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Abstract

In this work we present a complete pipeline to convert CAD models into smooth G1 spline representations, which
are suitable for isogeometric analysis. Starting from a CAD boundary representation of a mechanical object, we
perform an automatic control cage extraction by means of quadrangular faces, such that its limit Catmull-Clark
subdivision surface approximates accurately the input model. Then we compute a basis of the G1 spline space
over the quad mesh in order to carry out least squares fitting over a point cloud, acquired by sampling the original
CAD geometry. The resulting surface is a collection of Bézier patches with G1 regularity, except at the sharp
edges. Finally, we use the basis functions to perform isogeometric analysis simulations of realistic PDEs on the
reconstructed G1 model. The quality of the construction is demonstrated via several numerical examples performed
on a collection of CAD objects presenting various challenging realistic shapes.
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1. Introduction

Shape modelling and analysis are crucial operations
which directly impact engineering and industrial pro-
cesses in many sectors of our society. The last several
decades have witnessed the development of many pow-
erful tools for computer-aided design (CAD), computer-
aided engineering (CAE), and computer-aided manufac-
turing (CAM). These tools assist in handling the complex
computations required to convert from the digital model
of a shape to its actual production. Such computations
can include digital shape description, model reparation,
meshing, numerical simulations, and optimisation. Cur-
rently, they require specific engineering efforts, are time
consuming, and prone to errors and approximations [5],
[11][Chap 1]. This explains why alternative approaches
are under investigation.

Boundary representation (B-rep) is used widely in
solid modelling applications due to its flexibility and
precision when representing manufacturable geometry in
mechanical CAD (MCAD) processes. Whilst B-rep pre-
scribes definitive topological relationships between geo-
metric entities, there is no guarantee of geometric fidelity.
For example, the embedding NURBS surfaces of topolog-
ically neighbouring faces may be C0 discontinuous to an
arbitrary extent at their interface. This is referred to
as geometric sloppiness, the severity of which depends
on the design process employed within the CAD system.
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Furthermore, the topology of the B-rep can be arbitrar-
ily complex, often for reasons no other than being an
artefact of the design process. Fig. 1 shows an example
of a typical MCAD B-rep model, with separate NURBS
surfaces as the geometry for each face.

Figure 1: Top: Shaded MCAD B-rep faces of the KCS ship hull
model, with edges shown in black wireframe. Bottom: Embedding
NURBS patches for each face.

The combination of geometric sloppiness and complex
topology can present serious challenges for CAE appli-
cations and are often a major bottleneck to an effective
design pipeline. Therefore, there is significant appeal in
simplifying both the topology and geometry of the model
(or even select parts of the model) into an alternative
representation which is more suitable for the specific ap-
plication. This is a concept known as hybrid modelling,
and allows the benefits of multiple different representa-
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tions to be exploited. In an effective hybrid modelling en-
gine, a direct link between the alternate representation
and the original MCAD B-rep should always be main-
tained. This is especially important during the design of
manufacturable parts, where MCAD B-rep is considered
the standard format.

Subdivision surfaces [39, 33] are one example of an
alternative geometry type which has benefits over tra-
ditional NURBS patches due to their arbitrary topol-
ogy via the introduction of extraordinary vertices (EVs).
This means that a single subdivision surface can be used
to represent an entire B-rep body comprised of many
contiguous faces, with arbitrary topological complexity.
This contrasts with the strictly rectangular nature of
NURBS which dictates the need for multiple adjacent
patches. Such alternative representation may be of par-
ticular interest for design optimisation processes, wherein
subdivisions surfaces may act as a proxy to the MCAD
geometry for convenient manipulation. Within a hy-
brid modelling framework, subdivision surfaces may be
treated just as any other embedding geometry for a B-rep
face. This is crucial for the hybrid concept as it allows
full compatibility with pre-existing operations offered by
geometry engine software.

One of the limitations of the widely used Catmull-
Clark scheme [10] is that the limit surface has zero cross-
curvature at the boundary. In the fields of computer
graphics and animation, this is rarely an obstacle to
achieving results. Many implementations, such as the
OpenSubdiv library from Pixar, allow the application of
sharp or semi-sharp creases to either the boundary or the
interior of the subdivision surface. These tools allow the
creation of features such as fillets and chamfers without
the need for introducing additional control cage vertices.
For engineering purposes however, this does not permit
accurate modelling of real geometries which exhibit cross-
curvature at the boundaries. Furthermore, we generally
require precise control over the external boundaries of
the limit surface so that they behave more similarly to
MCAD edges and can be manipulated as such. These
requirements for engineering-grade subdivision surfaces
can be achieved by the addition of Bézier edge condi-
tions [36].

To analyse the mechanical behaviour of an MCAD
model, a classical approach consists of meshing the shape
from its B-rep description. Then, standard finite element
methods (FEM) can be employed to run numerical sim-
ulations. Computing meshes from MCAD B-rep, which
are suitable for numerical simulation, is not trivial due
to the sloppiness of the geometric description, and the
trimmed NURBS patchwork nature of the shape. More-
over, the meshing process produces piecewise linear ap-
proximations of the shape, which may require expensive
mesh refinement to achieve sufficient accuracy in regions
of high curvature. This is an obstacle for the develop-
ment of high order numerical methods [15]. In recent

years an alternative approach called isogeometric anal-
ysis (IGA) has been proposed to circumvent these diffi-
culties [11]. Rather than involving an expensive mesh-
ing approximation step, it directly exploits the piece-
wise B-spline parametrisation of the shape and associ-
ated B-spline basis functions in order to apply B-spline
based FEM. This approach allows for high order numer-
ical methods, requiring smaller finite element spaces, at
the cost of a more expensive step in assembling the mass
or stiffness matrices. However, this requires the compu-
tation of spline basis functions associated with the given
geometry parametrisation. Furthermore, most applica-
tions of these techniques deal with spline functions asso-
ciated with planar domain partitions.

1.1. Contributions
We present a new scheme for handling MCAD B-rep

models, and for analysing their mechanical and physical
behaviour. It can be decomposed into the following steps:

• Computation of a single control cage, guided by a
subdivision surface.

• Sampling of points on the MCAD B-rep model,
adapted to the control cage partition of the domain
of arbitrary topology.

• Reconstruction of a geometrically smooth surface
from the data points, using the G1 basis functions
associated with the control cage mesh.

• Isogeometric analysis of the mechanical behavior,
using the G1 basis associated with the control cage
mesh.

We emphasise that our process automatically generates a
G1 smooth Bézier surface that represents a target MCAD
B-rep model, while respecting the curvature of the faces.

Our approach to generating control cages guided by
subdivision surfaces from an initial MCAD B-rep model
employs a combination of partitioning and meshing tech-
nology [2] to produce a quad mesh control cage of the do-
main. The full construction process is explained in detail
in section 2.

Moreover, we also compute a basis of the G1 functions
associated with the control cage, and use it for fitting
accurately the MCAD model and running high order nu-
merical simulation via the IGA methodology.

We demonstrate the viability of our approach on real
models from the automotive, shipbuilding, and aerospace
industries, running the full process from the B-rep shape
representation to numerical simulation.

1.2. Positioning
The need to run numerical simulation on CAD mod-

els is ubiquitous in engineering and industry. A classical
approach, which has prevailed in the last few decades, is
to mesh the CAD model and run standard FEM on the
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generated mesh. An entire suite of meshing technolo-
gies has been developed over the years, which today is
commonly integrated into commercial products, or acces-
sible in open source software [16]. The research centred
around meshing geometric models is still very active, for
instance with the generation of quad-meshes suitable for
accurate numerical simulations [6, 38, 12]. However, the
generated mesh remains an approximation of the geomet-
ric model and may require tuned refinement operations
in regions with high error. This leads to complex and
costly optimisation computations to obtain accurate so-
lutions in numerical simulations.

Another trend has been to approximate CAD mod-
els with higher order and more accurate representations
of geometry, which are simple to manipulate. Subdivi-
sion surfaces [39] appeared as possible candidates, due
to their capacities to reproduce B-spline functions in
regular regions, and to represent shapes with complex
topologies. Some works have been developed to con-
vert B-spline representations into subdivision schemes,
[35, 8, 9] or trimmed B-spline representation to subdi-
vision surfaces [36]. In general, the limit surface has
good global approximation properties, but poor geomet-
ric quality around the extraordinary vertices. Moreover,
FEM based on subdivision schemes are not straightfor-
ward to control and require advanced techniques, such
as dedicated quadrature rules, to obtain the expected
precision [26].

An alternative approach to achieve faithful geometric
representation and perform accurate numerical simula-
tion is to use high order elements both for the geometry
and the FEM. An approximate conversion of a Catmull-
Clark subdivision surface into a collection of bicubic B-
spline patches is described in [25]. The resulting surface
is not necessarily smooth. Several works have addressed
the construction of smooth surfaces from (quad) meshes.
See e.g., [31, 14, 32, 18, 7, 23, 27].

To complete our pipeline, we also need to compute
bases of spline functional spaces over the computed ge-
ometry. The analysis of spline spaces over planar do-
mains is well-developed, though many open problems
still remain (see e.g., [1, 19, 34, 24, 30] and references
therein). The analysis of G1 spline spaces is much less
investigated [29, 20, 21, 22, 3, 4, 28]. We use these re-
cent basis constructions both to construct an accurate
representation of the geometry and to obtain functional
elements of high order in IGA simulations.

2. Control cage generation from MCAD geome-
try

In this section, we detail the construction of the control
cage from the boundary representation of a model. The
foundation to our approach is to represent each MCAD
edge with a cubic B-spline with a multiplicity-4 knot at
each end. This allows the end curvature to be controlled

by so-called slope control points which are not themselves
part of the control cage topology (Fig. 2). These can
equally be thought of as tangent vectors stored at the
ends of the spline.

Figure 2: Schematic of a cubic B-spline with knot vector
[0,0,0,0,1,2,3,4,. . . ]. The slope control point is shown in red, and
all other control points in blue. The location of the red point influ-
ences the shape of the spline only within the first two knot spans.

The limit surface is then defined to be the tensor prod-
uct surface of the boundary B-splines. Since the slope
control points effect only the first two knot spans, it fol-
lows that the first two layers of patches depart from the
usual behaviour of the regular regions of a Catmull-Clark
subdivision surface (i.e., away from the EVs). This mod-
ification constitues the addition of Bézier edge conditions
to the standard Catmull-Clark scheme [36], and is illus-
trated by Fig. 3. The 3D location of the limit surface
at the boundary is influenced only by the control points
on the boundary. Therefore, neighbouring control cages
sharing the same boundary control points will maintain
at least C0-continuity between their limit surfaces, re-
gardless of the positions of the interior control points, or
the slope control points.

Figure 3: Left: Schematic showing the application of Bézier edge
conditions to a subdivision surface. The red lines represent the
rows of control points which approximate the MCAD edges as cu-
bic B-splines. The blue dashed lines represent the rows of slope
control points. Shaded patches are defined using the tensor prod-
uct of the boundary B-splines, and the unshaded patches are the
usual regular bicubic B-spline patches. Right: 3D control cage
with vectors pointing to the implied positions of the slope control
points. Each boundary control point stores one vector, whereas
the corners store three.

The use of Bézier edge conditions imposes strict topo-
logical requirements upon the control cage. Namely, no
EV may be placed on the boundary, nor within the first
two layers of control cage faces, due to the tensor product
nature of the limit surface within these regions.

These topological constraints, to which engineering-
grade subdivision surfaces must adhere, pose challenges
when generating a suitable control cage. Each MCAD
vertex must be treated as a corner, i.e., it must be as-
sociated with a 2-valent control cage vertex (such as in
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Fig. 3). The appearance of any EV is restricted solely to
the interior of the control cage. Meeting these require-
ments through traditional quad-dominant meshing tech-
niques is challenging, and therefore we present a novel
automatic approach referred to as SubD layering, which
is tailored to satisfying the prescribed topological con-
straints.

The process involves partitioning an MCAD face into
regions of structured and unstructured mesh. The struc-
tured regions form a boundary layer from which EVs are
fully excluded. These are formed by constructing 4-sided
blocks around each MCAD vertex (referred to as corner
blocks), and then connecting these to form 4-sided edge
blocks associated with each MCAD edge. The remaining
interior region constitutes a block with topology iden-
tical to the original MCAD face, and this is filled with
unstructured mesh. This process is illustrated in Fig. 4.

Figure 4: Schematic outlining the SubD layering process. Top
left: MCAD B-rep face with 5 vertices. Top right: corner blocks
are constructed around the MCAD vertices. Bottom left: corners
blocks are connected to form edge blocks. Bottom right: Domain
is partitioned into corner (red) and edge (green) blocks which can
receive structured mesh, and one interior (grey) region which re-
ceives unstructured mesh.

The size and positions of the corner blocks are de-
termined using the two-dimensional medial axis [2] as
a guide to ensure that the blocks do not intersect. An
example of this is given in Fig. 5.

Figure 5: SubD layering for the wheel arch of the Car model, show-
ing corner (red), edge (green) and unstructured regions (grey). The
2D medial axis (blue) determines the shape of the blocks so that
they do not intersect.

Once the domain partitioning has been completed, we

generate a coarse mesh of the layer faces. The bound-
ary layer is meshed using a transfinite interpolation tech-
nique [17] and is specified to be one element thick. The
interior region is meshed using quad-dominant meshing
technology [2]. The coarse mesh is then subdivided twice,
and this ensures that there are no EVs within the first two
layers of control cage faces from the boundary, thus sat-
isfying the topological requirements for the Bézier edge
conditions. This refinement of a coarse mesh is illus-
trated in Fig. 6.

Figure 6: Left: Initial coarse mesh for a 5-sided face. Centre: One
level of refinement. Right: Two levels of refinement (with mesh
smoothing applied). The EVs are highlighted in red. After two
levels of refinement the location of the EVs meet the topological
requirements for the Bézier edge conditions.

The SubD layering process is applied to each MCAD
face in the model in turn, such that the resulting control
cage meets the topological requirements dictated by all
MCAD edges, both external and internal (i.e., connectiv-
ity 1 and 2, respectively). By stipulating that the com-
mon vertices along the edges between contiguous faces
are shared, a single limit surface is able to represent
the entire model while remaining fully watertight (i.e.,
C0 continuous). This guarantee is not maintained for
MCAD B-rep geometry as a network of NURBS patches.
An example of a watertight limit surface is given in Fig. 7.

Figure 7: A single subdivision surface representing the wing tip
of the SNC Dream Chaser model, which is comprised of multiple
MCAD B-rep faces. The control cage is shown in green, and the
limit surface is shaded in orange. Bézier edge conditions (with slope
control vectors shown in grey) are applied such that contiguous
regions of the limit surface meet with the same C1 discontinuity as
the original B-rep. However, the limit surface is guaranteed to be
exactly C0 continuous along the join reflecting the MCAD edges
(blue).

An example of the control cage computation is pre-
sented in Fig. 8. This may be contrasted with the mul-
tiple NURBS patch representation shown in Fig. 1.
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Figure 8: Subdivision surface approximation of the KCS ship hull.
The control cage is shown in wireframe, and the limit surface
shaded.

3. Control cage adjustment and point cloud sam-
pling

The SubD layering process outlined in section 2 is pri-
marily focused on achieving the correct topology for the
control cage. The second step of the process is to adjust
the control cage so that its limit surface coincides with
the target MCAD geometry. To achieve this, we use
the ability of our engineering-grade subdivision surfaces
to accurately represent geometry; the behaviour of the
edges is governed by the B-spline edge conditions, which
can be made to respect the MCAD edges via a least
squares fitting process. For the interior, we found that
1000 rounds of iterative control cage adjustment give a
sufficiently good approximation for each of the four mod-
els. This is demonstrated in Fig. 9, which shows the front
section of the NASA CRM.

Figure 9: Heat map of the distance from the limit surface to the
target MCAD geometry, for the forward section of the NASA CRM.
A maximum fitting error of approximately 0.005% of the aircraft
length is achieved after 1000 rounds of iterative control cage ad-
justment.

The fitting procedure for our multipatch G1 spline rep-
resentation combines the generation of points on the ge-
ometry with a standard regression between the sample
points and the parametric points on the subdivision sur-
face. We require a set of samples points which lie exactly
on the geometry, including the edges. Each point must be
mapped to a corresponding patch of the subdivision sur-
face, together with a local patch parameter coordinate.
This is achieved by sampling each patch of the limit sur-
face at a predetermined set of parameter values, using
explicit evaluation [37]. The corresponding 3D positions
on the limit surface (which approximates the geometry)

are then moved exactly onto the MCAD geometry. Given
that the limit surface samples already lie very close to the
target geometry, they may be projected easily onto the
embedding NURBS surfaces of the MCAD B-rep faces.
We also apply additional measures aimed at preventing
creases and folds appearing in highly curved regions. The
result is a uniform non-folding structured grid of sample
points lying on the target geometry, for each patch of
the limit surface. Fig. 10 shows an example of the typi-
cal distribution of the point cloud sampling.

Figure 10: An example of the distribution of points in the sampling
of the MCAD geometry, for the tail of the NASA CRM. Each patch
of the subdivision surface receives a uniform grid of samples, which
are projected onto the embedding surfaces of the MCAD B-rep
faces.

4. G1 functions on quad meshes

To apply least squares fitting and IGA methods, we
need to define a function space of regular functions such
as a spline space. In this section, we briefly introduce
some basic definitions and the tools required to build
spaces of geometrically smooth functions over a quad
mesh M.

4.1. Definition

Let f = (fσ)σ∈M be a collection of functions defined
over the faces σ of a quad mesh M. We name e the

Figure 11: Local coordinate systems between two adjacent patches.

common edge shared by two adjacent patches fL = f
∣∣
σL

and fR = f
∣∣
σR

of a collection f . With reference to the
local systems’ orientation in Fig. 11, two functions are
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said to be G1 (or tangent plane continuous) if they join
G0 (or C0), i.e.,

fL(u1, 0) = fR(0, u1) , u1 ∈ [0, 1] , (1)

and there exists three function a(u), b(u), c(u) called glu-
ing functions such that

fL
v1(u1, 0)c(u1) + fR

u1
(0, u1)b(u1) + fL

v0(0, u1)a(u1) = 0 , (2)
c(u1)b(u1) < 0 , (3)

⟨fL
v1(u1, 0), f

R
v0(0, u1)⟩ ≠ 0 , (4)

where u1 ∈ [0, 1], fu = ∂f
∂u and ⟨·|·⟩ refers to the standard

Euclidean scalar product. A particular spline space de-
fined over quad meshes and verifying eqs. (1) to (4) is the
G1ACC derived in [27]; it is obtained from a collection
of biquintic Bézier functions by imposing G1 continuity
across extraordinary regions making use of the gluing
functions

a(u) = a0B
0
2(u)− a2B

2
2(u) ,

b(u) = −1 ,

c(u) = 1 ,

with Bk
d (u) =

(
d
k

)
uk(1 − u)d−k the univariate Bernstein

polynomial and ai = 2 cos(2π/Ni), i = 0, 2 where Ni

represent the valence of the two vertices belonging to
the common edge (i.e., the number of edges attached
to them). The relations for the tangent plane continuity
constraints between the control points bi,j , i, j = 0, . . . , 5
of two neighbouring Bézier patches fL, fR defining the
G1ACC space are the following:

bL
0,1 + bR

1,0 = ā0bL
0,0 + a0bL

1,0 ,

5(bL
1,1 + bR

1,1) = a0bL
0,0 + 5ā0bL

1,0 + 4a0bL
2,0 ,

10(bL
2,1 + bR

1,2) = −a0bL
0,0 + 5a0bL

1,0 + 10ā0bL
2,0 + 6a0bL

3,0 ,

10(bL
3,1 + bR

1,3) = a0bL
0,0 − 5a0bL

1,0 + 10a0bL
2,0 + 10ā0bL

3,0

+ 4a0bL
4,0 ,

bL
4,1 + bR

1,4 = 2bL
4,0 ,

bL
5,1 + bR

1,5 = 2bL
5,0 ,

10(bL
3,0 − bL

2,0) = bL
0,0 − 5bL

1,0 + 5bL
4,0 − bL

5,0 ,

with ā0 = 2− a0.

4.2. Construction

The aim of this work is to obtain a representation of an
MCAD model in terms of smooth G1 functions. In sec-
tion 3 it has been shown how to discretise an MCAD
model as a dense point cloud preserving its features,
while section 2 presents a method for the automatic gen-
eration of a control cage (i.e., a quad mesh) approximat-
ing the MCAD. Therefore, the idea is to use the construc-
tion in [28] to obtain a multipatch G1 spline representa-
tion via point cloud fitting using basis functions defined
over the control cage supporting the data points. These

bases are obtained by performing an extraction proce-
dure which returns the control points defining the basis
function in the Bézier form. More precisely, to get the
Bézier coefficient of the bases, we fix the value of a control
point appearing in the equations defining the G1ACC in
section 4.1 to be, for example, 1, and all the remaining
free coefficients in the system to be 0. Hence, with these
initial values we solve all the equations defining the G1

constraints and as a result of this operation we will get
the control points for our basis functions. Repeating for
all the Bézier points involved in the system results in the
entire set of bases generating the G1ACC spline space.
The resulting bases set can be decomposed as a direct
sum of three subsets formed by particular functions at-
tached to the different features of a quad mesh; these sets
are the so-called vertex bases set, edge bases set and face
bases set. As suggested by the names, the vertex bases
set contains basis functions whose support lies on the
patches attached to a vertex. In presence of an EV, i.e.,
a vertex with valence N ̸= 4, the resulting set of bases is
composed of N + 3 elements, while for a regular vertex
the corresponding space consists of 4 functions. Belong-
ing to the edge bases set are all those functions whose
support is contained in the two patches attached to a
specific edge of the mesh. We will have 2 basis functions
for each extraordinary edge (that is, an edge sharing an
EV) and 4 for each regular and boundary edge. Lastly,
we find in the face vertex set the basis functions whose
support is entirely contained within a single patch. Part
of this set are the face and corner basis functions, which
appear in groups of 4 each. We refer the reader to [28]
for a detailed analysis of the basis functions and their
construction.

4.3. G1 spline fitting

Consider a point cloud P, which is a collection of
points Pi ∈ R3, i = 1, . . . , nP with associated parame-
ters ξi = (ξi1, ξ

i
2) ∈ R2 on the face σi, and a set of basis

functions Bj ∈ B. The idea of the least squares fitting
technique is to find the coefficients cj ∈ R3 defining, for
instance, a spline surface S(ξ;σ) =

∑
j cjBj(ξ;σ) for

σ ∈ M such that the quantity

nP∑
i=1

∥S(ξi1, ξi2;σi)− Pi∥22 (5)

is minimal. In this work we consider as B the set of G1

bases containing nb elements (presented in section 4.2)
defined over the control cage M, formed by nf faces
generated with the strategy described in section 2. The
point cloud P is the MCAD sampling outlined in sec-
tion 3, whose cardinality will be indicated with nP .

The next step of our pipeline is to compute the fitted
surface S by solving the minimisation problem given in
(5). This is a least squares problem, whose solution is
obtained by solving a linear system.
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In order to investigate the quality of the fitting we
compute the following error indicators:

L∞ := max
i=1,...,nP

∥S(ξi)− Pi∥2 , (6)

RMSE :=

√√√√ 1

nP

nP∑
i=1

∥S(ξi)− Pi∥22 , (7)

which represent, respectively, the maximum ℓ2 distance
and the so-called root mean squared error (RMSE). Sec-
tion 6 presents several numerical experiments showing
the quality of the fitting obtained with the use of our
multipatch G1 basis functions.

5. Isogeometric Analysis

Isogeometric analysis (IGA) is a highly efficient tech-
nique for solving PDEs numerically. Its basic idea, pre-
sented in [11] (which unifies the FEM approach and Com-
puter Aided Geometric Design) is to use the same ba-
sis functions for both reproducing exactly the computa-
tional domain, and for the numerical approximation of
the PDE. Here we focus on solving the heat equation on
a 2-manifold Ω ⊂ R3, which is defined by our MCAD
model. Hence, we need to extend the standard Laplace
operator to the Laplace-Beltrami operator, which is nec-
essary when dealing with manifolds. To do that, we de-
fine the geometry map

x : Ω̂ −→ R3 , ξ = (ξ1, ξ2) 7−→ x(ξ) ,

with Ω̂ = [0, 1]2, which defines our manifold by means
of a mapping from the parametric domain Ω̂ into the
physical space R3. The Jacobian of the mapping J , i.e.,

Ĵ : Ω̂ −→ R3×2 , ξ 7−→ Ĵ(ξ) , Ĵi,j(ξ) :=
∂xi

∂ξj
(ξ) ,

is used to define the first fundamental form of the map-
ping Ĝ defined as

Ĝ : Ω̂ −→ R2×2 , ξ 7−→ Ĝ(ξ) , Ĝ(ξ) := Ĵ(ξ)T Ĵ(ξ) ,

together with its determinant ĝ, which is

ĝ : Ω̂ −→ R , ξ 7−→ ĝ(ξ) , ĝ(ξ) :=

√
det

(
Ĝ(ξ)

)
.

Finally, we have all the tools to define the gradient op-
erator on the manifold Ω,

∇Ωφ(x) :=
[
Ĵ(ξ)Ĝ−1(ξ)∇̂φ̂(ξ)

]
◦ x−1(ξ) , (8)

with ∇̂ representing the gradient operator in the para-
metric space.

For a more precise explanation of operators for iso-
geometric solutions to PDEs on manifolds, we refer the
reader to [13].

We can therefore formulate the (strong) Cauchy prob-
lem for the heat equation. Let Ω be a manifold; find
u ∈ C2(Ω)× C1(R+) such that

∂u

∂t
(x, t) = c2∆Ωu(x, t) , (x, t) ∈ Ω× (0, T ] ,

u(x, 0) = u0(x) , x ∈ Ω ,

u(x, t) = uD(x, t) , (x, t) ∈ ∂Ω× (0, T ] ,

(9)

with ∆Ω the Laplace-Beltrami operator, c, T > 0 and
u0(x), uD(x, t) given initial data. The weak formulation
of the problem (9) with reference to the parametric space,
which will be the target of our IGA simulation, can be
obtained with the use of the following form and operator:

â(v̂, ŵ) :=

∫
Ω̂

∇̂v̂·
(
Ĝ−1∇̂ŵ

)
ĝ dΩ̂ , b̂(v̂, ŵ) :=

∫
Ω̂

v̂ ŵ ĝ dΩ̂

Thus, the weak form of the heat equations can be for-
mulated as: find u ∈ H1(Ω̂) s.t., for almost all t ∈ (0, T ),


â(û(x, t), ŵ) = b̂(∂tû(x, t), ŵ) , (x, t) ∈ Ω× (0, T ] ,

u(x, 0) = u0(x) , x ∈ Ω ,

u(x, t) = uD(x, t) , (x, t) ∈ ∂Ω× (0, T ] ,

(10)
and for every ŵ ∈ H1(Ω̂).

6. Experimentation

Here we report the numerical experiments to demon-
strate the quality of our construction. First we present
the least squares fitting procedure to reconstruct a G1

surface from an MCAD point cloud, then we will use the
previous result as the geometric domain over which to
solve the heat equation using geometrically smooth basis
functions in the IGA environment.

The CAD models used for the numerical investigation
are standard target examples for this type of problem.
These are: Car model, Dream Chaser shuttle model,
KCS hull model and the NASA CRM. All of them present
special features and sharp edges which are a notable
characteristic to be recovered in the fitted surface. The
samplings of the original models are obtained following
the procedure explained in section 3. In order to obtain
a precise result, the target point clouds contain large
amounts of data. For the same reason, the control cage
obtained from the MCAD (section 2) presents a signif-
icant quantity of faces. The models are represented in
their original scale, i.e., 1 unit = 1 m. All of the numer-
ical experiments have been performed on two different
machines: the first has been devoted to the control cage
generation and the MCAD sampling, while the second
ran the bases computation and consequent spline fitting
and IGA simulation. Their specifications are: Windows
10, Intel(R) Xeon(R) CPU E3-1240 v6 @ 3.70GHz, 16.0
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GB RAM, 4 cores, and Windows 10, Intel(R) Core(TM)
CPU i7-9850 @ 2.60GHz, 16.0 GB RAM, 6 cores, re-
spectively.

Figure 12: Car model. From top to bottom: point cloud sampling
of the original MCAD model. Comparison between point cloud
and resulting fitted surface. Surface in solid colour. Surface in
multipatch colour. Error colour plot representing the ℓ2 distance
between the point cloud and the resulting surface.

Figures 12 to 16 show for each of the four models,
in order, the point cloud acquired from the initial ge-
ometries; a comparison between the input data and the
fitted surface; the fitted surface in solid colouring; the
fitted surface in multipatch colouring and a colour plot
representing the approximation error in Eucledian norm.
Moreover, Table 1 summarises the dimensions of the
starting point cloud, control cage and spline space to-
gether with the approximation errors evaluated with the
formulae in (6)-(7). From the L∞ errors represented in

Table 1, as well as in the colour map of the models’
colour plot, it can be noticed that the highest errors are
located, as expected, around the EVs and near the sharp
regions of the CAD models. This is because we are fit-
ting sharp edges with high smoothness bases which can-
not properly recreate the actual shape of the model in
these regions (see Fig. 15). In order to increase the qual-
ity of the fitting (i.e., decrease the error) and faithfully
reproduce the characteristics of the input model, our con-
struction allows us to identify the sharp edges of the CAD
model which are to be preserved. Defining on those edges
only C0 basis functions, our output surface will manifest
these sharp features. Fig. 15 shows a detail of the KCS
hull model where the top edge is first computed with G1

smoothness, and then recomputed as a C0 sharp feature.
Regarding IGA simulations, some experiments with

the heat equation have been performed. With reference
to eq. (10), we run the simulations for each of the four
CAD models, considering as the final time the instances
T = 0.1, T = 0.2, T = 0.3 and T = 0.4 minutes. These
time dependent integrations have been carried out using
20 time steps tstep under the Crank-Nicolson method.
Fig. 17 to 20 present the results of the IGA simulations.
These are obtained by setting, as initial conditions, an
heat source at the likely location of the engines within
the various vehicles represented. This demonstrates a re-
alistic analysis of the thermal behaviour of such models.
Moreover, Table 2 presents the running times required
to compute each fragment of the pipeline.

Car Dream Chaser KCS NASA CRM
nb 166198 168187 166881 116607
nf 10432 10576 10456 7336
nP 1262272 1279696 1265179 887656

L∞ error 7.965e-03 4.610e-02 4.644e-01 2.946e-03
RMSE error 1.292e-04 1.660e-03 5.890e-03 8.264e-05

Maximal length 3 9 230 1.70

Table 1: Fitting errors, spline space and CAD model features for
the experiments in Figures 12-13-14-16.

Car Dream Chaser KCS NASA CRM
Cage generation 1 min 45 sec 1 min 4 sec 55.25 sec 57.88 sec
MCAD sampling 22 min 28 sec 26 min 24 sec 22 min 23 sec 22 min 53 sec

Bases computation 11.39 sec 10.98 sec 10.04 sec 6.03 sec
Fitting 2 min 43 sec 3 min 11 sec 2 min 51 sec 1 min 42 sec

IGA simulation 15.65 sec/tstep 9.39 sec/tstep 7.39 sec/tstep 1 min 17 sec/tstep

Table 2: Detailed elapsed time for each step of the procedure.

7. Conclusion

In this work we presented a complete and efficient
pipeline to convert CAD models into G1 smooth objects
which are suitable for isogeometric analysis simulations.
Starting from a CAD object, we first produce a quad
mesh whose Catmull-Clark limit surface adequately ap-
proximates the input CAD. Guided by this limit surface
we compute a point cloud sampling of the CAD model,
which is fitted with the use of basis functions defined over

8



Figure 13: Dream Chaser shuttle model. From top to bottom:
point cloud sampling of the original MCAD model. Comparison
between point cloud and resulting fitted surface. Surface in solid
colour. Surface in multipatch colour. Error colour plot representing
the ℓ2 distance between the point cloud and the resulting surface.

the previously extracted quad mesh, in a least squares
approach. The obtained spline surface and the G1 ba-
sis are used to run IGA simulations. To demonstrate
the quality of the fitting, various numerical experiments
derived from real CAD models are provided with their
error measurements. We illustrate the IGA simulations
for the heat equation in real-life situations, highlighting
the suitability of our approach for analysis.
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