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Abstract. Computing the flux densities provided by solar concentrators or focusing heliostats 
can be done in two different ways: A grid ray-tracing (GRT) procedure that uses of a large 
number of ray bundles, starting from the solar disk and finally impinging the focal plane of the 
concentrator. The method is reliable and accurate, but requires extensive computing times. 
Alternatively, the flux densities can be estimated by using convolution algorithms. This latter 
method requires much less computing time, but is known to be less accurate when the 
incidence angle of the sunrays on the reflector increases. The objective of this contribution is 
to define an algorithm based on convolution products and fast Fourier transforms having high 
accuracy. The results show that RMS error differences between both models are 
approximately.  
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Introduction 
 
Computing the flux densities provided by solar concentrators is a fundamental tool for 
optimizing the geometrical parameters of the facility. This contribution mainly deals with the 
concentrating power of focusing heliostats implemented in a solar tower power plant, but can 
be generalized to any other type of solar concentrator. Such numerical computations can be 
performed in two different ways [1]: 

A ray-tracing model based on grid ray-tracing (GRT), starting from the solar disk, 
impinging the surface of the solar concentrator, and finally reaching the focal plane of the 
installation. This method is reliable and accurate, but requires extensive computing times.  
Alternatively, the flux density can be estimated by using convolution algorithms. This requires 
much less computing time, but is known to be less accurate when the incidence angle of 
sunrays at the heliostats increases. 

The purpose of this communication is to define an algorithm based on a convolution 
model and fast Fourier transforms (FFT) algorithm having accuracy comparable to those of 
GRT models (section 2). Numerical results are given in section 3, before a brief conclusion is 
drawn in section 4. 
 



 
Improved convolution model 
 
Solar tower plant configuration 
Let us consider the case of a solar tower power plant whose general configuration is 
depicted in Figure 1-A. Two main coordinate systems are defined: 

- The X’Y’Z’ reference frame attached to the solar receiver with X’-axis directed from 
South to North, Y’-axis from East to West, and Z’-axis from Nadir to Zenith, 

- The XYZ reference frame attached to an individual heliostat with X its optical axis and 
YZ its lateral dimensions along which its geometry is defined (see Figure 1-B and 
Table 1). 

In the X’Y’Z’ reference frame are defined three vectors (Figure 1-A) 
- S is a unitary vector directed to the centre of the moving Sun, 
- R is the unitary target vector directed from the heliostat centre to the solar receiver, 
- N is the bisecting vector between both previous ones. 

The vectors S, R and N obey the Snell-Descartes law for reflection that writes in vectorial 
form as: 

  NNNSRS i2cos2=+  .         (1) 
The main parameters employed in this paper are summarized in Table 1. We consider the 

case of a heliostat located at coordinates (86.6, 50., 0.) expressed in meters into the X’Y’Z’ 
reference frame. It may be noted that the distance d from the heliostat to the solar receiver is 
kept equal to 100 meters and that the heliostat and the solar receiver are located at the same 
altitude along the Z’-axis, which is considered as the worst and most demanding case. The 
heliostat is made of m x n identical spherical modules of focal length f. This is a simplified 
version of the focusing heliostats equipping the solar tower power plant in Targasonne, 
France. 
 

Table 1: Main parameters of the solar power plant and of the focusing heliostat. 
 

Parameter Symbol Value Unit 
Target vector from heliostat to receiver R (86.6, 50., 0.) m 
Distance from heliostat to receiver d 100 m 
Incidence angle on solar receiver  30 degrees 
Heliostat width along Y-axis w 3.4 m 
Heliostat height along Z-axis h 3. m 
Number of heliostat modules m x n 4 x 2  
Module width along Y-axis wM 0.7 m 
Module height along Z-axis hM 1.4 m 
Module focal length f 80  f  120 m 
Solar receiver diameter d’ 1.2 m 

 
 

Double Fourier transform model 
Most of convolution models developed so far are based on the “pinhole view” defined by F. 

Lipps in 1976 [2]. It states that the flux density distribution ),(I yx   formed by a heliostat at 
the solar receiver plane Y’Z’ can be approximated as the convolution product of two functions 

),(L yx   and ),(PSF yx  : 
),(PSF*),(L),(I yxyxyx  ,        (2) 

where ),(L yx   is the ideal geometrical image of the Sun disk projected onto the solar 

receiver plane Y’Z’ and ),(PSF yx   is the Point spread function of the heliostat, i.e. the 
image that would be observed at the solar receiver if the Sun was reduced to a null or 
negligible angular diameter. The mathematical symbol * denotes a convolution product. 
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Figure 1: Solar tower power plant configuration (A). The geometry of the heliostats is shown 

in the bottom scheme (B). 
 



 
Most of the convolution models developed so far make use of analytical developments of 

the convolution product in Eq. 2, and take astigmatism and defocus aberrations into account 
[3-5]. They may also include some additional “cone error” functions describing the opto-
mechanical defects of the heliostat [6-8]. Alternatively, this convolution product can be 
calculated by means of a double Fourier transform algorithm, whose steps are illustrated in 
Figure 2 and are described below: 

1. Start from an analytical expression of the Sun angular radiance law  εL . Herein we 
use the Jose's formula [9] that is: 

    




  2

00 161.039.0 LεL  when 0    0 , and: 

  0εL  otherwise, 

(3) 

with ε the angle of the incident ray with respect to the Sun disk centre, and εo the Sun 
angular radius equal to 4.65 mrad. 

2. Define the ideal Sun image at the solar receiver plane Y’Z’ from the previous radiance 
formula, after mapping it by the distance d and the cosine factor 1/cos resulting in 

the function ),(L yx  . 

3. Compute the Point spread function ),(PSF yx   of the heliostat using GRT ray-
tracing. 

4. Compute the Fourier transforms of both functions ),(L yx   and ),(PSF yx   by use 
of a FFT algorithm.  

5. Multiply the Fourier transforms of  ),(L yx   and ),(PSF yx   together. 
6. Compute the inverse Fourier transform of the result with the inversed FFT algorithm 

to finally obtain the flux density map ),(I yx   at the solar receiver plane. 
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Figure 2: Illustrating the double Fourier transforms algorithm. Red circles indicate the diameter of the 

ideal image of the Sun. 
 

The reason why this algorithm is much faster than any GRT model results from the total 

number of launched rays. Assuming that both functions ),(L yx   and ),(PSF yx   are 
digitized into arrays of dimensions 64 x 64 and 128 x 128 at the Sun disk and heliostat 
respectively, GRT simulations involve (64 x 64) x (128 x 128)  270.106 rays traced one after 
the other. Conversely, the double FFT algorithm only uses grid ray-tracing for determining 

the function ),(PSF yx   formed by a “pinhole Sun”. Assuming having negligible dimensions 
with respect to the Sun radius, only a few sampling points are required to get a fair 

approximation of ),(PSF yx  . Here the sampling number is set to 3 x 3, therefore the total 
number of traced rays reduces to (3 x 3) x (128 x 128)  147500. This allows a potential gain 
in computing time by a factor about 450. However, practically the computing time required by 
the three FFT operations is not negligible with respect to that needed by PSF ray-tracing. We 
finally found a gain in computing time about 250 with respect to the GRT model.  



 
Numerical results 
 
Numerical simulations were carried out with the IDL programming language in order to 
validate the double FFT algorithm and comparing it with the results of the GRT model. For 
both of them, two different cases were considered:  

- Assuming that the latitude of the solar tower plant is 45 degrees, the heliostat 
described in Table 1 is set in Sun tracking mode from 09h00 to 15h00 GMT an 
autumnal equinox day. 

- For the same heliostat at 15h00 GMT on the autumnal equinox day, different focal 
lengths are introduced on the spherical modules (80  f  120) in order to evidence the 
effect of the astigmatism and focus aberrations.  

 
The numerical results are expressed in terms of Peak-to-Valley (PTV) and RMS 

differences between the flux density maps computed with both models, after normalizing 
them to unity. The flux density maps and their difference numbers are given in Table 1 and 
illustrated in the false colors views of Figure 2. The maximal PTV difference is about 7 %, 
and the RMS differences are always lower or equal than 1 %. Hence, we may conclude that 
the double Fourier transform model is validated at the price of a slightly lower accuracy that 
is compensated for by a much faster computing time. 
 

Table 2: Error differences between the GRT and improved convolution models for both 
cases (A) and (B). 

 

Spherical heliostat T = 09h00  T = 10h30 T = 12h00  T = 13h30 T =  15h00 

PTV difference (%) 7,2 6,6 6,4 6,8 7,3

RMS difference (%) 0,8 0,9 0,9 1,0 0,8

Spherical heliostat f  = 80 m f  = 90 m f  = 100 m f  = 110 m f  = 120 m

PTV difference (%) 5,0 6,3 7,3 6,7 5,8

RMS difference (%) 0,8 0,8 0,8 0,8 0,8

09-23-2022,  Day time GMT

Heliostat modules focal length
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Figure 3: Sketch of flux density maps obtained for cases (A) and (B). For both cases the results 

computed by the GRT model are shown in the first rows and those from the improved convolution 
algorithm in the central rows. Difference maps are displayed in the bottom rows. All maps are 

displayed in false color. Red circles indicate the diameter of the ideal Sun image at the focal plane. 
 



 

Conclusion 
 
This paper presents firstly an algorithm based on a convolution product and using Fast 
Fourier transforms for estimating the flux density formed by a solar concentrator. Numerical 
simulations are applied to the case of a Sun tracking focusing heliostat operating in a solar 
tower power plant. They demonstrate that the accuracy of this algorithm is comparable to 
those of classical grid ray-tracing models, since their RMS error difference is about 1%., 
even when the sunrays are impinging the heliostat under high incidence angles. The net gain 
factor in computing time with respect to GRT models is estimated around 250. This gain may 
be further improved, either by under-sampling the Point spread function of the heliostat, or by 
developing analytical expressions of the Fourier transform of the Sun disk, therefore reducing 
the number of required FFT from three to two. Finally, the double FFT algorithm may pave 
the way to fast and robust optimization of an entire heliostat field, and of its pointing strategy. 
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