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ABSTRACT 
 
Pip-MPU is a minimalist separation kernel for constrained devices (scarce memory and power resources). 

In this work, we demonstrate high-assurance of Pip-MPU’s isolation property through formal verification. 

Pip-MPU offers user-defined on-demand multiple isolation levels guarded by the Memory Protection Unit 

(MPU). Pip-MPU derives from the Pip protokernel, with a full code refactoring to adapt to the constrained 

environment and targets equivalent security properties. The proofs verify that the memory blocks loaded in 

the MPU adhere to the global partition tree model. We provide the basis of the MPU formalisation and the 
demonstration of the formal verification strategy on two representative kernel services. The publicly 

released proofs have been implemented and checked using the Coq Proof Assistant for three kernel 

services, representing around 10000 lines of proof. To our knowledge, this is the first formal verification of 

an MPU based separation kernel. The verification process helped discover a critical isolation-related bug. 
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1. INTRODUCTION 
 

Separation kernels simulate a physically distributed environment on a single machine [1]. Their 

isolation property is crucial to the security of the system. Greater assurance is given to hardware 
based solutions supported by formal methods i.e. with mathematical foundations. In this paper, 

we target Pip-MPU, a formally verified separation kernel for constrained devices (scarce memory 

and power resources) based on the Memory Protection Unit (MPU). The MPU provides protected 
memory regions configurable at runtime by privileged components. However, a wrongly 

configured MPU implies breaches that attackers can exploit to steal and corrupt data of expected 

isolated software entities, which could lead to full control of the device. 
 

The goal of this work is to engage in the formal verification of Pip-MPU's isolation property, 

since Pip-MPU's high-level design and conceptual foundations have been introduced in earlier 

works [2, 3]. Indeed, the motivation follows recent increases in cyber-threats on constrained 
devices (also referred to as low-end devices, of type microcontroller) and especially connected 

devices. Regulatory incentives add up to cybersecurity standards developed in recent years to 

increase the global cybersecurity level in computer products [4-6]. To the best of our knowledge, 
no MPU-based isolation solution has been formally verified before. We detail the formalisation 

and the intuition of the proofs. The corresponding formal proofs are conducted within the Coq 

Proof Assistant [7] and available online [8]. Our contributions are a formal basis to reason about 

MPU-based solutions, the demonstration of the feasibility of Pip-MPU's formal verification by 
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formally verifying three representative services, and we confirm the success of a proof strategy 
readapted for a different hardware support conducted directly on a concrete model, instead of 
using refinement from an abstract model. 

The rest of this paper is organised as follows: Section 2 demonstrates the lack of security 
guarantees in current hardware-based isolation solutions and presents Pip-MPU. Section 3 details 
the proof workflow and explicates the proof goal of the formal verification of Pip-MPU. The 
proof goal is then formalised in Section 4, directly followed by Section 5 which presents the 
formal basis of the hardware model supporting the proofs. In Section 6, we give the sketch of 
proof to prove the isolation property on the two types of kernel services present in Pip-MPU. The 
proof development evaluation in terms of proof status and proof effort is exposed in Section 7. 
We discuss the results, assumptions, and identified perspectives in Section 8 before concluding 
the document with Section 9. 

2. EMBEDDED KERNEL MPU-BASED ISOLATION 
2.1. Hardware-based isolation and security guarantees 
Many hardware-based isolation solutions exist for low-end embedded systems like 
TrustedFirmware-M [9], RIOT OS (MPU) [10], Zephyr RTOS (MPU) [11], FreeRTOS-MPU 
[12], EwoK [13], MINION [14], ACES [15], OPEC [16], MultiZone [17], TrustLite [18], 
CheriRTOS [19], MbedOS [20], TockOS [21], hardened Java Card Virtual Machine (JCVM) 
[22]. They show different isolation techniques that exhibit various levels of guarantees, ease of 
use, and functionalities. 

Hybrid approaches combining hardware-based and formally proven isolation expose the strongest 
means of isolation. However, no solutions for constrained devices reach that level of guarantee. 
Indeed, the majority does not rely on formal methods to prove isolation, which is necessary to get 
a mathematical guarantee of the proposed solution. Also, many solutions restrict the number of 
protected components because of hardware limitations, numerous in constrained devices, which 
take them away from the ideal isolation solution. Isolation is often seen as a trade-off for 
performance with negotiable security guarantees. In addition to that, many solutions are tied to a 
specific architecture, such as Armv7-M [23]. When they do use formal methods, they do not 
address abstract notions such as isolation at task level, do not analyse the full Trusted Computing 
Base, are also tied to a specific hardware architecture implementation, and are still very limited 
in the number of protected components. Many also require manual intervention from the system 
or application developer. This is error-prone since they are almost all written in an unsafe 
programming language like C and risk to put the system in a dangerous state. Some take support 
from properties of the programming languages to increase security by avoiding certain classes of 
memory vulnerabilities, however, this does not address isolation from the system perspective. 
Indeed, hardware isolation appears stronger since it treats not the causes of the vulnerabilities but 
their effects. And lastly, many current systems have no means of isolation and are vulnerable to 
code injection attacks, privilege escalation, data theft or corruption, and system corruption. 
In contrast to previous solutions, formal verification of separation kernels is a long-lasting 
research discipline in high-end embedded systems. High-end embedded systems have similar 
memory isolation hardware mechanisms to common general-purpose systems, such as the 
Memory Management Unit (MMU), which are well-established security mechanisms. Among 
them, the best known are seL4 [24, 25] (MMU-based process and kernel isolation, MMU-based 
process isolation, fully formally verified in  Isabelle/HOL [26]) which recently announced 
KataOS [27] to provide full operating system features, CertiKOS-secure [28] (MMU-based 
process and kernel isolation, MMU-based process isolation, fully formally verified in Coq [7, 
29]), ProvenCore [30] (TrustZone [31] or airgap isolation of the trusted core, MMU-based process 
isolation, fully formally verified in custom language SMART, Common Criteria EAL7 
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certification) and Pip [32] (MMU-based process and kernel isolation, MMU-based process 
isolation, fully formally verified in Coq). 

However, the listed formally verified systems target high-end devices intimately linked to the 
MMU component not available for constrained devices. This difficult equation left blank the field 
of strong security guarantees for constrained devices, as illustrated in Table 1. To the best of our 
knowledge, ProvenCore-M [30, 33] is the only isolation solution to target the microcontroller 
sector and to expose strong guarantees of isolation by formal proofs. The major drawback is its 
proprietary classification, which is why few inner workings have been disclosed. 

Table 1: Hardware-based solutions (OSes/kernels, tools, architectures) classified by isolation 
guarantees for embedded and general-purpose systems. 

 Intermediate isolation guarantees High isolation guarantees 
(supported by formal methods) 

Low-end 
embedded 
devices 

TrustedFirmware-M [9], RIOT OS (MPU) 
[10], Zephyr RTOS (MPU) [11], FreeRTOS-
MPU [12], EwoK [13], MINION [14], ACES 
[15], OPEC [16], Multi-Zone [17], TrustLite 
[18], CheriRTOS [19], MbedOS [20], TockOS 
[21], hardened Java Card Virtual Machine [22] 

ProvenCore-M [30] 
(proprietary) 

 

High-end 
embedded 
devices 

Windows IoT [34], Linux Embedded [35], 
Fuchsia [36], TrustedFirmware-A [37] 

seL4 [24], mCertiKOS-secure 
[28], Pip [38-40], ProvenCore 
(proprietary) [30] 

 

2.2. The Memory Protection Unit (MPU) and flexibility 
Applications require memory to store their code and data. However, they are subject to the kernel's 
security policy. This means memory has to be managed and access to resources must be 
controlled. To this end, the majority of ARM Cortex-M-powered devices [41] (Cortex 
M3/4/7/0+/23/33/35P/55), which are constrained devices, have an optional processor unit called 
the Memory Protection Unit (MPU) [23,42]. It restricts memory access by configuring the 
system’s memory layout. The configuration consists of a set of memory regions defined by base 
and end addresses (or region size), called MPU regions, having various permission rights (read, 
write, execute) and additional attributes (caching, buffering…). The MPU is configured at runtime 
by privileged software (typically an OS kernel). The number of MPU regions that can be 
configured and protected at the same time is implementation-defined, generally 8 to 16 MPU 
regions. All running processes must stick to the configuration. Faulty memory access ends in a 
memory fault. Systems protected by an MPU offer a higher level of security compared to their 
counterpart without MPU or not using it. Naturally, this goes along with a proper MPU 
configuration and self-protection in order to set up the protection measures as intended, which is 
the goal of the demonstrations in this paper. From a broad perspective, the MPU is for small 
embedded systems what the Memory Management Unit (MMU) is for general-purpose systems, 
since both share the memory protection role similarly. The MPU provides very limited protected 
memory areas and no virtual memory. 
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2.3. Pip-MPU: embedded kernel for constrained devices with dynamic memory 
management leveraging MPU virtualisation 
Pip-MPU [3] is a separation kernel for constrained devices designed to enhance the dynamism in 
secure embedded kernels. It is specialised in memory isolation and control-flow management. 
More specifically, it ensures strict spatial memory partitioning (confidentiality and data integrity) 
between partitions (executable components). The security mechanism rests on a hierarchical 
partitioning model guarded by the MPU (illustrated in Figure 1), separation of privilege and 
atomicity (hardware support to disable interruptions during service executions). Pip-MPU is sole 
privileged in the system while all the partitions run unprivileged in userland. Pip-MPU derives 
from the MMU-based Pip protokernel, but with complete code refactoring because of the limited 
features of the MPU compared to the MMU. The implemented Pip-MPU prototype for ARMv7 
Cortex-M requires 10 KB of Flash, 550B of RAM and an overhead of 16% on both performance 
and energy consumption. Pip-MPU does not require any hardware modification on Commercial 
Off-The-Shelf (COTS) systems and only depends on the MPU, which implies privilege separation 
(privileged/unprivileged modes). 

 

Figure 1: Pip’s hierarchical partitioning model. Pip is the sole privileged component in the 
system. 

Partitioning model. Pip-MPU's memory management is based on a hierarchical partitioning 
model. A partition would typically reflect a process, a task or any executable piece of code along 
with its respective dependent data. A partition is thus composed of one or more chunks of 
memory. The main principle is that a partition can create one or several subpartitions, that in turn 
can create subpartitions. This creates a partition tree, as can be seen in Figure 1, which is a sort 
of genealogical tree of nested memory spaces (parent-child relationships, descendants, 
ancestors, siblings). All partitions descend from the root partition which is the first partition to 
be created after the boot process. As an example, the root partition could be an operating system 
creating child processes. The other partitions are dynamically created during the system's lifetime. 
A parent partition can create child partitions and share memory with them. All the memory 
attributed to a partition is directly accessible to this partition. 

Enhancing the security of RIOT OS with Pip-MPU. Pip-MPU serves as a secure foundation for 
bare-metal applications and richer OSes like RIOT-OS lacking strong security guarantees. They 
could leverage Pip-MPU's isolation property to partition their memory space and fine-grain their 
security policy. Indeed, our teams ported RIOT on Pip-MPU 
(https://github.com/damaramad/RIOT/tree/2022.04-pip-port) so a full operating system running 
in the root partition and which is able to interact with Pip-MPU via a dedicated library. We 
enabled several drivers by manually checking the peripherals do not interfere with Pip-MPU's 
secure configuration. We report the successful launch of the hello-world example. 
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3. PROOF GOAL: ISOLATION INVARIANT 
Pip-MPU claims to provide similar services to the MMU-based Pip and to enforce Pip's security 
properties (see Figure 1), of which isolation properties, that have been formalised as: the 
Horizontal Isolation HI (strict isolation between sibling partitions), the Vertical Sharing VS 
(memory owned by a child partition is shared from its parent partition), and the Kernel Isolation 
KI (strict isolation between user and kernel memory). However, confidence is higher with formal 
proofs of the isolation property, as done in the parent project Pip [43]. Similarly, we aim to 
formally verify these security properties for Pip-MPU. 

3.1. The security properties 
The security properties are invariants, i.e. properties that must be verified whatever the system 
state. They extract information from Pip-MPU’s metadata structures to construct the partitioning 
model on which they can reason about. Consequently, they can only be proven on a sane/correct 
partitioning model, which implies the metadata structures are correctly formed. Consistency 
properties ensure the latter. They check the correctness of the configuration of the metadata 
structures. The consistency properties are also invariants. 

Pip-MPU has then two groups of expected invariants, the security properties (HI, VS, KI) and the 
consistency properties (C), gathered in the so-called isolation invariant. To be noted, the 
isolation invariant is an umbrella term that hides that all properties do not participate in the 
isolation property, strictly speaking. 

3.2. Proof workflow 
Proofs are always conducted on an abstract view of reality. However, the abstract level depends 
on the proof's methodology. Previously listed formally verified separation kernels (seL4, 
CertiKOS-secure, ProvenCore) rely on refinement, that is the verification is conducted on high-
level specifications (almost 40 abstraction layers in CertiKOS [44]) that are then refined down to 
the implementation level. Instead, Pip (MMU)'s formal proofs are directly conducted on the 
source code, which corresponds to the lowest specification levels of the listed kernels, so without 
refinement. Thus, the abstract model is nevertheless a concrete model. Pip-MPU reproduces the 
same workflow as it facilitates the work by keeping the same formal foundations and leveraging 
the team's past experience in formal verification.  

Overall, we have the following model, reproduced in Appendix A: 
• the services update the kernel structures by using low-level primitives (called the 

hardware abstraction layer, HAL) ; 
• the primitives interact with the hardware model, among which the MPU, to change the 

abstract system state ; 
• the system state holds properties (including the security properties) verified in the proofs. 

3.3. Isolation invariant 
The proof goal is to verify the isolation invariant, i.e. the security and consistency properties. 
Indeed, the security of the system is established by the correct configuration of the MPU for the 
active partition, which effectively sets up the security properties of the real system. The link 
between the MPU, its correct configuration and the security properties, is made in the formal 
verification. Hence, the proofs aim to verify that the memory blocks loaded in the MPU adhere 
to the global partition tree model and that this partition tree itself satisfies Pip's security properties. 
The glue is the MPUFromAccessibleBlocks consistency property, which states that in a 
given partition, all blocks configured in the MPU are accessible memory blocks belonging to that 
partition and satisfying the security properties.  
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Following Pip (MMU)’s proof workflow, Pip-MPU uses Hoare logic [45] to formally verify the 
kernel services. Hoare logic gives a formal system to conduct the proofs of properties of a 
program, i.e. rigorous deductive reasoning rules of inference. In Hoare logic, the formal 
specification refers to a Hoare triple composed of a program Q, a pre-condition P and a post-
condition R. The pre- and post-conditions are general assertions (properties) on the values of the 
program written in mathematical logic. The Hoare triple is formally expressed as { P } Q { R }. It 
logically expresses that if the program Q executes and terminates, then its post-conditions R are 
true at completion if the pre-condition P was true before Q was executed. Pre- and post-conditions 
might hold the same properties: these are invariants.  

Consequently, we express the Pip-MPU’s isolation invariant as independent Hoare triples for each 
service:  

{𝑉𝑆	&	𝐻𝐼	&	𝐾𝐼	&	𝐶}	
𝑃𝑖𝑝 −𝑀𝑃𝑈	𝑠𝑒𝑟𝑣𝑖𝑐𝑒	(𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠)	
{𝑉𝑆	&	𝐻𝐼	&	𝐾𝐼	&	𝐶}	

Thus, if the invariants are satisfied at the start of the execution of a service, we must prove they 
are still satisfied at the end of the execution. Each service has a corresponding Hoare triple that 
can be independently proven. Indeed, services cannot be preempted (exceptions are disabled) and 
userland operations have no influence on the kernel structures. The latter is assured by the Kernel 
Isolation invariant which implies the kernel structures, and thus the partitioning model, can only 
be updated by privileged code. And in Pip-MPU, only the kernel services execute in privileged 
mode. As a consequence, the kernel structures (on which are based the security properties) do not 
change between system calls and so the properties satisfied at the end of the execution of a service 
are the same when calling the next service later on, whatever happened during the execution of 
userland partitions. Thus, services are called one at a time, and Hoare triples are chained one after 
the other. The initial state satisfies the invariants because Pip-MPU prepares the initial partition 
correctly (assumption).  

Note that with constrained single-core embedded systems, which are the targets of this study, and 
because the service calls are cooperative atomic operations as said previously, we avoid race 
condition issues faced by multi-core systems. Thus, invariants are only required to be true at the 
start and end of the service but are allowed to have temporary states within the execution where 
the invariants are not satisfied, for example during a metadata structure update. 

4. FORMAL EXPRESSION OF THE SECURITY PROPERTIES 
While the isolation invariant in Pip (MMU) and Pip-MPU is similar, the formal expressions differ 
because of structural differences relating to the memory unit. For example, the Horizontal 
Isolation property expressed in Pip (MMU) states that sibling partitions cannot hold the same 
physical pages, so their base address should be strictly different. This works because Pip is based 
on physical memory pages of fixed size, which exist from the system start. No subpages are 
referenced in the system. Instead, Pip-MPU allows cutting memory blocks arbitrarily, and so a 
subset of a memory block in a parent partition could be an entire memory block in a child partition. 
Hence, a Pip-MPU memory block identifier based on its start address, equivalent to the page 
identifier in Pip, would not work any more to uniquely identify a memory block. Instead of 
memory blocks, Pip-MPU considers a finer-grained memory unit, the memory address. 

4.1. Note on the Kernel Isolation property 
The full Kernel Isolation KI security property is in fact split in two: 1) the kernel code and data 
isolation from userland partitions and 2) the protection of the metadata structures (here named 
Kernel Data Isolation by inheritance to the parent project Pip). Only the Kernel Data Isolation 
property must be proven because we argue that the partitions can never access kernel code and 
data. Indeed, partition memory is only given by ancestor partitions originating from the root 
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partition. Hence, partitions only own strictly less memory than their ancestors. When Pip-MPU 
starts, the root partition is loaded with the system's memory space pulled out from kernel code 
and data memory regions. Thus, the only property that remains to be proven for Kernel Isolation 
is Kernel Data Isolation (hereafter named KI instead of full Kernel Isolation). 

4.2. Formal expressions 
We first formally define some design elements. We refer to the global partition tree PartTree. 
The memory blocks are owned by a partition part from the set MappedBlocks[part] stored in the 
Blocks structure. The subset of memory blocks that are user accessible is called 
AccessibleMappedBlocks[part]. The blocks holding metadata structures (configuration blocks, 
not user accessible) are referred to as ConfigBlocks[part]. The children are referred to as 
children[part]. AllPaddr[blocks] lists all addresses contained in the blocks list.  

The proofs rely on 29 consistency properties. While they are necessary to conduct the formal 
verification of the security properties, their full description is not relevant to this presentation and 
is thus excluded. Nonetheless, they are described when required in the following proofs, while 
the full set can be found online. The security properties are formally described in the following.  

Definition 4.1. (Vertical Sharing VS). 
∀𝑝𝑎𝑟𝑒𝑛𝑡	 ∈ 𝑃𝑎𝑟𝑡𝑇𝑟𝑒𝑒,	
∀𝑐ℎ𝑖𝑙𝑑 ∈ 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛[𝑝𝑎𝑟𝑒𝑛𝑡],	
∀𝑏𝑙𝑜𝑐𝑘𝐴𝑑𝑑𝑟𝐶ℎ𝑖𝑙𝑑 ∈ 𝐴𝑙𝑙𝑃𝑎𝑑𝑑𝑟9𝐵𝑙𝑜𝑐𝑘𝑠[𝑐ℎ𝑖𝑙𝑑]<,	
𝑏𝑙𝑜𝑐𝑘𝐴𝑑𝑑𝑟𝐶ℎ𝑖𝑙𝑑 ∈ 𝐴𝑙𝑙𝑃𝑎𝑑𝑑𝑟9𝐵𝑙𝑜𝑐𝑘𝑠[𝑝𝑎𝑟𝑒𝑛𝑡]<. 
 

Definition 4.2. (Horizontal Isolation HI) 
∀𝑝𝑎𝑟𝑒𝑛𝑡	 ∈ 𝑃𝑎𝑟𝑡𝑇𝑟𝑒𝑒,	
∀𝑐ℎ𝑖𝑙𝑑1,  𝑐ℎ𝑖𝑙𝑑2 ∈ 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛[𝑝𝑎𝑟𝑒𝑛𝑡], 
∀𝑏𝑙𝑜𝑐𝑘𝐴𝑑𝑑𝑟 ∈ 𝐴𝑙𝑙𝑃𝑎𝑑𝑑𝑟9𝑀𝑎𝑝𝑝𝑒𝑑𝐵𝑙𝑜𝑐𝑘𝑠[𝑐ℎ𝑖𝑙𝑑1]<,	
𝑏𝑙𝑜𝑐𝑘𝐴𝑑𝑑𝑟Ï𝐴𝑙𝑙𝑃𝑎𝑑𝑑𝑟9𝑀𝑎𝑝𝑝𝑒𝑑𝐵𝑙𝑜𝑐𝑘𝑠[𝑐ℎ𝑖𝑙𝑑2]<. 
 

Definition 4.3. (Kernel Data Isolation KI) 
∀partition1,  partition2	 ∈ PartTree,	 
∀blockAddr ∈ AllPaddr9AccessibleMappedBlocks[partition1]<, 
𝑏𝑙𝑜𝑐𝑘𝐴𝑑𝑑𝑟Ï𝐴𝑙𝑙𝑃𝑎𝑑𝑑𝑟9𝐶𝑜𝑛𝑓𝑖𝑔𝐵𝑙𝑜𝑐𝑘𝑠[𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛2]<. 

Note that KI is not defined as a parent-child relationship because the isolation of metadata 
structures from accessible memory blocks must also be satisfied within the partitions that hold 
them. To be noted as well, proofs are conducted considering the full set of blocks and not only 
the active blocks configured in the MPU, because all blocks are eligible to be mapped in the MPU. 

5. MPU-BASED HARDWARE MODEL 
Pip-MPU's security properties must be verified on a hardware platform composed of a CPU 
(Central Processing Unit), MPU, memory, peripherals, and any other hardware components. 
However, the properties only depend on the kernel's effects, i.e. how Pip-MPU interacts with the 
hardware platform. This means the abstracted view does not need to include all the hardware 
platform's components because Pip-MPU just manipulates kernel structures and the MPU. Thus, 
the abstracted hardware model is just composed of a memory model and an MPU model, as 
shown in Figure 2. In particular, it does not include registers nor the current privilege mode as in 
other works [46] because we only consider Pip-MPU services that always execute in privileged 
mode. We propose in the following a formalisation of the MPU-based hardware model, as 
expressed in the Coq model.  

Figure 2: On the left, the real hardware composed of many elements. On the right, the abstract 
hardware model used in the proofs composed of the memory model and the MPU model. 
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Formal model of the memory. The memory is modelled as an association list (list of key-value 
pairs). It associates a physical address with a value, just like Pip (MMU)'s hardware model. The 
value is either a kernel structure entry or another physical address (representing a pointer). Indeed, 
the memory model is only filled with kernel-related elements because the services execute in 
privileged mode, reserved for the kernel, and as such never include userland operations. 
Furthermore, Pip's security properties only concern kernel structures and never the contents of the 
memory blocks of the userland partitions. Modelling these contents would then be useless to prove 
the properties.  

Formal model of the Memory Protection Unit. The MPU configuration is modelled as a list of 
block identifiers (the active memory blocks of the current partition). Our Coq model includes a 
coercion on the length of this list that should be lower than the actual number of MPU regions. 
MPU : list paddr ; 
HMPU : length(MPU) <= MPURegionsNb 

Each element of this list is mapped as an active MPU region and refers to a BlockEntry record 
containing the corresponding block information. 
Record block := { 
startAddr : paddr; 
endAddr : paddr ; 
Haddr : startAddr < endAddr ; 
Hsize : endAddr - startAddr < 
maxIdx(* the size of a memory 
block cannot exceed the memory *) 
} 

Record BlockEntry : Type:= 
{ 
read : bool; 
write : bool ; 
exec : bool; 
present : bool; 
accessible : bool; 
blockindex : index; 
blockrange : block ;  
Hidx : blockindex < 
kernelStructureEntriesNb (* limited 
number of entries per kernel structure *) 
}. 

Note that this is a very simplified view of an MPU. It does not reflect the specific MPU version 
hardware constraints (size and alignments in ARMv7 for instance). The rationale is that Pip-MPU 
should be portable on different MPU versions and architectures that might have different 
constraints. The constraints are considered in the C implementation of the HAL.  

Formal model of the system state. The system state captures the evolution of the system at a 
certain instant. Our system state is the same as Pip's. It considers a system state composed of the 
memory state and the current partition state. The current partition state is the identifier of a 
partition. This is the partition that calls the service, i.e. the parent partition for services operating 
on a child. The memory model has been introduced above. The state is updated each time a write 
operation modifies the memory model or the current partition identifier.  

In Coq, we model the system as follows: 
Record state : Type := { 
currentPartition : paddr; 
memory : list (paddr * value) 
}. 

Note that the MPU model is not present in the system state. Indeed, the MPU configuration 
depends on the partition and is stored in the corresponding kernel structure. As such, the MPU 
model is stored in the memory model and the current partition identifier is enough to find the 
kernel structure where to retrieve the MPU state. 
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5. SKETCH OF PROOF OF THE ISOLATION PROPERTY 
Formal proofs of Pip-MPU’s security properties, including isolation, are conducted in the Coq 
Proof Assistant [7] on the concrete model following Pip’s proof workflow. The objective is to 
construct valid proof terms in the Gallina language and tactics that satisfy the proof goal, i.e. the 
isolation invariant. In this paper, we expose the logical arguments to verify the kernel services, 
while the full and verbose Coq proofs that mirror the detailed intuition are accessible online [8]. 
The proof intuition and sketches of proof detailed below are then demonstrated by interactive, 
machine-checked proofs in Coq.  

From a functional point of view, Pip-MPU's services are distributed in two categories: pure 
informational services and modification services. We give the sketch of proof for the Pip-MPU 
services findBlock from the first category and addMemoryBlock from the second category. 
Because the proof target is Pip's security properties, we assume the consistency properties hold. 
Obviously, the consistency properties must be proven in the full proof. 

5.1. Proof of pure informational services: example with findBlock 
The findBlock service looks for a block in the memory space of a partition and returns all 
block attributes. It takes as parameters a partition descriptor and any address contained in the 
searched block. findBlock has a first phase of checks to verify the user parameters are in their 
expected range and correspond to meaningful values: 1) the partition descriptor where to search 
for the block exists and is either the current partition or one of its children, and 2) the searched 
address is contained in one of the mapped blocks. Then, it reads information in memory and 
returns them to the user: it returns the block's attributes. 

Problem 1. Proof goal: the isolation invariant on findBlock. 
{𝑉𝑆	&	𝐻𝐼	&	𝐾𝐼	&	𝐶} 
findBlock part addressInBlock 
{𝑉𝑆	&	𝐻𝐼	&	𝐾𝐼	&	𝐶}	

Assumption. The consistency properties C hold. 

Proof. The service does not modify the system state; thus, the system state is the same as before 
the execution of the service. We know the invariants were satisfied at the start, so they are still 
satisfied at the end of the service.  □ 
We can observe that the sketch of proof is simple because of the unmodified system state. 

5.1. Proof of modification services: example with addMemoryBlock 

The addMemoryBlock service is interesting because it deals with a parent-child relationship, 
manipulates almost all memory types and modifies a single partition, the child. 
addMemoryBlock adds (shares) a memory block to a child partition. It also has a check phase 
of the user parameters before modifying the state. The order of modification instructions has no 
importance because we prove the security properties in the last step, when all modifications have 
passed. s0 refers to the initial state at the service start, while s' refers to a final state, whatever the 
path of execution. We write list ++ [element] to represent a list list extended by the element 
element. 

Problem 2. Proof goal: the isolation invariant on addMemoryBlock. 
{𝑉𝑆	&	𝐻𝐼	&	𝐾𝐼	&	𝐶} 
addMemoryBlock child blockToShare 
{𝑉𝑆	&	𝐻𝐼	&	𝐾𝐼	&	𝐶}	

Assumption. The consistency properties C hold. 
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Proof. The proof has two sorts of exits: either the service is fed with incorrect user parameters 
(values not in expected range, block not existing or not accessible and present…) and stops before 
modifying the state; or it passes through the whole modification phase. This shows the importance 
of not modifying the state before being sure the execution will go through the whole code to 
prevent exits that leave the state inconsistent with invariants that will fail.  

Exit 1: incorrect user parameters. Incorrect user parameters precipitate the execution path in 
returning the NULL address before any updates have been done. Because of no state 
modifications, the same sketch of proof as for pure informational services can be applied. □ 

Exit 2: Correct user parameters. With correct user parameters, the service executes to the last 
line. To be noted, the VS and HI properties consider combinations of several partitions with 
parent-child relationships that could be the parent-child relationship in addMemoryBlock. The 
NoDupPartitionTree invariant guards against impossible cases implying cycles like the parent is 
also its own child. Furthermore, to assign the roles in the relationships, the isChild and isParent 
invariants support the proof and check whether the pair of studied partitions is a correct parent-
child relationship or not.  

Vertical Sharing. The service does not modify the parent's mapped blocks, so 
mappedBlocks[parent]!! = 𝑚𝑎𝑝𝑝𝑒𝑑𝐵𝑙𝑜𝑐𝑘𝑠[𝑝𝑎𝑟𝑒𝑛𝑡]!". On the contrary, the child's mapped blocks 
do change: 𝑚𝑎𝑝𝑝𝑒𝑑𝐵𝑙𝑜𝑐𝑘𝑠[𝑐ℎ𝑖𝑙𝑑]!! = 𝑚𝑎𝑝𝑝𝑒𝑑𝐵𝑙𝑜𝑐𝑘𝑠[𝑐ℎ𝑖𝑙𝑑]!" ++𝑏𝑙𝑜𝑐𝑘𝑇𝑜𝑆ℎ𝑎𝑟𝑒.  

We need to show that: 
∀𝑏𝑙𝑜𝑐𝑘𝐴𝑑𝑑𝑟	 ∈ 𝐴𝑙𝑙𝑃𝑎𝑑𝑑𝑟K𝑚𝑎𝑝𝑝𝑒𝑑𝐵𝑙𝑜𝑐𝑘𝑠[𝑐ℎ𝑖𝑙𝑑]L

!!
, 𝑏𝑙𝑜𝑐𝑘	 ∈ 	𝐴𝑙𝑙𝑃𝑎𝑑𝑑𝑟K𝑚𝑎𝑝𝑝𝑒𝑑𝐵𝑙𝑜𝑐𝑘𝑠[𝑝𝑎𝑟𝑒𝑛𝑡]L

!"
. 

So given an address addr, there are two cases: 

1) 𝑎𝑑𝑑𝑟 ∈ 𝐴𝑙𝑙𝑃𝑎𝑑𝑑𝑟K𝑚𝑎𝑝𝑝𝑒𝑑𝐵𝑙𝑜𝑐𝑘𝑠[𝑐ℎ𝑖𝑙𝑑]L
!"

 or 2) 𝑎𝑑𝑑𝑟 ∈ 𝐴𝑙𝑙𝑃𝑎𝑑𝑑𝑟[𝑏𝑙𝑜𝑐𝑘𝑇𝑜𝑆ℎ𝑎𝑟𝑒]. 

Case 1: 𝑎𝑑𝑑𝑟 ∈ 𝐴𝑙𝑙𝑃𝑎𝑑𝑑𝑟K𝑚𝑎𝑝𝑝𝑒𝑑𝐵𝑙𝑜𝑐𝑘𝑠[𝑐ℎ𝑖𝑙𝑑]L
!"
. We know that the Vertical Sharing property 

is true at s0. □ 

Case 2:  𝑎𝑑𝑑𝑟 ∈ 𝐴𝑙𝑙𝑃𝑎𝑑𝑑𝑟[𝑏𝑙𝑜𝑐𝑘𝑇𝑜𝑆ℎ𝑎𝑟𝑒]. We know 𝑏𝑙𝑜𝑐𝑘𝑇𝑜𝑆ℎ𝑎𝑟𝑒 ∈ 𝑚𝑎𝑝𝑝𝑒𝑑𝐵𝑙𝑜𝑐𝑘𝑠[𝑝𝑎𝑟𝑒𝑛𝑡]!" 
because we retrieve the block from that list. This means the addr already was in one of the parent's 
blocks when the property was true at s0. □ 

Horizontal Isolation. For this property, the focus is set on two children of a certain parent 
partition. The children's memory spaces must not intersect (neither their mapped blocks nor their 
kernel structures). Two cases must be covered for this property: 1) one of the children is the child 
modified by the service addMemoryBlock (whether it is the first or the second child does not 
matter as the property is symmetric) and 2) the children are not the considered child.  

Case 1: The check phase states that the block is not shared at s0, which means we know that 
𝑏𝑙𝑜𝑐𝑘𝑇𝑜𝑆ℎ𝑎𝑟𝑒	Ï	𝑚𝑎𝑝𝑝𝑒𝑑𝐵𝑙𝑜𝑐𝑘𝑠[𝑐ℎ𝑖𝑙𝑑1]!" 	∧ 𝑏𝑙𝑜𝑐𝑘𝑇𝑜𝑆ℎ𝑎𝑟𝑒	Ï	𝑚𝑎𝑝𝑝𝑒𝑑𝐵𝑙𝑜𝑐𝑘𝑠[𝑐ℎ𝑖𝑙𝑑2]!". The 
service just modifies one of the children as explained in Vertical Sharing, leaving the other one 
untouched. 

We take here the example of child1. We get 𝑚𝑎𝑝𝑝𝑒𝑑𝐵𝑙𝑜𝑐𝑘𝑠[𝑐ℎ𝑖𝑙𝑑1]!! =
𝑚𝑎𝑝𝑝𝑒𝑑𝐵𝑙𝑜𝑐𝑘𝑠[𝑐ℎ𝑖𝑙𝑑1]!" ++𝑏𝑙𝑜𝑐𝑘𝑇𝑜𝑆ℎ𝑎𝑟𝑒 ∧ 𝑚𝑎𝑝𝑝𝑒𝑑𝐵𝑙𝑜𝑐𝑘𝑠[𝑐ℎ𝑖𝑙𝑑2]!! =
𝑚𝑎𝑝𝑝𝑒𝑑𝐵𝑙𝑜𝑐𝑘𝑠[𝑐ℎ𝑖𝑙𝑑2]!". For child1, there are then two options: either we consider a block in the 
initial set of memory blocks 𝑚𝑎𝑝𝑝𝑒𝑑𝐵𝑙𝑜𝑐𝑘𝑠[𝑐ℎ𝑖𝑙𝑑1]!" or it is blockToShare. 

Assuming the property is true at initial state s0 implies that the first option is trivial. . □ 

Thus, remains the second option. Memory spaces are disjoint only if 
𝑏𝑙𝑜𝑐𝑘𝑇𝑜𝑆ℎ𝑎𝑟𝑒	Ï	𝑚𝑎𝑝𝑝𝑒𝑑𝐵𝑙𝑜𝑐𝑘𝑠[𝑐ℎ𝑖𝑙𝑑2]!!, which is equivalent to 
𝑏𝑙𝑜𝑐𝑘𝑇𝑜𝑆ℎ𝑎𝑟𝑒Ï𝑚𝑎𝑝𝑝𝑒𝑑𝐵𝑙𝑜𝑐𝑘𝑠[𝑐ℎ𝑖𝑙𝑑2]!" which follows from the check phase as stated above. □ 
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 Case 2 : for any partition not being the one modified in the service, their mapped blocks remain 
untouched in the modified state. 

Hence, 𝑚𝑎𝑝𝑝𝑒𝑑𝐵𝑙𝑜𝑐𝑘𝑠[𝑐ℎ𝑖𝑙𝑑1]!! = 𝑚𝑎𝑝𝑝𝑒𝑑𝐵𝑙𝑜𝑐𝑘𝑠[𝑐ℎ𝑖𝑙𝑑1]!" ∧ 𝑚𝑎𝑝𝑝𝑒𝑑𝐵𝑙𝑜𝑐𝑘𝑠[𝑐ℎ𝑖𝑙𝑑2]!! =
𝑚𝑎𝑝𝑝𝑒𝑑𝐵𝑙𝑜𝑐𝑘𝑠[𝑐ℎ𝑖𝑙𝑑2]!". The property is then equivalent to the property which was satisfied at 
s0. □ 

 Kernel Data Isolation. The current partition is not modified, which means the focus is set on 
the child partition child. 

Because the service calls only consider parent-child relationships, three cases must be covered 
here: 1) partition1 and partition2 are the same partition, 2) partition1 is partition2's parent, and 
3) partition2 is partition1's parent. 

All cases are split in two possibilities: a) partition1 is the child in addMemoryBlock b) 
partition2 is the child in addMemoryBlock. All in all, six cases must be considered. However, 
the configuration blocks are not modified for any partition, not even the child in 
addMemoryBlock, and so equal at s0 and s’, therefore we need to prove: 
∀𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛1, 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛2 ∈ 𝑃𝑎𝑟𝑡𝑇𝑟𝑒𝑒,	
∀𝑏𝑙𝑜𝑐𝑘𝐴𝑑𝑑𝑟 ∈ 𝐴𝑙𝑙𝑃𝑎𝑑𝑑𝑟K𝐴𝑐𝑐𝑒𝑠𝑠𝑖𝑏𝑙𝑒𝑀𝑎𝑝𝑝𝑒𝑑𝐵𝑙𝑜𝑐𝑘𝑠[𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛1]L

!!
,	

𝑏𝑙𝑜𝑐𝑘𝐴𝑑𝑑𝑟Ï𝐴𝑙𝑙𝑃𝑎𝑑𝑑𝑟K𝐶𝑜𝑛𝑓𝑖𝑔𝐵𝑙𝑜𝑐𝑘𝑠[𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛2]L
!"
.	

This means the proof path is only crucial for changes in partition1, so possibility a). 

Indeed, in any other combination with possibility b), partition1 is different from the child in 
addMemoryBlock so its memory blocks are unchanged and so it leads to the initial state s0 
(𝐴𝑙𝑙𝑃𝑎𝑑𝑑𝑟K𝐴𝑐𝑐𝑒𝑠𝑠𝑖𝑏𝑙𝑒𝑀𝑎𝑝𝑝𝑒𝑑𝐵𝑙𝑜𝑐𝑘𝑠[𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛1]L

!#
=

𝐴𝑙𝑙𝑃𝑎𝑑𝑑𝑟K𝐴𝑐𝑐𝑒𝑠𝑠𝑖𝑏𝑙𝑒𝑀𝑎𝑝𝑝𝑒𝑑𝐵𝑙𝑜𝑐𝑘𝑠[𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛1]L
!"

) when the property is assumed true.□ 

Case 1 a) : partition1 and partition2 are the same partition, so the child in addMemoryBlock. 

An accessible memory block from the child is either one of the initial blocks or the newly copied 
block from the parent. Because the property is satisfied at the initial state, if it is one of the initial 
blocks, the proof is trivial. □ 

If the block is the newly added one, we know it is also part of the parent's memory space, 
especially at the initial state s0. Because there are no restrictions on relationships between 
partition1 and partition2 in the expression of the security property, the property is true at the 
initial state, especially for partition1 being the parent partition and partition2 being the child.  The 
parent partition's accessible blocks did not change after service execution, so still the same set as 
at the initial state where the copied block belonged to this set. The property was satisfied at the 
initial state. □  

Case 2 a) : with the child in addMemoryBlock being partition1, we know 
𝐴𝑐𝑐𝑒𝑠𝑠𝑖𝑏𝑙𝑒𝑀𝑎𝑝𝑝𝑒𝑑𝐵𝑙𝑜𝑐𝑘𝑠[𝑐ℎ𝑖𝑙𝑑]!! = 𝐴𝑐𝑐𝑒𝑠𝑠𝑖𝑏𝑙𝑒𝑀𝑎𝑝𝑝𝑒𝑑𝐵𝑙𝑜𝑐𝑘𝑠[𝑐ℎ𝑖𝑙𝑑1]!" ++𝑏𝑙𝑜𝑐𝑘𝑇𝑜𝑆ℎ𝑎𝑟𝑒 
because the new added block blockToShare becomes accessible. Hence, two sub-cases: either we 
consider an address addr in the initial accessible blocks or in blockToShare. Furthermore, the 
service does not affect any partition except the current partition and the child in 
addMemoryBlock, so especially does not modify the eventual descendants of this child. Thus, 
the memory spaces of the children, notably for partition2, are unchanged compared to the initial 
state s0, and especially their configuration blocks: 𝐶𝑜𝑛𝑓𝑖𝑔𝐵𝑙𝑜𝑐𝑘𝑠[𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛2]!! =
𝐶𝑜𝑛𝑓𝑖𝑔𝐵𝑙𝑜𝑐𝑘𝑠[𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛2]!"  The first sub-case is then trivially verified because the security 
property is assumed true at s0 for the same combination of partition1 and partition2. □  

For the second sub-case, we need to consider another combination for the security property at s0, 
taking the parent (current) partition of addMemoryBlock and partition2, i.e.: 
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𝑎𝑑𝑑𝑟 ∈ 𝐴𝑙𝑙𝑃𝑎𝑑𝑑𝑟K𝐴𝑐𝑐𝑒𝑠𝑠𝑖𝑏𝑙𝑒𝑀𝑎𝑝𝑝𝑒𝑑𝐵𝑙𝑜𝑐𝑘𝑠[𝑐𝑢𝑟𝑟𝑒𝑛𝑡]L
!"
,	

𝑎𝑑𝑑𝑟	Ï	𝐴𝑙𝑙𝑃𝑎𝑑𝑑𝑟K𝐶𝑜𝑛𝑓𝑖𝑔𝐵𝑙𝑜𝑐𝑘𝑠[𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛2]L
!"
.	

Indeed, 𝑏𝑙𝑜𝑐𝑘𝑇𝑜𝑆ℎ𝑎𝑟𝑒	 ∈ 𝐴𝑐𝑐𝑒𝑠𝑠𝑖𝑏𝑙𝑒𝑀𝑎𝑝𝑝𝑒𝑑𝐵𝑙𝑜𝑐𝑘𝑠[𝑐𝑢𝑟𝑟𝑒𝑛𝑡]!" because of the Vertical Sharing 
property and the fact that it is this block that is copied into the child partition1 during 
addMemoryBlock so it must be accessible as verified in the check phase of the service.  This 
means addr also lies in one of the initial accessible blocks of the current partition when the 
property is assumed true. □  

Case 3 a) : partition2 is the parent (current) partition of the child in addMemoryBlock. 

Similar to discussed previously, the configuration blocks of the child and the accessible mapped 
blocks of the parent are untouched after executing the service, so 𝐶𝑜𝑛𝑓𝑖𝑔𝐵𝑙𝑜𝑐𝑘𝑠[𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛2]!! =
𝐶𝑜𝑛𝑓𝑖𝑔𝐵𝑙𝑜𝑐𝑘𝑠[𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛2]!" ∧ 𝐴𝑙𝑙𝑃𝑎𝑑𝑑𝑟K𝐴𝑐𝑐𝑒𝑠𝑠𝑖𝑏𝑙𝑒𝑀𝑎𝑝𝑝𝑒𝑑𝐵𝑙𝑜𝑐𝑘𝑠[𝑐𝑢𝑟𝑟𝑒𝑛𝑡]L!! =
𝐴𝑙𝑙𝑃𝑎𝑑𝑑𝑟K𝐴𝑐𝑐𝑒𝑠𝑠𝑖𝑏𝑙𝑒𝑀𝑎𝑝𝑝𝑒𝑑𝐵𝑙𝑜𝑐𝑘𝑠[𝑐𝑢𝑟𝑟𝑒𝑛𝑡]L

!"
. This is equivalent to proving the property at s0 

which is assumed to be true. □ 

7. EVALUATION OF PIP-MPU'S PROOF DEVELOPMENT 
We evaluate the proof development with common metrics linked to formal verification. 

7.1. Proof setup 
The proofs are developed using the CoqIDE 8.13.1 on an ArchLinux 5.18.1 distribution. The tools 
run on an HP ZenBook G4 17 provided with a 64-bit Intel i7-7820HQ 4-core CPU, 16 GB RAM, 
16 GB swap space, 155 GB SSD usable space. The security properties are proven apart from the 
consistency properties for the modification service. 

7.2. Results 
Three services have been completely proven : readMPU, findBlock and 
addMemoryBlock.  

Table 3 provides proof metrics on the proof development process (formalisation and the 
verification stages) and summarizes the current status of the proof development.  

The metrics on the invariants provide information on the number of consistency properties and 
security properties. The invariants are also written (specified) in Gallina and the number of SLOC 
reports the total size of the properties, trimmed from comments. The formalisation stage considers 
three phases: the HW specification understanding, the design phase, and the Coq model 
implementation. The first phase consisted in collecting, reading, and combining various sources 
on the target HW platform [23, 31, 47, 48, 49]. The design phase includes any conversations, 
thinking time, methodological reflections, paper trials that finally converged to services in 
pseudo-code which were eventually translated in Python scripts for simulation purposes. The last 
phase required a full model implementation by forking the Pip (MMU) project [40] and by 
adapting the model to a hardware without virtual memory and modifying the kernel structures to 
match Pip-MPU's design, given the Python implementation. Duration is estimated based on status 
advancement reports and code versioning history.  

We do include in our time estimation the time spent to prove the proof levels of the low-level 
HAL primitives because they are proved along the way, when used by a service. However, 
because the primitives are very similar, the individual proofs are basically small adaptations of 
the proofs on other primitives, so the duration is negligible compared to the development of the 
services. The proof development metrics gather the number of Gallina lines of the services and 
corresponding Coq proof lines to prove them (without internal functions and lemmas). The 
number of lines is computed after removing all comments. However, this method does not really 
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capture the number of necessary steps in the proof development process because a great number 
of variables are split over several lines and because there could be several tactics on the same line. 
So we also estimate the proof effort regarding the number of used tactics which are terms of the 
language used by the prover and the way the proof developer interacts with it. They are 
instructions capturing the logical reasoning and intuition of the proof developer in understandable 
language to the prover. The number of tactics is computed by removing all comments and proof 
specifications and counting the number of instructions ending with a dot or semi-colon. 

Table 2: Proof status and effort. 

Proof status  

Services  
  # services 15 
# fully verified services 3 

Invariants 
# consistency properties 29 
# security properties 3 
Total invariant properties 32 
Consistency properties SLOC 129 
Security properties SLOC 14 
Total properties SLOC 143 

Proof development  

Formalisation 
Duration of HW specification 
understanding 

2 months 

Duration of design phase 9 months 
(including 2 months Python simulation) 

Duration of model implementation in 
Coq 

2 months  

Duration of service development in Coq 2 months  
 

readMPU   findBlock addMemoryBlock 
# SLOC (w/o HAL)  11 14 25  
Proofs All properties Consistency 

properties 
Security 

properties 
# LOP (Lines of Proof) 76 81 8572 1607 
# tactics 90 93 8883 842 
Ratio #LOP/SLOC 6.9 5.8 342.8 64.3 
Ratio #tactics/SLOC 8.18 6.6 355.3 33.7 
Duration of proof development 2 days 4 hours 9 months 4 days 
person-month (estimate) 0.09 0.02 6 0.18 
Ratio person-month/LOC 0.008 0.0014 0.22 0.0072 
Duration of proof compilation 0.5s 0.4s 939s (15.65 

min) 
127s (2.1 min) 

Memory footprint during proof 
compilation 

400 MB 400 MB 5000 MB 900 MB 

CPU usage during proof compilation 100% 110% 115 % 105% 
Proof coverage (estimate) 100% 100% 100% 100% 
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We report the human time spent during the verification of each service estimated via the code 
versioning history. Note that findBlock has about the same number of SLOC (Source Lines of 
Code) and LOP (Lines of Proof) as readMPU, but is proved in some hours instead of days. 
Indeed, they share a lot of common functions and lemmas, and so the findBlock proof recycled a 
lot from the previous proof, drastically diminishing the proof effort.  

The compilation of all proofs on the host machine in charge of the proof development is expressed 
in time, CPU usage and memory footprint. The measurements are recorded by using the 
psrecord tool (https://github.com/astrofrog/psrecord), as illustrated with addMemoryBlock 
in Figure 3. They do not include the compilation time to prove their dependency lemmas (that 
could be common between different services), just the main lemma. 

Figure 3: CPU and memory usage during the proof compilation of addMemoryBlock 

The proof coverage estimation gives the completion rates of each service. 

7.3. Bug discovery during the verification 
The verification process unveiled a bug in the addMemoryBlock service. Indeed, the check 
phase omitted to verify if the block to be shared with the child partition was not already shared 
with another partition. This would have had the undesired effect that a block would be present in 
several children, which would break the isolation property. As a matter of fact, the bug was 
discovered during the proofs of the security properties, where it was impossible to conclude. 
Indeed, it was impossible to demonstrate the Horizontal Isolation property with evidence from 
the proof context that no other partition, except its ancestors, already contained the block to be 
shared with the child partition. A quick analysis of the code showed this faulty state was possible 
to reach. A bug affecting the security properties would never pass because of this impossibility to 
conclude and is not due because of a lack of skills of the proof developer or functionality of the 
theorem prover. Except for the case where information is missing from the proof context, a latter 
where hypotheses would be inconsistent with oneanother would not let us finalise the proofs as 
well. The lack of hypotheses or inconsistent ones stopping the demonstration of a proof goal is a 
stringent point for the soundness of the approach and is assured by the theorem prover. 
Furthermore, the instant in the proofs where the demonstration stops clearly points out the 
inconsistency, and gives a sense of how to correct the code to not fall into this unexpected 
situation. This demonstrates the very essence of formal verification to detect such situations. It 
also exhibits that severe bugs can be found even in a small code base which focuses on security. 
Bug discovery is documented in other formal verification projects [25, 39, 46]. This bug also 
stresses what is and what is not claimed in this formal verification process. The only properties 
that are proved are the isolation invariant and no proofs concern functional properties. This remark 
also refers to other security policies than Pip's, for example, the isolation invariant is not 
concerned about the read, write, and execution rights of the memory blocks. 
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8. DISCUSSION AND PERSPECTIVES 
Our results demonstrate higher assurance in Pip-MPU's isolation property by formal verification. 
We discuss in this section related assumptions and consequences. 

8.1. Proof status 
While only some kernel services of the full set have been fully formally verified, we are confident 
in the possibility to finish the proof because we addressed and completed proofs from the two 
proof categories (i.e. with and without state modifications). They lay the foundations for the other 
services. A future challenge is to show the proof framework is also correctly working for the type 
of service that destructs kernel elements, such as removeMemoryBlock, instead of services 
that create kernel elements like addMemoryBlock. Nevertheless, the approach already showed 
an important spin-off with the bug discovery. 

8.2. Proof development 
Many parts of the proof script were eluded in this paper for the sake of clarity by focusing on the 
crucial moments of the proof. Additional constraints on kernel structures, for example bounded 
values for a certain type, are not discussed here but are present in the full proof script. In addition 
to that, proof development is still in its infancy with research efforts trying to rationalise the 
process from scratch to proof maintenance [51, 52, 54]. Future work aims to find new proof 
techniques to decrease the overall proof effort, equally desired by proof experts than newcomers. 

8.3. Proof metrics 
Presented proof metrics give an idea of the underlying proof effort, however, must not be taken 
as raw metrics without further discussion.  

On the Coq model implementation, the consistency properties are introduced as the proofs of the 
services evolve, i.e. proof scripts are developed when needed and not by anticipation. Meanwhile, 
it means the formalisation is still ongoing and the duration reflects the time spent to cover the 
three services fully addressed until now, but could increase in the future due to new properties.   

While the SLOC shows a quantitative measure of the proof effort, it does not indicate a 
transferable metric to other systems or other developers that would develop the proofs differently 
according to their style (for example in terms of structure, proof context reorganisation, or use of 
lemmas to generalise situations). Duplicates are clearly indicated in the proof script for future 
maintenance. The goal of this work was to prove the security properties, however, the means to 
achieve it are infinite and not optimised. In other words, many parts are copies of other proofs, 
wordy, and might only exist for human clarity while being useless for the prover, which does not 
reflect neither the time spent on the proof nor the difficulty of the task. This is also emphasised 
in other formal verification projects [46]. 

In addition to that, the person-month/SLOC ratio gives us an idea of the average effort to prove a 
single line of code. In Pip-MPU, we can take the overall person-month estimate (6.29) and the 
current number of verified instructions (50) to compute the estimate of 0.13 person-month by line 
of code. We can compare the time spent just to prove the security properties, as it is done 
separately in seL4 [55] on the abstract model and directly on the concrete model in Pip-MPU. For 
seL4, this leads to a ratio of 0.0066 person-month per line of code, whereas in Pip-MPU it is at 
worst 0.0072 for addMemoryBlock, so remarkably close, and because there is no proof effort 
in readMPU and findBlock it leads to an average of 0.0036 for the time being, so twice 
better.  
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8.4. Proof assumptions 
Incorrect assumptions imply a false context, which means everything can be proven out of it. Our 
assumptions are mostly similar to Pip (MMU) [39] and other formally verified kernels [24, 28, 
30] in a broader perspective.  

Indeed, the trustworthiness of the proofs depends on: 
• the used tools: the Coq kernel, gcc, which could be replaced by CompCert (a formally 

proven C compiler), and Digger (a custom tool that provides a literal translation from 
Gallina to C) which could be replaced by its verified equivalent dx to increase confidence; 

•  the correctness of the model: we considered a simplified hardware model (memory 
layout, MPU) which captures the basic functionalities of the hardware platform because 
their formal specification does not exist yet. One way to increase confidence would be to 
play the proofs on a formal model of the hardware. It could be directly handed over by 
processor manufacturers, like recent efforts on the ARMv8-A architecture [55] (not 
available for Cortex-M devices), on which we would directly “plug” our proofs. Our 
hardware state assumes the kernel manipulates a writable non-volatile memory and we 
assume no external influence can affect memory without bypassing the MPU control. In 
particular, we consider either peripherals like the DMA (Direct Memory Access) not 
existing or disabled, like other verified kernels [46, 56]. Recent research showed the 
DMA could be used even in strict secure environments [13, 44]. Pip (MMU) already does 
this by controlling that the configuration registers of the DMA are valid to the partition 
accessing them, and is currently being adapted to Pip-MPU by our development team. 
Another concern is that the low-level primitives of the HAL might not reflect the real C 
implementation that is manually written and so not checked. In other words, wrongly 
implemented C primitives could do something else than what was expected in the Coq 
model. The probability of such an event is considered low because the primitives are 
composed of a small amount of C lines (around 5 lines on average) and directly 
correspond, literally, to their Coq model counterparts; 

• the hardware implementation and deltas with its specification: we must trust a correct 
implementation of the hardware platform, and that the implementation itself is consistent. 
We assume that the MPU is working correctly (physical failures or attacks) and that the 
memory controller correctly writes and reads the values that are passed by the HAL 
primitives. ; 

• the specification of the isolation invariant: the security properties and all consistency 
properties, could be incorrect. However, many similarities exist between Pip (MMU) and 
Pip-MPU which seeks the same proof goal. Pip (MMU) proved an equivalence with the 
isolation formalised by Rushby [1, 57] and so we are confident about our specification. ; 

• the bootstrapping phase : we assume a secure state at each service execution. The code 
base is limited (< 10 KB [37]) and we take extra care to bootstrap the system to correctly 
prepare and launch the root partition in a state which satisfies the isolation invariant. 

9. CONCLUSION 
This paper considers the minimalist separation kernel Pip-MPU and presents the formal 
verification of its isolation property. Pip-MPU brings high isolation flexibility for constrained 
devices and is derived from the formally verified Pip protokernel. Pip-MPU replicates Pip's spatial 
memory partitioning model and so its security properties, including isolation, must also be 
satisfied. Even though functionally equivalent, Pip-MPU’s code is completely refactored because 
of the MMU to MPU transposition causing major structural differences. Pip’s formal proofs are 
thus not applicable any more for Pip-MPU. In this paper, we retain Pip’s formal verification 
approach on the concrete model and propose equivalent security properties by introducing an 
MPU model and similar low-level invariants. We demonstrate the formal verification approach 
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on two read-only services and one service that modifies the state with writing instructions. The 
publicly released proofs have been implemented and checked using the Coq Proof Assistant, 

thereby validating a formal approach directly on a concrete model and helping the discovery of a 

critical bug related to isolation. 
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APPENDIX 
 

A. PIP/PIP-MPU Executable and Proof Workflow 

 

 
 

Figure 4: Pip/Pip-MPU workflow: proofs and executable. 
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