We modeled long memory with just one lag! - Archive ouverte HAL
Article Dans Une Revue Journal of Econometrics Année : 2023

We modeled long memory with just one lag!

Résumé

Two recent contributions have found conditions for large dimensional networks or systems to generate long memory in their individual components. We build on these and provide a multivariate methodology for modeling and forecasting series displaying long range dependence. We model long memory properties within a vector autoregressive system of order 1 and consider Bayesian estimation or ridge regression. For these, we derive a theory-driven parametric setting that informs a prior distribution or a shrinkage target. Our proposal significantly outperforms univariate time series long-memory models when forecasting a daily volatility measure for 250 U.S. company stocks over twelve years. This provides an empirical validation of the theoretical results showing long memory can be sourced to marginalization within a large dimensional system.
Fichier principal
Vignette du fichier
BCL2023_We modeled long memory with just one lag.pdf (566.44 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04185755 , version 1 (23-08-2023)

Identifiants

Citer

Luc Bauwens, Guillaume Chevillon, Sébastien Laurent. We modeled long memory with just one lag!. Journal of Econometrics, 2023, 236 (1), pp.105467. ⟨10.1016/j.jeconom.2023.04.010⟩. ⟨hal-04185755⟩
48 Consultations
8 Téléchargements

Altmetric

Partager

More