated at the run-time.

The read (weighted sum-feed forward operation) and write
(weight update operation) latency and energy are shown
in Figs. 2 and 3. We can observe that the weighted sum
and weight update operations associated to the DMTJ-based
eNVM cell achieves the highest accuracy much faster as
compared to the SMTJ-based counterpart, while at the same
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time ensuring less energy consumption. This is due to the
reduced energy/write-pulse width of the DMTJ-based bitcell
(refer to Table II).

From Fig. 2, it is worth noting that the delta latency (i.e,
time between epochs/iterations) in feed forward operation, for
both STMIJ- and DMTJ-based alternatives, is roughly the same,
mainly do to the read pulse width.

As for the weight update operation, the delta latency be-
tween each epoch is 14ms and 4.7ms, respectively. This can
be explained due to the larger pulse width. As compared with
the SMTJ-based alternative, the DMTJ-based solution shows
an improvement in terms of latency, of about 18% and 66%
in feed forward and weight update operations, respectively,
during online learning. Similar results have been obtained for
the energy consumption, as shown in Fig. 3. We observed that
the DMTJ-based cell exhibits lower energy consumption as
compared to the SMTJ-based alternative, owing to its reduced
bitcell read/write energy. The results showed an upgrade of
about 61% and 54% during feed forward and weight update,
respectively.

The benchmark results shows that, while the DMTJ-based
solution achieves a good accuracy of (> 90%), the SMTJ-
based neural network reaches a learning accuracy of about
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83%. This is because of the lower ON/OFF ratio of the DMT]J-
based bitcells. Indeed, the cause of degradation in terms of
learning accuracy is attributed to the devices’ poor ON/OFF
ratio [17].

In addition, we showed the estimation of area and leakage
power consumption obtained from NeuroSim. For the area, the
total footprint for both SMTJ-based and DMTJ-based alterna-
tives is 7.881 x 107m?2 and 5.311 x 10~9m?, respectively.

DMTJ-based bitcell can achieve the smallest area footprint
due to the smaller bitcell area (see Table II), which corresponds
to the energy-optimal cell size.

B. Impact of Synaptic Device Properties on Accuracy

During the weight update, the device’s conductance should
be sufficiently large, i.e., the lowest conductance state (OFF-
state) should be low enough to represent the zero weight
in the algorithm [17]. To quantify the impact of the device
properties on the learning accuracy, we carried out an analysis
for both STT-MTJ alternatives by varying t,./toq . If we
decrease the oxide thickness for both devices, the ON and OFF
resistance of the bitcell will be affected. When considering a
top barrier of ¢, 5077 = tor, 7 = 0.80nm, the conductance
ON/OFF ratio for SMTJ- and DMT]J-based cell are 1.91 and
1.88, respectively. The decrease of the ON/OFF conductance
ratio in the DMTJ-based cell can be explained due to the
presence of the second oxide barrier. Therefore, the accuracy
for SMTJ-based cell increases by 5.9%, while DMTIJ-based
cell decreases by 2.5%, see Fig. 4.

IV. CONCLUSION

In this work, we have exploited the STT-MTJ synaptic
pseudo-crossbar array architecture and device/transistor mod-
els in NeuroSim. We have used the NeuroSim emulator to
evaluate the learning accuracy with 2-layer MPL neural net-
works at the run-time of online learning in eNVM devices such
as MTJ-based STT-MRAM. The corresponding results show
that, at parity of TMR and oxide thickness, as compared to the

conventional SMTJ-based alternative, DMTJ-based solution
proves to be faster during Feed Forward and weight update
operations of about 18% and 66%, respectively, more energy
efficient under read (-60.7%) and write operation (-53.7%),
and less area hungry (-35%) at an energy-optimal bitcell size.
This occurs while also achieving an accuracy closed to 91%
when running the neural network with the MNIST dataset.

Compared with other architectures based on digital emerg-
ing non-volatile memory (eNVM) synaptic cores, we suggest
that DMTJ-based eNVM synaptic cores are good candidates
to replace conventional SRAM-based solutions.
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