N

N
N

HAL

open science

User-friendly exploration of highly heterogeneous data
lakes
Nelly Barret, Simon Ebel, Théo Galizzi, Ioana Manolescu, Madhulika
Mohanty

» To cite this version:

Nelly Barret, Simon Ebel, Théo Galizzi, loana Manolescu, Madhulika Mohanty. User-friendly explo-
ration of highly heterogeneous data lakes. CooplS 2023 - International Conference on Cooperative

Information Systems, Oct 2023, Groningen, Netherlands. hal-04185938v1

HAL Id: hal-04185938
https://hal.science/hal-04185938v1
Submitted on 23 Aug 2023 (v1), last revised 8 Sep 2023 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

https://hal.science/hal-04185938v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

User-friendly exploration of highly heterogeneous
data lakes

Nelly Barret1[0000-0002-3469-4149] ' Qinyon Ebel!, Théo Galizzil, Ioana
Manolescu! [0000-0002-0425-2462] 4 Madhulika Mohanty! [0009—0004—9446—-8663]

Inria and Institut Polytechnique de Paris, France
firstname.lastname@inria.fr

Abstract. The proliferation of digital data sources and formats has led
to the apparition of data lakes, systems where numerous data sources co-
exist, with less (or no) control and coordination among the sources, than
previously practised in enterprise databases and data warehouses. While
most data lakes are designed for very large number of tables, Connec-
tionLens [2/3] is a data lake system for structured, semi-structured, and
unstructured data, which it integrates into a single graph; the graph can
be explored via graph queries with keyword search [4] and entity path
enumeration [5]. In this paper, we describe ConnectionStudio, a user-
friendly platform leveraging ConnectionLens, and integrating feedback
from non-expert users, in particular, journalists. Our main insights are:
(¢) improve and entice exploration by giving a first global view; (i%) facil-
itate tabular exports from the integrated graph; (iii) provide interactive
means to improve the graph constructions. The insights can be used to
further advance the exploration and usage of data lakes for non-IT users.

Keywords: Heterogeneous data - Data lake - Data exploration.

1 Outline: highly heterogeneous data lakes

The past few decades have seen an important rise in the production of digital
data. This data spans across multiple domains, e.g., healthcare, environment,
finance, administration; it is owned and used by many actors other than the
data producers, notably data journalists and researchers for crucial data jour-
nalism applications. The heterogeneity poses multiple challenges for data inte-
gration, its exploration and understanding of the data. Data lakes [9[7[T2/10]
are centralized repositories designed to store, process, and secure large amounts
of structured, semi-structured, and unstructured data. A data lake stores data in
its native format and supports various styles of data processing; the data model
most often considered in such settings is relational, e.g., [SI6GJTT]. ConnectionLens
[213] is a data lake system integrating such heterogeneous data in a graph for-
mat, capturing the fine-granularity structure that (semi-)structured data sources
may have. Further, ConnectionLens applies Information Extraction techniques

2 N. Barret et al.

to identify, from any value (leaf) node encountered in the data, entities such
as people, places, organizations, emails, URIs, dates, etc. Such entities are very
appealing in particular to data journalists, because they are at the heart of
their work: analyzing the activity of entities of particular interest, e.g., political
leaders, or companies, and finding how those entities may be connected. Con-
nectionStudio supports querying this integrated graph using keyword search [4]
and entity path enumeration [5]. Using keyword search, users submit keywords
that interest them, and ConnectionLens returns connecting trees, showing how,
in the graph, nodes matching the keywords are connected. When the users know
the types of entities of interest (which is the case with data journalists), an effi-
cient entity path enumeration algorithm enumerates and allows visualizing paths
that connect entities of interest, e.g., a politician owns shares in a company, or
a politician’s wife serves in the governing board of a company, etc.

New requirements for non-expert users Working with journalists, we found
that heterogeneous graphs produced by ConnectionlLens were still hard for them
to comprehend. They found it difficult («) relating the documents they added
to the data lake, to the resulting data graphs; (8) figuring out what keywords
to use when searching; () generally, working with the data graph paradigm.
It turns out that in their profession, those with digital skills are especially at
ease with spreadsheet tools, thus data tables are appealing to them, while data
graphs are not. Further, (§) ConnectionLens graphs interconnect data through
extracted entities; like any trained model, our extractors introduce some errors
(false positives, false negatives, wrongly typed entities). In some cases, especially
when a dataset has some regularity, users can provide guidance on what entities
are to be expected in certain parts of the data, thus contribute to increasing
the graph quality. To articulate such guidance, they need to be able to inspect
the data, and to formulate extraction hints. Moreover, (€) journalists formulated
the need for tangible, intuitive data analysis results (diagrams, graphs, tables)
that they can download from our graph data lake and share, for instance, within
newsrooms, to convince colleagues or managers of the interest of spending time
to analyze complex data.

Based on these requirements, we built ConnectionStudio, a new platform
based on ConnectionLens and extending it in several ways in order to address
(c) to (€) above. Below, after recalling basic information about ConnectionLens
to make this paper self-contained, we detail ConnectionStudio’s novel extensions,
which are the contributions of this work. We believe they may help others devis-
ing similar heterogeneous data lakes. ConnectionStudio is available online, to-
gether with examples and tutorials at https://connectionstudio.inria.fr/|

2 Background: graph integration of heterogeneous data

ConnectionLens ingests any structured, semi-structured or unstructured data as
follows. When ingesting an XML document, each element, attribute, or text node
becomes a graph node; parent-child relationships in the XML document lead to

https://connectionstudio.inria.fr/

User-friendly exploration of highly heterogeneous data lakes 3

llI I ff H |ll i unn name

8 “local officia 4“0 36 “LVMH” 35 row
665"

42 “Thales”

___________ e name
9.depositDate 3“3 “13/09/22" fg T ¥ halee 23 ales” 3 row

2de tion €arnings 1 “464”
10 financiallnterest 11 ftems 19i

hd 23 221”
44 “Danone”
@ .

name
L 3 L

25 “Danone” 45 “Danone” 38 row
8 “543”

30 “201” -
“Adidas” 46 “Adidas”
52 “Adidas” &

Fig. 1. Sample data graph built from HATVP declarations and CAC40 companies.

corresponding edges in the graph. A JSON document is similarly converted: each
mabp, array, and (leaf) value is converted into a graph node. RDF graphs are most
easily ingested: each triple of the form s, p, o leads to two nodes labelled “s” and
“0” connected through an p-labelled edge. For CSV and relational data, each tuple
and value lead to a node, edges labelled with the column names are connecting
those (if the column name is empty, so the edge label). Text documents are
segmented into paragraph, each of which is a node, child of a common root.
Office and PDF documents are converted into JSON then ingested as above.

NER (Named Entity Recognition) is applied on every leaf node of the graph,
leading to (new) extracted entity nodes. Each entity node is labelled with the
recognised named entity (NE, in short) and connected to the leaf value from
which it has been extract through an edge (dashed edges in Figure . Moreover,
when two NE nodes are identical, i.e. they have the exact same label, they
are fused and only one is kept in the integrated graph. This allows to easily
find connections across sources, that are (much) harder to find manually. For
instance, there is only one node “Thales”, extracted from N18 and N43.

Figure || shows the data graph obtained from (i) an XML sample of the
large HATVP| French transparency dataset (ministers’ declarations about their
wealth, stocks they own, business interests, etc.), on the left; and (i7) a CSV
file listing the 40 most influential French companies (known as CAC40), on the
right. Each (black) circle is a data node in the integrated data graph, edges are
connecting them accordingly to their relationships in the datasets. Value data
nodes are quoted; named entities are highlighted (blue for people, purple for
dates and yellow for organizations).

3 Novel ConnectionStudio modules

Built on top of ConnectionLens, ConnectionStudio allows users to import datasets
into an integrated graph, search the graph via keywords, and find paths connect-
ing entities. Further, ConnectionStudio includes new modules, to answer the
requirements stated at the end of Section [I} We describe them below.

https://hatvp.fr
https://en.wikipedia.org/wiki/CAC_40

4 N. Barret et al.

3.1 Global view of the data lake: entity (dataset) statistics

Users are familiar with the data files they brought (PDF, Office formats, JSON,
CSV, etc.), but told us they felt “lost” once the system ingested their data,
especially if the latter is large and/or complex. To help them get a first global
view of the data lake (or graph, requirement («)), we present them a set of entity
and entity-dataset statistics, as follows:

— The total numbers of entities of each type (Person, Location, Organization,
date, URI, email, hashtag, mention), overall in the graph;

— The total number of entities per type and per dataset in which they appear;

— A tag cloud of the most frequent entities in the whole graph.

— A summary of the entity-dataset associations: we show the entity type, la-
bel, and datasets where it appears, starting with the entities present in the
highest number of datasets. These entities are more interesting, because they
allow making connections across datasets (potentially heterogeneous files),
saving important manual efforts to journalists combining such data sources
for their investigations.

The above statistics give a first idea of what the datasets contain, and also
suggest entity names to use as search keywords (requirement (f)). For instance,
Figure [2a] shows the number of different types of extracted entities and the tag
cloud in the dataset of Figure [1} Figure [2b|shows the frequent common entities
in the two datasets.

3.2 From the integrated graph to data tables

In a prior ConnectionLens application [3], based on PubMed biomedical litera-
ture data, journalists were interested in the paths that connect medical experts
with companies that fund their research. We expressed this path as a query over
the graph, and exposed its results as a table through an ad-hoc Web interface
manually built just for this scenario. In a more general manner, in [5], users select
a pair of entity types (71, 72) of interest to them, e.g., people and organizations,
and the system automatically finds and computes the paths connecting such
entities in the ConnectionLens graph. Each path leads to a data table, where
entities of types 71, 72 are in the first, resp., last column, and the other columns
are the nodes along the path.

As stated in requirement (), users requested more support in extracting tab-
ular data from the graph. For instance, in the HATVP dataset, they may want
to extract: for each elected politician, their name, elected office, election date,
and companies they have stocks in; note that this query is not a path, since it
returns many values. Users view the first three fields as required, but the last
one is optional, i.e., a politician should be part of the result even if they have no
stocks. Optional query fragments correspond to outerjoins in database terms.

To allow users to easily and intuitively express a much larger set of queries,
we proceed as follows.

User-friendly exploration of highly heterogeneous data lakes 5

]
Entities distribution by type Entity cloud

< ldentified entities >

| 111072020

2/07/202
21077202 04/07/2020

Métropole03/07/2020
02120 paris 10/2

20
2008 15/07/20206/07 :mzd)éydrtcmcym 07/2020

6 96/2(3%7’22622022 2012

) 2015019 03420 27/09/2020
07/2 28/06/202

Frnce 2020010720210 20
MAS0820 TN 27/06/202 unauté
O / 2 Q(muzu 30/06/2020
20183 A A 04/20
2018 2/20

o (014 2021)
01 = 20262016 09/20
17/0)
@ Number of dates Number of Persons @ Number of Places R 06/07/2020
Number of Organizations Number of hashtags Conseil d'administration

Total
217451

ifal

Gommunauté de communes

22/06/2022

(a) Count of entities and tag cloud

I COLUMNS == FILTERS = DENSITY 4, EXPORT

Label Type Freq... Datasets 1

2017 Date 452 Cacd0.csv, hatvp-cleaned.xml
Legrand Organization 7 Cac40.csv, hatvp-cleaned.xml
Engie Organization 20 Cac40.csv, hatvp-cleaned.xml
2000 Date 63 Gac40.csv, hatvp-cleaned. xml
2009 Date 29 Cac40.csv, hatvp-cleaned.xml
Pernod Ricard Organization 6 Cac40.csv, hatvp-cleaned.xml
Alsace Location 8 Cac40.csv, hatvp-cleaned.xml

(b) Frequent entities

Fig. 2. Statistics for the sample dataset.

(1) Upon loading, ConnectionStudio computes, from each dataset, a set of
elementary paths that can be seen as “query building blocks”. Each path reflects
one or more consecutive edges in the data graph. The source of a path is always
an internal node, while its destination is either an internal node, a value, or an
extracted entity. For instance, in the above example, elementary paths include:
declarations, declarations.declaration, declarations.declaration.general.de-
clarer.name#val (this ends in strings comprising politicians’ names), declara-
tions.declaration.general.declarer.name#val.extract:p (ending in person en-
tities extracted from the strings), etc.

(2) Users can select paths from a drop-down list, and add them one by one
to compose a query. The first selected path is required; the others can be either
optional or required. To each path are associated two variables: one for the source
node, and the other for the destination (internal node, value, or entity). Users

6 N. Barret et al.

can edit the paths, and the variables, to adjust them, and specify how they
connect. For instance, in the HATVP scenario, a user may:

— Start by selecting a path ending in declaration; name its starting point
(source variable) decls and its end point (target variable) decl.
Select declarations.declaration.general.mandat.label#val as the second

elementary path;

— Edit (shorten) it into declaration.general.mandat.label#val, going from the
variable decl to the variable position. Reusing decl is intuitive since in both
paths, this variable denotes the graph nodes labeled declaration.

— Similarly, edit other elementary paths to obtain declaration.general.dateDe-
butMandat#val.extract:d going from decl to startDate, etc.

(3) When the user has finished specifying the paths to combine in a query,
they can trigger the evaluation of this query on the underlying graph. This leads
to tabular results, with a column for each user-specified variable and a line for
each result; users can download results in CSV to be further processed, shared
etc.

For instance, Figure [3] shows the result of joining three paths and renaming
the variables to obtain the declaration number, the start date, the position and
the name of the person.

Select a path

Show the EVALUATE THE SAVE

ion.general.dateDebt extract:d v
x query o QUERY é CHANGES
Path 1 Starting variable Ending variable
declaration.general.declarant.nom#val decla name [}
Path 2 Starting variable Ending variable J
oin
declaration.general.mandat.label#val decla mandateType ® Reauired) Opional]
Path 3 Starting variable Ending variable J
oin
general.dateD extract:d decla mandateStart ® Required O Optional [}

Wl COLUMNS = FILTERS DENSITY & EXPORT

decla name mandatetype mandatestart

elu local ou membre d'un établissement

. 03/07/2020
public de coopération intercommunale

237676 abbassia hakem

elu local ou membre d'un établissement

B 10/07/2020
public de coopération intercommunale

1836220 abdalatif ammar

3156530 abdallah hassani député ou sénateur 24/09/2017

Fig. 3. The data view for HATVP declarations and CAC40 companies samples.

Generating elementary paths As explained above, users can compose queries
by “cutting & pasting” elementary paths; here is how ConnectionStudio extracts
these from the data. From an XML or JSON document, each path starting from
the document root, and ending in an internal node, text node, or extracted en-
tity (child of a text node) is proposed to the user. From CSV data, we propose

User-friendly exploration of highly heterogeneous data lakes 7

paths of the form row, row.att#val, row.att#val.extract:7 where row is the label
of each node created out of a CSV row (tuple), att is an attribute name, and
extract:7 denotes an extraction edge for some entity type 7 (such as person,
location, email etc., recall Section . From RDF, for each property p encoun-
tered in an s, p, o triple, we propose simply p as an elementary path, with two
variables for the subject and object of the triple; similarly, for each s, rdf:type,
c triple, we propose rdf:type c as an elementary path with one variable for the
subject.

3.3 Correcting and improving the graph through a table view

The paradigm of path querying also gives us two ways to improve and correct
the graph (requirement (9)).

Editing value and entity labels As stated above, an elementary path ending
in #val returns the set of values encountered in the data in certain positions,
while a path ending in #val.extract:7, for some entity type 7, shows entities
extracted by ConnectionLens from the data, using trained language models [3].
When visualising the result of such a query, users can edit entity or values shown
in the query result, and propagate their modifications to the underlying database,
thus updating the graph. ConnectionLens implements a set of similarity func-
tions and (very conservatively) unifies entities whose labels are very similar, e.g.,
“I’Oréal” and “L’OREAL”, once they are both recognized as organizations by
the entity extractor. The ability to edit the data, offered by ConnectionStu-
dio enables users to further normalize (uniformize) the label of value nodes,
and/or of extracted entity nodes. This corresponds to a carefully restricted case
of database update through views [I]. As well known, such updates cannot always
be propagated correctly to the underlying database. In ConnectionStudio, we
allow updates only on values or entities at the destination end of a path. It is
easy to see that such updates can always be propagated to the graph persistently
stored in the underlying database.

For instance, in Figure [fa] while inspecting the results of a query, when users
find multiple versions of the same organization “Alstom”, such as “Alsthom”; “Als
thom” or “Alstom grid”, they can correct each of them by hand, then propagate
the changes to the underlying database.

Specifying extraction policies Inspecting results of entity-returning path
queries may help users learn what entities are (not) in specific places in the data.
Thus, a user noticing the extracted names “Bertrand Martin” and “Julie Dupont”
under declaration.general.declarer.name#val.extract:p may conclude that ev-
ery declaration.general.declarer.name#val contains people, and formulate an
extraction policy of the form , specifying that all values found under path
are to be interpreted as entities of the given entity type 7. This helps circumvent
extractor misses, e.g., for a less usual name such as “Xin Jong” which does not fit
the extractor’s trained model. Users can also specify that extraction should not
be performed on values on some path(s), ‘ path NoFExtract |, if they are not inter-

8 N. Barret et al.

2998 als thom

2998 alsthom

2998 alsthom atlantique
2998 alstom

(a) Updating values to clean the data.

Stanford Extractor - English - declaration general declar False
ant.nom#val Person,
declarations.declaration.or
igine#val NoExtract

SAVE PARAMETERS

(b) Specify extraction policies before loading data.

Fig. 4. Correcting and improving the graph.

ested in the entities that may be found there. Extraction policies, both negative
and positive, speed up the graph construction, by avoiding the (costly) entity
extraction effort during graph loading.

Extraction policies were first mentioned in [3]. However, only now, via Con-
nectionStudio’s path query features, our tool helps non-expert users formulate
them. For instance, in Figure [db] the user specified that: declarers’ names should
always be recognized as person entities, and that no extraction should be applied
on the values found on the path origine#val. Users can decide this after seeing
that all these values are equal (probably a code introduced by anonymization),
thus there is no point in searching for entities in them.

4 Perspectives and conclusion

Data lakes such as [9I7I12/T0] and ConnectionLens [23] aim to help users explore
many heterogeneous data sources. ConnectionLens adopts a graph paradigm for
integrating the sources, and extracts entities leading to inter-dataset connec-
tion opportunities. In this work, we describe novel data exploration and dis-
covery paradigms we implemented in ConnectionStudio, following requirements
expressed by journalists; they allow users to discover the graph, simplify querying
for connections across sources, and as-you-go cleaning of the graph. We believe
these features are useful additions to next-generation heterogeneous data lakes.
Going forward, we plan to conduct an elaborate user-study in order to under-
stand better how ConnectionStudio helps novice users explore graphs and also
inculcate the feedback to further improve upon the features provided by Con-
nectionStudio.

User-friendly exploration of highly heterogeneous data lakes 9

Acknowledgments. This work is partially funded by DIM RFSI PHD 2020-01,
AT Chair SourcesSay (ANR-20-CHIA-0015-01) and CQFD (ANR-18-CE23-0003)
grants.

References

10.

11.

12.

Abiteboul, S., Hull, R., Vianu, V.: Foundations of databases. Addison-Wesley
(1995)

Anadiotis, A., Balalau, O., Bouganim, T., et al.: Empowering investigative jour-
nalism with graph-based heterogeneous data management. IEEE DEBull. (2021)
Anadiotis, A., Balalau, O., Conceicao, C., et al.: Graph integration of structured,
semistructured and unstructured data for data journalism. Inf. Systems 104 (2022)
Anadiotis, A.C., Manolescu, 1., Mohanty, M.: Integrating Connection Search in
Graph Queries. In: ICDE (Apr 2023)

Barret, N., Gauquier, A., Law, J.J., Manolescu, I.: Exploring heterogeneous data
graphs through their entity paths. In: ADBIS (2023)

Fan, G., Wang, J., Li, Y., Zhang, D., Miller, R.J.: Semantics-aware dataset dis-
covery from data lakes with contextualized column-based representation learning.
PVLDB 16(7) (2023)

Giebler, C., Groger, C., Hoos, E., Schwarz, H., Mitschang, B.: Leveraging the
data lake: Current state and challenges. In: Big Data Analytics and Knowledge
Discovery (DaWakK). Springer (2019)

Giebler, C., Groger, C., Hoos, E., Schwarz, H., Mitschang, B.: Modeling data lakes
with data vault: Practical experiences, assessment, and lessons learned. In: ER.
Lecture Notes in Computer Science, vol. 11788. Springer (2019)

Hai, R., Geisler, S., Quix, C.: Constance: An intelligent data lake system. In:
SIGMOD. New York, NY, USA (2016)

Hai, R., Koutras, C., Quix, C., Jarke, M.: Data lakes: A survey of functions and
systems. IEEE Transactions on Knowledge and Data Engineering (2023)
Kuschewski, M., Sauerwein, D., Alhomssi, A., Leis, V.: BtrBlocks: Efficient colum-
nar compression for data lakes. Proc. ACM Manag. Data 1(2) (2023)

Nargesian, F., Zhu, E., Miller, R.J., Pu, K.Q., Arocena, P.C.: Data lake manage-
ment: challenges and opportunities. Proceedings of the VLDB Endowment 12(12)
(2019)

	User-friendly exploration of highly heterogeneous data lakes

