
HAL Id: hal-04185619
https://hal.science/hal-04185619

Submitted on 23 Aug 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

On syntactical graphs-of-words
Nabil Moncef Boukhatem, Davide Buscaldi, Leo Liberti

To cite this version:
Nabil Moncef Boukhatem, Davide Buscaldi, Leo Liberti. On syntactical graphs-of-words. Proceedings
of Cologne-Twente Workshop on Graphs and Combinatorial Optimization, Andreas Brieden; Stefan
Pickl; Markus Siegle, Jun 2023, Garmisch-Partenkirchen, Germany. �hal-04185619�

https://hal.science/hal-04185619
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

On syntactical graphs-of-words

Nabil Moncef Boukhatem, Davide Buscaldi, and Leo Liberti

Abstract A graph-of-words is a graph representation of natural language text based
on proximity in the linear text reading order: the vertices are the words, and edges
are induced by 𝑘 left and right neighbours of the words. Vertices representing same
or similar words are then contracted. We propose graphs-of-words where edges are
instead induced on paths in the syntax trees (we investigate both dependency and
constituency trees). We discuss some properties, advantages, and disadvantages of
classic and new graphs-of-words on texts extracted from literature, as well as from
a technical Q&A database.

1 Introduction

Natural language is human-specific, ambiguous, and often ungrammatical; its under-
standing is usually subjected to context knowledge. It is opposed to formal language,
which is computer-specific, unambiguous, and must be grammatically perfect to be
meaningful: its pragmatics are formally defined by the effect it has on an electronic
or mechanical system. In this paper we use formal language constructs to instruct
computers to deal with natural language text. More precisely, we focus on a very
specific and well-known task in Natural Language Processing (NLP), i.e. that of
keyword extraction: given a text in natural language, output 𝐾 keywords that a hu-

Nabil Moncef Boukhatem
LIX CNRS, Ecole Polytechnique, 91128 Palaiseau and OneTeam, Paris, France e-mail:
nboukhatem@oneteam.fr

Davide Buscaldi
LIPN CNRS, Université de Paris-Nord, Villetaneuse, France e-mail: buscaldi@lipn.
univ-paris13.fr

Leo Liberti
LIX CNRS, Ecole Polytechnique, 91128 Palaiseau, France e-mail: leo.liberti@
polytechnique.edu

1

Leo Liberti
in S. Pickl et al., Proceedings of Cologne-Twente Workshops on Graphs and Combinatorial Optimization (CTW), 2023

2 Nabil Moncef Boukhatem, Davide Buscaldi, and Leo Liberti

man would find the most pertinent for the text. This obviously poses the issue of
empirical verification: since different humans would have different preferences, how
do we determine what keywords are “best”? In this paper we resort to ground truths
put together by a restricted number of humans (see Sect. 3).

The most established method for extracting keywords from natural language text
is probably based on ranking functions (see e.g. [14]) based on frequency of words
in documents with respect to a set of documents called corpus [11]. The main
application is automatic document indexing or summarization [12].

This paper replaces the concept of word frequency in documents with that of
vertex degrees in graphs that represent the text. Methodologically speaking, the
main contribution is a comparison between different graph representations of text.
One of the graph representations we consider is derived from constituency syntax
trees (see Sect. 1.3, which, to the best of our knowledge, has never been previously
considered for this purpose).

1.1 Ranking functions for text

The earliest cornerstone of information retrieval in text is perhaps the TF-IDF ranking
function. It consists of the product of two other functions: Term Frequency (TF)
and Inverse Document Frequency (IDF) [15]. We shall limit our introduction to
the functions we actually used in our computational experiments. In the following
formulæ, we let C be a corpus (i.e., a set) of text documents, 𝐷 be a document in 𝐶,
and 𝑡 be a term (i.e., a word) in 𝐷. Then:

tf(𝑡, 𝐷) = | (𝑣 ∈ 𝐷 | 𝑣 = 𝑡) | (1)
TF(𝑡, 𝐷) = 1 + ln(1 + max(0, ln(tf(𝑡, 𝐷)))) (2)

IDF(𝑡, C) = ln(|C| + 1)∑
𝐷∈C tf(𝑡, 𝐷) (3)

are the basic building blocks for two well-known ranking functions. These are:

TFIDF(𝑡, 𝐷, C) = TF(𝑡, 𝐷) IDF(𝑡, C)
1 − 𝑏 +

(𝑏 |𝐷 |∑
𝑃∈C |𝑃 |/| C |

) (4)

BM25(𝑡, 𝐷, C) = (𝑘1 + 1)tf(𝑡, 𝐷) IDF(𝑡, 𝐶)
𝑘1

(
1 − 𝑏 +

(𝑏 |𝐷 |∑
𝑃∈C |𝑃 |/| C |

))
+ tf(𝑡, 𝐷)

, (5)

where 𝑏 = 0.5 and 𝑘1 = 1.2. We aim at replacing TF with the weighted degree
tw(𝑡, 𝐷) of a word vertex 𝑡 in a graph 𝐺 (𝐷) representing a document, namely:

On syntactical graphs-of-words 3

tw(𝑡, 𝐷) =
∑︁

𝑣∈𝑁𝐺 (𝐷) (𝑡)
𝑑𝑡𝑣 (6)

TWIDF(𝑡, 𝐷, C) = tw(𝑡, 𝐷) IDF(𝑡, C)
1 − 𝑏 + 𝑏

(|𝐷 |∑
𝐷∈C |𝑃 |/| C |

) , (7)

where 𝑑𝑢𝑣 is the weight of the edge {𝑢, 𝑣} in the graph 𝐺 (𝐷), and 𝑏 = 0.75. The
weights of the constants is taken from [16]. For unweighted graphs 𝐺 (𝐷) we have
𝑑𝑢𝑣 = 1 for all edges {𝑢, 𝑣}.

1.2 Graph-of-words

Graphs can be used to summarize and extract keywords from a text in natural
language [13]. In general, these graphs encode syntactical and sometimes semantic
information on the edges, that represent relations on the words inferred from the text.
Here we look at a purely syntactical construction proposed in Rousseau’s PhD thesis
[16] under the name graph-of-words.

Fig. 1 A graph-of-word with proximity 2 of the sentence “if two or more nodes represent different
occurrences of the same word, they are contracted to a single node”. Edges are weighted by the text
distance between the two word vertices, but this weighting is not essential. The node with largest
degree is labelled by the word “nodes” (in the above graph, the two nodes corresponding to “nodes”
and “node” were contracted).

In a graph-of-words (gow), the vertices are labeled by the words. The edges
incident to each node are induced by the proximity of the words that are left and
right of the node word in the linear text reading order. For example, in the sentence
“Computers are close to understanding natural language”, the words “are” and “to”

4 Nabil Moncef Boukhatem, Davide Buscaldi, and Leo Liberti

are 1-proximal to “close”, and the words “computers” and “understanding” are 2-
proximal to “close”. In a gow with proximity parameter 2, the node labelled by
“close” would be adjacent to the vertices labelled by “computers”, “are”, “to”,
“understanding”.

Note that, if a word occurs more than once in a text, this construction creates
separate vertices referring to each occurrence. Moreover, the resulting graph would
be a simple chain of embedded cliques, where almost every vertex has the same
degree. This motivates a last contraction step in the construction of gows: if two or
more vertices represent different occurrences of the same word, they are contracted
to a single node. This last step is sometimes interpreted more broadly, for example
by contracting vertices having same lemmatized word (i.e. the stem of the word
without the desinences). An important pre-processing step to a useful gow is the
removal of stop-words: words that are very frequent in most texts, but do not carry
keyword-status information. Typically, stop-words are articles, auxiliary verbs or
particles, prepositions, conjunctions, common adverbs, and so on. An example of a
gow is given in Fig. 1. We note that gows of proximity 𝑘 have at least 2𝑘 adjacencies.

1.3 Syntax trees

In the framework of formal languages, syntax trees are the trace of a parsing algorithm
for the sentences of the language. They also provide the mechanism by which
computers assign semantics to high-level programs, or, in other words, execute
code [6, 10]. Parsing algorithms use a formal grammar in order to drive a recursive
analysis of a formal language sentence. The grammar consists of a set of rules of the
form

tag −→ comp1
1 . . . comp1

𝑛1 | . . . | compℎ
1 . . . compℎ

𝑛𝑘
,

which requires that a phrase tag be decomposed in one of ℎ ways, each of which
consists of a certain number of components, which can themselves be phrase tags
or words. The grammar includes rules for each of the component tags down to the
words, which are part of a given vocabulary. Each sentence input is assigned an
initial tag, e.g. S for “sentence”. The parser resolves tags recursively in terms of the
component tags prescribed by the grammar rules, for as long as there are relevant
rules that apply. In so doing, the parser produces a syntax tree. If the parser stops
before all tags are resolved into constant words, the sentence does not conform to the
grammar rules (this is how interpreters and compilers flag syntax errors). Otherwise,
the recursive parsing process can also assign executable machine code to each of the
constant words (which may be loops, tests, assignments), and then compose the code
into an executable program (this is how interpreters and compilers turn a high-level
language program into a set of actions performed by the CPU).

Noam Chomsky is credited with the popularization of syntax trees applied to
natural languages [1], where the sentence tag S is usually mapped to the decompo-
sition NP VP: i.e., a sentence corresponds to a noun phrase and a verb phrase. These
two tags are then recursively decomposed until the words are reached. Since natural

On syntactical graphs-of-words 5

language is not formal, in general there may be many possible recursive decomposi-
tions, all leading to a different meaning, without an obvious way to choose between
them. Chomsky’s trees are called constituency trees (see Fig. 2 for an example).

Fig. 2 The constituency tree for the same sentence as in Fig. 1. The tags are: S (sentence), SBAR
(subordinate sentence), NP (noun phrase), VP (verb phrase), QP (quantificational phrase), PP
(propositional phrase).

Dependency trees are different types of trees originally introduced to linguistics
by Louis Tesnière. The root of the tree is the main verb of the sentence, which has
subject and main complement as child nodes. Each noun node has articles, adjectives,
adverbs as child nodes (see Fig. 3 for an example).

Fig. 3 The dependency tree for the same sentence as in Fig. 1. The arcs are usually labeled by the
dependency tag of a child node to its parent node, not shown here because they are not used in this
paper.

Our interest in syntax trees is that they provide a binary relation on words alter-
native to linear text order proximity. For dependency trees, this order is natural. For
constituency trees, the words in a sentence appear as leaf nodes. In both cases, since

6 Nabil Moncef Boukhatem, Davide Buscaldi, and Leo Liberti

(undirected) trees are connected, each word is adjacent to any other word by means
of the shortest path between the corresponding nodes. This allows us to define a
natural edge weight equal to the length of the shortest path.

Contributions of this paper. In this paper we present gows based on different syntac-
tical relations: 𝑘-proximity, dependency, constituency. While 𝑘-proximity [17] and
dependency-based gows [3] are not new, to the best of our knowledge, constituency
trees were never used to construct gows so far. We computationally evaluate gows
of these different types on several counts.

2 Graph-of-words construction algorithms

By a sentence we mean a string that a human could correctly transform into a valid
syntax tree. A phrase is a sub-string of a sentence, which appears as a sub-tree of the
sentence’s syntax tree. Sentences are also assumed to be equivalent to lists of tokens,
where each token can be either a word or a punctuation symbol. Notation-wise, for
a sentence 𝑠 we let 𝑠𝑖 be the 𝑖-th token of 𝑠 for every 𝑖 ≤ |𝑠 |, which is the number of
tokens of 𝑠.

All our gow construction algorithms have three main phases:

1. generation of a binary relationship on words;
2. projection over important words (and removal of non-important ones: typically

these includes punctuation and stop-words);
3. contraction of like words (typically words with the same lemmatization, or with

a similar meaning according to an existing vocabulary or encyclopedia [2]).

2.1 Proximity gows

In proximity gows the two phases (generation, projection) may be carried out in
either order, but changing the order yields different weights (usefulness of edge
weights in proximity gow is doubtful, though [16]). For a string of 𝑛 tokens, the
generation phase is as follows. Initially, 𝑉 = {𝑠1, . . . , 𝑠𝑛} and 𝐸 is empty. Then we
add edges {𝑠𝑖 , 𝑠𝑖−ℎ} and {𝑠𝑖 , 𝑠𝑖+ℎ} for all 1 ≤ ℎ ≤ 𝑘 and for all ℎ < 𝑖 < 𝑛 − ℎ.

The projection phase, if carried out before generation, simply removes the tokens
deemed unimportant from the sentence 𝑠. The new list of tokens 𝑠′ is then subjected
to the generation phase. Otherwise projection re-arranges edges incident to removed
token vertices: we iteratively replace pairs of edges ({𝑣, 𝑢}, {𝑢, 𝑤}) incident to a
removed vertex 𝑢 by means of an edge {𝑣, 𝑤} with weight 𝑑𝑣𝑤 = 𝑑𝑣𝑢 + 𝑑𝑢𝑤 . Note
that the removal process may add an edge {𝑣, 𝑤} involving a removed vertex: this
edge will be part of a replaced pairs later in the iteration.

On syntactical graphs-of-words 7

Proposition 1 Let 𝐺 = (𝑉, 𝐸) be the the 𝑘-proximity graph obtained from the
sentence 𝑠 = (𝑠1, . . . , 𝑠𝑛) by performing generation first, then projection; and 𝐻 =

(𝑈, 𝐹) be obtained by projection then generation. We have 𝐺 = 𝐻.

Proof We have𝑉 = 𝑈 because projection removes the same vertices whether carried
out before or after generation. Let us now consider an edge {𝑢, 𝑣} ∈ 𝐸 , where 𝑢 = 𝑠𝑖
and 𝑣 = 𝑠 𝑗 for some 𝑖 < 𝑗 . If 𝑗 − 𝑖 ≤ 𝑘 in the original sentence 𝑠 then projection
either leaves 𝑗 − 𝑖 invariant or makes it smaller, so {𝑢, 𝑣} ∈ 𝐹. Assume now that
𝑗 − 𝑖 = 𝑘 + 1. This means that there is an index ℎ with 𝑖 < ℎ < 𝑗 such that 𝑠ℎ is a
removed node. Then, after generation, there must be an edge pair ({𝑠𝑖 , 𝑠ℎ}, {𝑠ℎ, 𝑠 𝑗 })
in the graph that is replaced by a single edge {𝑠𝑖 , 𝑠 𝑗 }: obviously, since 𝑠ℎ is removed
first in 𝐻, this edge is also in 𝐹. By induction, the same holds for any value of
𝑗 − 𝑖 > 𝑘 . The argument showing that edges in 𝐹 must also be in 𝐸 is similar. □

Given a weighted graph 𝐺 = (𝑉, 𝐸, 𝑑) where 𝑉 is a set of tokens of a string 𝑠,
the contraction in 𝐺 of a subset 𝑅 ⊂ 𝑉 s.t. |𝑅 | ≥ 2 is as follows: (i) a representative
𝑟 ∈ 𝑅 is chosen; (ii) in all edges {𝑣, 𝑢} ∈ 𝐸 with 𝑣 ∉ 𝑅 and 𝑢 ∈ 𝑅 the symbol 𝑢 is
replaced by 𝑟, with 𝑑𝑣𝑟 = 𝑑𝑣𝑢 + 𝑑𝑢𝑟 ; (iii) all edges in the induced subgraph 𝐺 [𝑅]
are removed from 𝐸 ; (iv) all vertices in 𝑅 except from 𝑟 are removed from 𝑉 .

Corollary 1 Before contraction, the token graph𝐺 = (𝑉, 𝐸) constructed by genera-
tion and projection has |𝑉 | −2𝑘 vertices (from the (𝑘 +1)-st to the (𝑛− 𝑘)-th) having
the same node degree 2𝑘 .

Proof By Prop. 1, the graph 𝐺 = (𝑉, 𝐸) can be constructed by projection first and
then generation. Therefore this graph is a 𝑘-proximity graph, where the 𝑖-th vertex
has degree 2𝑘 for all 𝑘 < 𝑖 ≤ 𝑛 − 𝑘 . □

Cor. 1 shows that the contraction step is essential to yielding proximity gows with
range of different vertex degrees. This feature is important insofar as our aim is to
look at word ranking functions based on vertex degrees in gows rather than word
frequencies in documents.

2.2 Dependency

A dependency tree is by definition a tree graph over the sentence tokens. The
generation of dependency trees from sentences is carried out by either Probabilistic
Context-Free Grammar (PCFG) parsers [9] or appropriately trained neural networks
[5].

Projection and contraction are the same as for proximity-based gows. We note
that the projection step on dependency trees has a weak impact on connectivity,
since most of the important tokens are naturally set at nodes closer to the root than
non-important ones.

8 Nabil Moncef Boukhatem, Davide Buscaldi, and Leo Liberti

2.3 Constituency

A constituency tree is a tree graph over sentence tokens as well as syntax tags. In
this sense, constituency trees can be seen as “liftings” from dependency trees. To
a given constituency tree, one can retrieve the corresponding dependency tree1 [7].
Vice-versa, there may be more than one constituency tree corresponding to a given
dependency tree [18]. Existing algorithms aim at finding the smallest corresponding
constituency tree.

The generation of constituency trees from sentences is carried out by either
PCFG parsers (see https://nlp.stanford.edu/software/srparser.html)
or appropriately trained neural networks (see https://pypi.org/project/
benepar/).

Because constituency trees have more nodes than just tokens from the given
sentence, a preliminary projection step is necessary to remove all of the non-token
nodes. This is different from the projection step in proximity and dependency gows,
because the impact on connectivity when removing grammatical tag nodes is consid-
erable. We therefore defined a more connectivity-aware variant of projection: (i) for
any pair (𝑢, 𝑣) of leaf nodes (word tokens) in the constituency tree 𝑇 of the sentence
𝑠, compute the shortest path 𝑢 → 𝑣 in 𝑇 having length ℓ, and add the edge {𝑢, 𝑣}
with weight 𝑑𝑢𝑣 = ℓ to the graph; (ii) remove all arcs adjacent to at least one non-leaf
node; (iii) remove all non-leaf nodes. This preliminary projection step transforms
the constituency tree into a graph on the word tokens from the sentence 𝑠.

We note that the most efficient algorithm for computing shortest paths in trees
is by means of the Lowest Common Ancestor (LCA) of the origin and destination
nodes. This yields a linear-time shortest path algorithm.

Projection and contraction are the same as for proximity-based gows.

3 Computational experiments

Our benchmark aims at establishing advantages and disadvantages of different types
of gows in keyword extraction tasks. We consider two corpora: a literary one, and
a technical one. We extract keywords from documents in these corpora using the
following rank functions: TFIDF and BM25 using term frequency, and TWIDF on
𝑘-proximity, constituency tree, and dependency tree based gows (see Sect. 1.1).

Our code is written in Python 3.10. For dependency and constituency syntax
trees we made use of spaCy 3.4.4 [5] and benepar 0.2.0 [8]. Graphs were encoded
and handled in NetworkX [4] 2.8.6. Experiments were obtained on an Apple M1
Max CPU with 64GB RAM and MacOS 12.6.3. See github.com/leoliberti/
syntaxGraphOfWords to access the code and the corpora.

1 See https://github.com/wenkokke/dep2con.

On syntactical graphs-of-words 9

3.1 The literary dataset

The literary corpus contains 18 short documents extracted from various literary
work, cach consisting of a single paragraph. The lexical and grammatical quality of
these excerpts is perfect. The ground truth is a set of three keywords per document.
These keywords were established by the authors of this paper before obtaining the
computational results (we admit nonetheless to a considerable risk of personal bias
in our ground truth).

Instance TermFreq Graphs-of-words
source kw TFIDF BM25 1-prox 4-prox con dep
1177 b.C. 3 1 1 1 2 0 1
Crossings 3 1 1 1 1 0 0
The golden bough 3 1 1 0 0 0 0
Illuminating Eco 3 0 0 0 0 0 0
The island of the day before 3 1 1 1 2 1 1
The library of Babel 3 0 0 0 0 0 1
Media stories: Malvinas 3 1 1 1 1 1 0
Neverwhere 3 2 2 1 1 0 1
Nothing 3 0 0 0 0 0 0
Paine 3 0 0 0 0 0 0
Foucault’s Pendulum 3 0 0 0 0 0 0
The perks of being a wallflower 3 1 1 1 1 0 0
Quantum computing since Democritus 3 0 0 0 0 0 0
Richard III 3 1 1 1 1 0 1
The seventh function of language 3 0 0 0 0 0 0
Walden 3 1 1 0 0 0 0
When the sleeper wakes 3 1 1 1 1 0 0
Wisdom 3 0 0 0 0 0 1
Total 54 11 11 8 10 2 6

Table 1 Comparative results on a set of paragraphs from various literary sources, from which we
extracted the three highest-rank keywords with various methods. We report the number of keywords
given by each method that is in the list of three keywords in the ground truth.

The keywords extracted automatically from the literary corpus are the 3 topmost
ranking ones according to the values of term frequency and graph degree rank
functions. In Table 1 we report the number of keywords guessed by the automatic
methods that are part of the set of keywords in the ground truth.

We see from Table 1 that term frequency based ranking methods are better than
gow-based methods. Amongst the latter, 4-proximity gows yield the best perfor-
mance. We also note that the two term frequency based rankings have exactly the
same performance.

3.2 The technical dataset

The technical corpus consists of 449 documents, each of which is a client question
to technical support. The corresponding ground truth was collected by one of the
authors of this paper (NB) in the course of his work at OneTeam. The questions are “as

10 Nabil Moncef Boukhatem, Davide Buscaldi, and Leo Liberti

asked”, with the normal amount of lexical quirks and ungrammatical phrases. These
documents are short (8.6 words on average). We therefore restricted 𝑘-proximity
to 𝑘 = 1, otherwise the central word in the sentence would have ended up having
an abnormally high vertex degree in the 𝑘-proximity gow. The average number
of keywords per document in the ground truth is 2.4, but the maximum is 5: we
therefore allowed the extraction of up to 5 keywords (the gows often had fewer than
five vertices, however).

Input Ranking method
TermFreq Graphs-of-words

|GT | docs TFIDF BM25 1-proximity constituency dependency
1 9 6@1 6@1 6@1 6@1 6@1
2 238 111@1 111@1 115@1 115@1 113@1

14@2 14@2 14@2 14@2 15@2
3 143 41@1 41@1 41@1 43@1 42@1

76@2 76@2 77@2 76@2 77@2
1@3 1@3 1@3 1@3 1@3

4 36 17@1 17@1 17@1 17@1 17@1
6@2 6@2 6@2 6@2 6@2
0@3 0@3 0@3 1@3 0@3
1@4 1@4 1@4 0@4 1@4

5 3 3@1 3@1 3@1 3@1 3@1
Total 428 276 276 281 282 281

Table 2 Comparative statistics on the technical corpus. Under “Input” we report the number (docs)
of documents having |GT | keywords in the ground truth. Each data entry 𝑥@𝑦 in row (|GT |, docs)
and method-indexed column means that the corresponding method found 𝑦 out of |GT | ground
truth keywords in 𝑥 documents.

In Table 2 we present comparative statistical distributions on the success scores
of each method on documents with a certain number of ground truth keywords. Each
entry has the format 𝑥@𝑦 to mean that a given method was able to find 𝑦 correct
keywords 𝑥 times, when ranking the docs documents having |GT| keywords in their
ground truth. The total 9 + 238 + 143 + 36 + 3 = 428 falls short of the total of 449
documents since 21 documents had no keywords. Moreover, the marginal sums do
not match docs because we did not print the number of times methods found zero
correct keywords (it suffices to subtract the marginal sums from docs).

In this experiment we find that gows are more effective at keyword extraction
than term frequency. Constituency tree based gows are marginally better than other
gows. We also note, again, that the two term frequency based methods attain equal
performance levels.

4 Conclusion

We looked at graphs-of-words constructed using syntax trees, and their performance
in extracting keywords from text. There is no clear dominance of term frequency
versus graph-of-words rankinds. Graph-of-words scored better with short ungram-

On syntactical graphs-of-words 11

matical sentences, term frequency in literary texts. In the future, we may apply
this technique to structures such as “knowledge graphs”, which can be obtained by
mapping the words in the text into structured knowledge sources.

References

1. N. Chomsky. Syntactic structures. Mouton, The Hague, 1956.
2. U. Eco. Semiotics and the Philosophy of Language. Indiana University Press, Bloomington,

IN, 1984.
3. N. Franciscus, X. Ren, and B. Stantic. Dependency graph for short text extraction and sum-

marization. Journal of Information and Telecommunications, 3(4):413–429, 2019.
4. A. Hagberg, D. Schult, and P. Swart. Exploring network structure, dynamics, and function

using NetworkX. In G. Varoquaux, T. Vaught, and J. Millman, editors, Proceedings of the 7th
Python in Science Conference (SciPy2008), pages 11–15, Pasadena, CA, 2008.

5. M. Honnibal and I. Montani. Industrial-Strength Natural Language Processing in Python.
spaCy, 2023.

6. J. Hopcroft and J. Ullman. Introduction to automata theory, languages, and computation.
Addison-Wesley, Reading, MA, 1979.

7. R. Johansson and P. Nugues. Extended Constituent-to-Dependency conversion for English. In
Proceedings of the 16th Nordic Conference of Computational Linguistics, NODALIDA, pages
105–112, 2007.

8. N. Kitaev and D. Klein. Constituency parsing with a self-attentive encoder. In Proceedings
of the 56th Annual Meeting of the Association for Computational Linguistics, volume Vol. 1
(Long Papers), page 2676–2686. ACL, 2018.

9. D. Klein and C. Manning. Accurate unlexicalized parsing. In Proceedings of the 41st Meeting
of the Association for Computational Linguistics, pages 423–430, 2003.

10. R. Levine, T. Mason, and D. Brown. Lex and Yacc. O’Reilly, Cambridge, second edition,
1995.

11. F. Meyer. English Corpus Linguistics. CUP, Cambridge, 2004.
12. R. Mihalcea. Graph-based ranking algorithms for sentence extraction, applied to text summa-

rization. In Proceedings of the 42nd Annual Meeting of the Association for Computational
Lingusitics, volume Companion Volume of ACL, 2004.

13. R. Mihalcea and P. Tarau. Textrank: Bringing order into text. In Proceedings of the Conference
on Empirical Methods in Natural Language Processing, pages 404–411, 2004.

14. J. Pérez-Agüera, J. Arroyo, J. Greenberg, J. Perez Iglesias, and V. Fresno. Using BM25F for
semantic search. In Proceeindgs of 3rd International Semantic Search Workshop, pages 1–8,
2010.

15. T. Roelleke and J. Wang. TF-IDF uncovered: A study of theories and probabilities. In Proceed-
ings of the 31st annual international ACM SIGIR conference on Research and development in
information retrieval, pages 435–442, 2008.

16. F. Rousseau. Graph-of-words: Mining and retrieving text with networks of features. PhD
thesis, LIX, Ecole Polytechnique, France, September 2015.

17. F. Rousseau and M. Vazirgiannis. Graph-of-word and TW-IDF: new approach to ad hoc IR.
In Proceedings of CIKM, New York, 2013. ACM.

18. F. Xia and M. Palmer. Converting dependency structures to phrase structures. In J. Allan,
editor, Proceedings of the First International Conference on Human Language Technology
Research, HLT, San Francisco, 2001. Morgan Kaufman.

