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Abstract. We address the problem of learning Deep Learning Radiomics
(DLR) that are not redundant with Hand-Crafted Radiomics (HCR). To
do so, we extract DLR features using a VAE while enforcing their in-
dependence with HCR features by minimizing their mutual information.
The resulting DLR features can be combined with hand-crafted ones and
leveraged by a classifier to predict early markers of cancer. We illustrate
our method on four early markers of pancreatic cancer and validate it on
a large independent test set. Our results highlight the value of combining
non-redundant DLR and HCR features, as evidenced by an improvement
in the Area Under the Curve compared to baseline methods that do not
address redundancy or solely rely on HCR features.

Keywords: Early Diagnosis · Pancreatic Cancer · Radiomics · Varia-
tional Autoencoders · Mutual Information

1 Introduction

Computational methods in medical imaging hold the potential to support radi-
ologists in the early diagnosis of cancer, either by detecting small-size abnormal
neoplasms [14], or even earlier in the disease course by recognizing indirect signs
of malignancy. Such signs are usually subtle and organ-dependent, thus requir-
ing a time-consuming and demanding clinical assessment. For example, in the
case of pancreatic cancer, radiologists analyze the overall shape of the organ,
check for fat replacement and note whether the pancreas shows atrophy and/or
senile characteristics [7, 18, 19]. The identification of cancerous signs using au-
tomated tools can be based on radiomics, which are descriptors of texture and
shape of a medical image, computed based on spatial relationships between vox-
els and their intensity distribution [11, 12]. Radiomics can be divided into two
categories: (i) Hand-Crafted Radiomics (HCR), which are based on predefined
mathematical formulas [11,12]; (ii) Deep Learning Radiomics (DLR), estimated
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using deep neural networks [10, 23], which may unveil additional complex rela-
tionships between voxels. HCR are generally extracted by open-source frame-
works such as pyradiomics [24]. While such tools facilitate the standardization
of the HCR, they only provide a limited number of predefined features. On the
other hand, DLR features are typically extracted using either discriminative
or generative models. Discriminative models frequently rely on one or multiple
simple CNNs [3–5, 13, 20]. To prevent overfitting, some methods extract DLR
by utilizing pretrained models trained on large datasets like ImageNet [3, 5, 20].
The deep neural networks commonly employed for computing these DLR fea-
tures consist of multiple layers, with each layer producing potential features as
its output. As a result, the choice of the layers to retain varies, with each method
employing different heuristics to identify them [5,20]. In the realm of generative
models, auto-encoder (AE) networks are widely used [2]. AEs encode an image
in a latent vector that is subsequently used to reconstruct the original image.
This latent vector is considered to encapsulate the most descriptive features of
the input image, making it a natural choice for representing the DLR [10,21].

The two types of radiomics are complementary: the computation of DLR
is data-driven, which ensures that the extracted features are adapted to a spe-
cific problem or type of data. On the other hand, the predefined and generic
definitions of HCR may make them less adapted for a given specific task, but
favors generalization and interpretability. Therefore, it has been recently pro-
posed to combine HCR with DLR, arguing that this approach could result in an
improved feature set for predictive or prognostic models [2]. The literature re-
ports two main approaches to perform this combination: decision-level methods
that train separate classifiers on DLR and HCR before aggregating their predic-
tions [3, 5, 16], and feature-level methods that concatenate the two types of ra-
diomics in a single feature vector which is then leveraged by a classifier [4,13,20].
These approaches extract HCR and DLR features independently, without guar-
anteeing complementarity between the two sets of features. As a result, the
extracted DLR may be highly redundant with the HCR, limiting the value of
their combination.

Given this context, we propose to extract DLR features that will complement
the information already contained in the HCR. Our contributions are two-fold:

– A deep learning method, based on the VAE framework [9], that extracts non-
redundant DLR features with respect to a predetermined set of HCR. This
is achieved by minimizing the mutual information between the two types
of radiomics during the training of the VAE. The resulting HCR and DLR
features are leveraged to predict early markers of cancer.

– Validation of the proposed approach in the case of pancreatic cancer, using
2319 training and 1094 test subjects collected from 9 medical institutions
with a split performed at the institution level. This is all the more im-
portant as most combination approaches have been solely evaluated in a
cross-validation setting on mono-centric data [3, 5, 16].
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Fig. 1. Overview of our method. Starting from a masked image, Hand-Crafted
Radiomics (HCR) are calculated analytically, while Deep Learning Radiomics (DLR)
are extracted by the encoder of a VAE. These two types of radiomics are subsequently
combined and given to the decoder for image reconstruction. The independence of HCR
and DLR is enforced by the minimization of the Mutual Information (MI). The latter
is approximated by the density-ratio trick [8], involving a discriminator Dλ. Following
the training of the VAE, a classifier CM can be trained using both the HCR and DLR
features to predict a specific marker of interest.

2 Method

Our method, illustrated in Figure 1, relies on a generative model that recreates
a 3D input image from the concatenation of HCR and DLR features. Feature
extraction is done analytically for the HCR and through a VAE encoder for the
DLR. Independence between the features is encouraged through the minimiza-
tion of their mutual information, which is estimated by a discriminator relying on
the density-ratio trick [8]. Finally, the resulting features are given to a classifier
for cancer marker prediction.

Generative framework. Let x ∈ RV be a 3D image acquired via a standard
imaging technique, and y ∈ {0, 1}V the corresponding binary segmentation mask
of a given organ, with V the number of voxels. In order to focus on a specific
organ and facilitate the extraction of specific features, we work on the masked
image x∗ = x× y. We postulate the existence of a generative model enabling us
to create an image x∗ from a low-dimensional representation space [h, d] where
h ∈ RNh and d ∈ RNd represent the HCR and DLR features with Nh and Nd

being the number of hand-crafted and deep features, respectively. Assuming that
x∗ follows an independent and identically distributed Gaussian distribution, and
that fθ is a non-linear function mapping the concatenation of vectors [h, d] to
the masked image x∗, we hypothesize the following generative process:

pθ(x
∗ | y, h, d) =

V∏
v=1/yv=1

1√
2πσ2

exp
(x∗

v − fθ([h, d])v)
2

2σ2
(1)
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HCR and DLR features computation. We place ourselves within the
VAE framework [9] and assume that p(d) follows a Gaussian distribution with
zero mean and identity covariance. HCR features are calculated analytically,
while DLR features are computed by introducing the approximate posterior dis-
tribution qϕ(d | x∗). We hypothesize qϕ(d | x∗) ∼ N (µϕ(x

∗), σ2
ϕ(x

∗)I), and
maximize a lower bound of the marginal log-likelihood log pθ(x

∗ | y). We obtain
the following loss function:

LVAE = −Eqϕ(d|x∗)[log(pθ(x
∗ | y, h, d))] +KL[qϕ(d | x∗) | p(d)] (2)

where KL refers to the Kullback-Leibler divergence.
Mutual Information Minimization. To promote the independence be-

tween HCR and DLR features, we propose to minimize their Mutual Informa-
tion (MI), expressed here as KL[q(h, d) | q(h)q(d)], where q(h, d) represents the
joint distribution of the DLR and HCR features, and q(h)q(d) the product of
their marginal distributions. These terms involve mixtures with a large number
of components, making them intractable. Moreover, obtaining the direct Monte
Carlo estimate necessitates processing the entire dataset in a single pass. Thus,
we sample from these distributions to compute the MI: to sample from q(h, d),
we randomly choose an image x∗

i , extract its HCR features hi as well as its
DLR features di using the VAE encoder, and concatenate them. Samples from
q(h)q(d) are obtained by concatenating vectors hk and dj with k ̸= j. Finally,
to compute the MI, we need to compute the density-ratio between q(h, d) and
q(h)q(d). To do so, we resort to the density-ratio trick [8], which consists in in-
troducing a discriminator Dλ([h, d]) able to discriminate between samples from
q(h, d) and samples from q(h)q(d). Thus, we obtain:

KL[q(h, d) | q(h)q(d)] = Eq(h,d)

[
log

q(h, d)

q(h)q(d)

]
≈

∑
i

ReLU

([
log

Dλ(hi, di)

1−Dλ(hi, di)

])
.

(3)

where the ReLU function forces the estimate of the MI to be positive, which
prevents from back-propagating wrong estimates of the density-ratio. Dλ imple-
mentation is detailed in Section 6.1 of the appendix.

Optimization. The final loss function is:

L = LVAE + κKL[q(h, d) | q(h)q(d)] (4)

This loss function is composed of two terms: the left-hand term, which is the com-
mon VAE loss function and promotes the reconstruction of the masked image
while regularizing the approximate posterior distribution; and the right-hand
term which minimizes the MI between q(h, d) and q(h)q(d), and enforces the
extraction of DLR features which are not redundant with HCR features. The
importance of the MI in the loss function is weighted by κ, which we empiri-
cally set to 1 (see Section 6.2 of the appendix for more details). To ensure that
the density-ratio is well-estimated, as explained in [8], we opt for an alternate
optimization scheme between the VAE model and the discriminator Dλ: every 5
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Fig. 2. Portal CT scans showing early markers of pancreatic cancer. Pancreas
are delineated in orange. (A) shows a normal pancreas. White arrows indicate an
abnormal enlarged tail (B), a parenchymal atrophy (C), fat replacement in the neck of
the pancreas (D) and senile characteristics (E).

epochs, we freeze the optimization of the VAE, train the discriminator for 150
epochs, and continue the optimization of the VAE model.

Early cancer markers prediction. Once the VAE model is trained, DLR
can be extracted and leveraged to predict cancer markers. We propose to train,
for each marker of interest, a classifier CM based on the concatenation of HCR
and DLR extracted by our model. Unlike VAE training, which is unsupervised
and task-agnostic, CM training is supervised and specific to a cancer marker.

3 Experiments

We illustrate our method on the pancreas, for which we aim to predict four early
markers of abnormality that manifest prior to the onset of visible lesions:

(i) Abnormal shape: Changes in the shape of the pancreas can be associated
with pancreatic cancer as the tumor growth can lead to various structural
changes in the pancreas [15,25];

(ii) Atrophy: Pancreatic atrophy may signal pancreatic cancer [19] and can in-
dicate small isodense lesions [26];

(iii) Fat replacement: Fat replacement is characterized by the accumulation of
fat within the pancreas and is associated with various metabolic diseases,
pancreatitis, pancreatic cancer, and precancer [7, 17, 19]. While this mainly
modifies the texture, severe fat replacement can also affect the shape by
inducing lobulated margins;

(iv) Senility: Anatomical changes in the pancreas, such as pancreatic atrophy,
fatty replacement and fibrosis have been documented in elderly individuals
and increase the susceptibility of individuals to pancreatic cancer [7, 18].

These early signs are illustrated in Figure 2.
Dataset. Data were obtained from our private cohort and split into two inde-

pendent datasets DTrain and DTest, containing 2319 and 1094 abdominal portal
CT scans from six and three independent medical centers, respectively. The ref-
erence labels regarding the early markers previously described were obtained
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based on the assessment of the CT scan by a pool of 7 radiologists. Reference
labels were collected for 676 cases of DTrain and all the subjects from DTest.

Preprocessing. For all the subjects, pancreas segmentation masks were ob-
tained using a segmentation model derived from the nnU-Net [6] and manually
reviewed by radiologists. The CT images and corresponding masks were resam-
pled to 1×1×2 mm3 in the (x, y, z) directions, and centered in a volume of size
192×128×64 voxels. Images intensities were clipped to the [0.5, 99.5] percentiles
and standardized based on the percentiles, mean and standard deviation of the
pancreas intensities in DTrain.

Extracting HCR and DLR. 32 HCR features were extracted utilizing the
pyradiomics library [24], focusing exclusively on shape and first-order intensity
features (see Section 6.3 in the appendix for the comprehensive list). Comple-
mentary DLR features were extracted using the VAE model of Section 2. The
architecture followed the U-Net [22] encoder-decoder scheme without skip con-
nections. The number of convolutional layers and the convolutional blocks were
automatically inferred thanks to the nnU-Net self-configuring procedure [6] (see
Section 6.4 in the appendix for details). The model was trained on DTrain for
1000 epochs. The dimension of DLR features d was set to 32, resulting in a fi-
nal latent space dimension for the VAE of 64. Data augmentation consisting of
rotation and cropping was applied during training.

Predicting early cancer markers. For each marker, a logistic regression
was trained based on the concatenation of HCR and DLR features extracted
from the subjects in DTrain for whom reference labels were available. The lo-
gistic regression was regularized using L2 penalty, with a default regularization
coefficient of 1. Final predictions for DTest were derived by ensembling models
obtained through a four-fold cross-validation setup.

4 Results

Quantitative results. To demonstrate the usefulness of extracting DLR with
MI minimization, two VAEs were trained. Both followed the same procedure
(detailed in Figure 1) but differed only in the presence or absence of the MI
minimization term in their loss function. Then, several logistic regression models
with different inputs were trained in order to assess the effect of combining HCR
and DLR features. In total, the following experiments were run:

– HCR only: H32 and H64. These two experiments use the 32 basic HCR
features described in Section 6.3 of the appendix, and H64 uses a further
32 HCR gray-level features calculated by the pyradiomics library [24] and
selected by recursive feature elimination.

– DLR only: DMI
32 and D32. 32 DLR features extracted by a VAE with and

without MI minimization, respectively;
– HCR + DLR: HDMI

64 and HD64. 32 basic HCR features + 32 DLR features
extracted by a VAE with and without MI minimization, respectively.
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Thus, the logistic regressions of H32, D32 and DMI
32 used vectors of size 32, while

those of H64, HD64 and HDMI
64 used vectors of size 64. Prediction results for each

of the four cancer markers are presented in Table 1.

Table 1. Pancreatic cancer marker prediction. For each experiment, we report
the means and standard deviations of the AUC (in %) obtained by bootstrapping with
10000 repetitions. For each line, first and second best results are in bold and underlined,
respectively. The last row shows the difference in AUC compared with H32, averaged
over the different markers. DLR and HCR refer to Deep Learning Radiomics and Hand-
Crafted Radiomics, respectively.

HCR only DLR only HCR + DLR
H32 H64 D32 DMI

32 HD64 HDMI
64

Abnormal Shape 68.38±0.07 68.11±0.07 67.66±0.07 72.41±0.07 71.2±0.07 70.07±0.07
Atrophy 81.05±0.06 81.57±0.05 74.08±0.07 79.08±0.06 80.82±0.06 82.57±0.06

Fat Replacement 70.55±0.07 69.78±0.08 65.96±0.08 65.74±0.07 69.28±0.08 71.05±0.07
Senility 71.63±0.08 70.21±0.08 70.18±0.07 69.1±0.08 72.28±0.08 72.44±0.07

δ w.r.t H32 - -0.48±0.07 -3.43±0.07 -1.32±0.07 0.49±0.07 1.13±0.07

The comparison between H32 and H64 showed that adding 32 gray-level HCR
features was not beneficial as results were similar, or even decreased: for in-
stance, for senility, the AUC went from 71.63 % (H32) to 70.21 % (H64). On
average, the AUC of H64 lost -0.48 points compared with H32. These experi-
ments demonstrated the power of the 32 basic HCR features, and the need to
find complementary features that would add value.

Then, for almost all markers, H32 outperformed D32 and DMI
32 , meaning that

no VAE, whether trained with or without MI minimization, managed to auto-
matically extract 32 DLR features as informative as the 32 basic HCR features
used by H32. For texture-related markers, such as fat replacement and senil-
ity, MI minimization did not produce clear differences. On the other hand, on
shape-related markers, the DLR features learned by DMI

32 were shown to be more
relevant than those learned by D32 with a basic VAE. Thus, on average, DLR
features were better when extracted by a VAE trained with MI minimization,
but still proved less informative than HCR features.

Finally, experiments HD64 and HDMI
64 showed that combining the two types

of radiomics is beneficial since the average AUC gained 0.49 (HD64) and 1.13 %
(HDMI

64 ) compared to H32. Yet, results demonstrated that minimizing the redun-
dancy produced the best results compared with all other approaches. Indeed, in
HD64, adding 32 DLR features produced variable results depending on the mark-
ers: compared to H32, the AUC increased by a maximum of 2.82% for abnormal
shape prediction, and dropped by a maximum of 1.27% for predicting fat replace-
ment. On the other hand, HDMI

64 outperformed H32 on all prediction problems,
meaning that the non-redundant DLR features systematically provided useful
information.
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Influence of the latent space. To explore the influence of the latent space
dimension on the prediction performances, we replicated the HDMI

64 experiment
with increasing size L of the latent space, and reported prediction results in
Table 2. Table 2 shows that increasing the latent space size resulted in lower
classification performances. Specifically, a latent space size of 32 provided the
most relevant DLR features.

Table 2. Pancreatic cancer marker prediction with varying latent space size.
For each experiment, a VAE with Mutual Information (MI) minimization and latent
space size L was trained. Predictions were obtained after training logistic regressions on
32 basic HCR features + L DLR features extracted by a VAE with MI minimization.
We report the means and standard deviations of the AUC (in %) obtained on the
test set by bootstrapping with 10000 repetitions. For each line, first best results are in
bold. DLR and HCR refer to Deep Learning Radiomics and Hand-Crafted Radiomics,
respectively.

L = 32 L = 64 L = 256 L = 512 L = 1024 L = 2048
Abnormal Shape 70.07±0.07 69.02±0.07 68.87±0.07 69.91±0.07 69.33±0.07 68.68±0.07

Atrophy 82.57±0.06 82.28±0.05 81.77±0.06 82.68±0.05 80.9±0.06 80.21±0.06
Fat Replacement 71.05±0.07 70.91±0.07 70.23±0.08 70.45±0.08 69.55±0.07 68.96±0.08

Senility 72.44±0.07 72.02±0.07 70.38±0.08 71.65±0.08 72.03±0.07 69.6±0.08

Qualitative results. To visualize the effect of the extracted DLR features,
we looked at the absolute value of the logistic regression weights for D32 and
DMI

32 in two ways. In Figure 3-A, the absolute value of these coefficients are
displayed. The higher the absolute value of the coefficient, the higher its im-
portance in the logistic regression prediction. When the MI was not minimized,
HCR features had stronger importance than DLR ones. On the other hand, when
we encouraged the independence between the two types of features through MI
minimization, the contribution of DLR features to the prediction increased. Fig-
ure 3-B shows the number of DLR features among the k features with highest
importance, for increasing values of k. HDMI

64 and HD64 are shown in blue and
orange, respectively. In addition, two extreme scenarios are shown: one where the
logistic regression is predominantly influenced by the DLR features (in green),
and another one where the logistic regression is primarily driven by the HCR
features (in red). We can see that the blue curve approached the green curve,
meaning that DLR features from HDMI

64 contributed more to the outcome predic-
tion. When the MI was not minimized, DLR features had less influence on the
predictions as the orange curve approached the scenario in which DLR would be
ignored.

Reconstruction performances. To explore the reconstruction performances
of the VAE, we computed the average l2 error per voxel between the original test
images and their corresponding reconstructions. Upon applying nnU-Net’s [6]
automatic intensity normalization procedure, voxel intensities were observed to
range from −3 to 2.3. Specifically, we employed a VAE with a latent space
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Fig. 3. Qualitative assessment of the Deep Learning Radiomics (DLR) and
Hand-Crafted Radiomics (HCR) features through the coefficients of the
logistic regressions. A: Absolute value of the coefficients of the logistic regressions.
We plot, for each logistic regression corresponding to one marker, the absolute value of
the coefficient for each of the 64 features. The first 32 features corresponded to DLR,
while the 32 remaining features corresponded to HCR. B: Number of DLR features
among the top k features. Dashed lines represent the extreme scenarios in which all 32
DLR are more informative than all 32 HCR (green) or all 32 HCR are more informative
than all 32 DLR (red).

dimension of L = 32 and MI minimization during training. The resulting re-
construction error was found to be (4.4± 1.4)× 10−3, which was comparable to
the l2 error obtained from a VAE trained without MI minimization, amounting
to (4.1 ± 1.4) × 10−3. These observations suggest that the introduction of MI
minimization did not significantly impact the quality of the reconstructed im-
ages, neither resulting in deterioration nor improvement. Additionally, Table 3
further explores the relationship between reconstruction performance and latent
space sizes, demonstrating that increasing the latent space size did not have a
discernible effect on the quality of the reconstructions.

Table 3. Reconstruction performances with varying latent space sizes. For
each experiment, a VAE with Mutual Information minimization and latent space size
L was trained. We report the l2 error per voxel between the original image and its
reconstruction, with voxel intensities varying in [−3, 2.3].

L = 32 L = 64 L = 256 L = 512 L = 1024 L = 2048
l2 error ×103 4.4±1.4 4.4±1.4 4.4±1.4 4.4±1.4 4.3±1.4 4.3±1.5

5 Discussion and conclusion

We presented a method to learn DLR features that are not redundant with
HCR ones. The method was based on the well-known VAE framework [9] that
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extracted DLR features from masked images in an unsupervised manner. The
complementarity between the two types of radiomics features was enforced by
minimizing their MI, and the resulting features were used to train classifiers
predicting different cancer markers. Experiments in the case of four early mark-
ers of pancreatic cancer indicated that our method increased prediction perfor-
mances with respect to two state-of-the-art approaches. These findings suggest
that our approach holds potential to improve patient survival outcomes. Quali-
tative results confirmed the advantages of minimizing the MI during training, as
it resulted in the generation of DLR features that were complementary to HCR
features and more prominently utilized for marker prediction. These results were
obtained on a large and independent test set, which is particularly important as
radiomics models require robust validation strategies to ensure their generaliza-
tion and reproducibility when applied to new datasets [1]. With this in mind,
it might be interesting to further encourage this feature efficiency by imposing
independence between the DLR features themselves. Another research avenue
could be to simplify the proposed pipeline by developing an end-to-end network
capable of performing both feature extraction and classification tasks within a
unified framework. Achieving this objective would necessitate the simultaneous
training of the feature extractor and multiple sub-networks for each classification
task. However, this approach might pose challenges in terms of training complex-
ity, particularly due to the presence of substantial class imbalances across the
various classification tasks. Alternatively, another possibility is to train an end-
to-end convolutional neural network (CNN). Although more direct in nature,
this approach would entail the training of a separate CNN for each question,
which could be computationally heavier compared to the calibration of a logistic
regression based on a single feature extractor, as suggested in our current work.
Future studies should also address the interpretability of the extracted DLR
features, as this aspect was not covered in the present work.

Acknowledgments This work was partly funded by a CIFRE grant from
ANRT # 2020/1448.

6 Appendix

6.1 Estimating the Mutual Information

The Mutual Information (MI) is estimated following the density-ratio trick [8]
which requires to train a discriminator Dλ predicting whether concatenated ra-
diomics vectors [h, d] come from q(h, d) or q(h)q(d). Samples for training Dλ are
obtained following the procedure shown in Figure 4. In practice, Dλ is modeled
as a 2-layer Multi Layer Perceptron with ReLu activation, which is trained by
minimizing a binary cross-entropy (BCE) loss term. Once the discriminator is
trained, the MI between HCR and DLR features can be approximated as follows:

MI(h, d) = Eq(h,d)

[
log

q(h, d)

q(h)q(d)

]
≈

∑
i

ReLU

([
log

Dλ(hi, di)

1−Dλ(hi, di)

])
. (5)



Non-Redundant Combination of Hand-Crafted and Deep Learning Radiomics 11

Fig. 4. Training Dλ. Given three different input images x∗
i , x∗

j and x∗
k, the corre-

sponding HCR and DLR features are computed: hj , hj , hk and di, dj , dk. Samples
from q(h, d) are obtained by concatenating features of a same image (hi and di for
instance), while samples from q(h)q(d) are obtained by concatenating hk and dj with
k ̸= j.

6.2 Influence of the hyperparameter κ

The final loss function for training our model is:

L = LVAE + κKL[q(h, d) | q(h)q(d)] (6)

where κ is a hyperparameter weighting the importance of the the mutual in-
formation in the total loss function. Table 4 reports prediction results obtained
with different values of κ. According to these results, κ was set to 1 in all our
experiments.

Table 4. Cancer marker prediction scores for different values of κ. For each
experiment, we report the means and standard deviations of the AUC (in %) obtained
by bootstrapping with 10000 repetitions. For each line, best result is in bold.

κ = 0.01 κ = 0.1 κ = 1 κ = 10
General Shape 70.44±0.07 70.01±0.07 70.07±0.07 71.03±0.07

Atrophy 80.82±0.05 81.43±0.06 82.57±0.06 80.77±0.06
Fat Replacement 69.52±0.08 70.5±0.07 71.05±0.07 68.65±0.08

Senility 73.14±0.08 72.36±0.08 72.44±0.07 72.38±0.08

6.3 HCR features extraction

32 HCR features were extracted using the pyradiomics library [24]:

– 14 shape features describing the size and shape of the pancreas
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• Mesh Volume
• Voxel Volume
• Surface Area
• Surface Area to Volume ratio
• Sphericity
• Maximum 3D diameter
• Maximum 2D diameter in the axial plane
• Maximum 2D diameter in the coronal plane
• Maximum 2D diameter in the sagittal plane
• Major Axis Length
• Minor Axis Length
• Least Axis Length
• Elongation
• Flatness

– 18 first-order intensity features describing the intensities distribution
within the organ
• Energy
• Total Energy
• Entropy
• Minimum
• 10th percentile
• 90th percentile
• Maximum
• Mean
• Median
• Interquartile Range
• Range
• Mean Absolute Deviation
• Robust Mean Absolute Deviation
• Root Mean Squared
• Skewness
• Kurtosis
• Variance
• Uniformity

More details about each feature can be found on the online documentation.

6.4 Model Architecture

As detailed in Figure 5, the proposed variational autoencoder (VAE) followed a
3D encoder-decoder architecture. The network topology (number of convolutions
per block, filter sizes) was chosen based on the nnU-Net self-configuring proce-
dure [6], resulting in 1, 110, 240 trainable parameters. The VAE was trained on
1000 epochs with a batch size of size 32. Every 5 epochs, the VAE was frozen and
the discriminator Dλ was trained for 150 epochs with a batch size equal to the
total training dataset. The VAE and Dλ were optimized using two independent
Adam optimizers with a learning rate of 10−3.

https://pyradiomics.readthedocs.io/en/latest/features.html
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Input of size (b, 1, 64, 128, 192)
Convolution (filter size F, stride S) + instance norm + leaky ReLU
Convolution (filter size [3, 3, 3], stride [2, 2, 2]) + instance norm + leaky ReLU
Convolution (filter size [3, 3, 3], stride [1, 1, 1]) + instance norm + leaky ReLU
Flattened vector of size (b, 64 x 4 x 4 x 6)
Linear Layer
Vector of size (b, latent dimension)

Sampling: 𝒛 = 𝝁 + 𝝈 ∙ 𝜺,  𝜺 ~ 𝑵 𝟎, 𝑰
Sampled vector z of size (b, latent dimension)
Transposed Convolution (filter size [2, 2, 2], stride [2, 2, 2])
Transposed Convolution (filter size [1, 2, 2], stride [1, 2, 2])
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Output of size (b, 1, 64, 128, 192)
Sigmoid

Std 𝝈

F=
(3

,3
,3

),
 S

=(
1

,1
,1

)

F=
(1

,3
,3

),
 S

=(
1

,1
,1

)

F=
(3

,3
,3

),
 S

=(
1

,2
,2

)

F=
(3

,3
,3

),
 S

=(
1

,1
,1

)

(b, 4, 64, 64, 96) 

(b, 64, 4, 4, 6) 

(b, 8, 32, 32, 48) 

(b, 16, 16, 16, 24) 

(b, 32, 8, 8, 12) 

(b, 1, 64, 128, 192)

Mean 𝝁

𝒛

F=
(1

,1
,1

),
 S

=(
1

,1
,1

)

b = batch size

Fig. 5. Architecture of the proposed VAE
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