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Abstract

In this article, we propose and study a general framework for comparing and evaluating
soft clusterings, viewed as a form of uncertainty quantification for clustering tasks, with the
aim of studying the uncertainty that arises from such a comparison. Our proposal is based
on the interpretation of soft clustering as describing uncertain information, represented in
the form of a mass function, about an unknown, target hard clustering. We present a
general construction to this purpose, called distributional measures, whereby any evaluation
measure can be naturally extended to soft clustering. We study the theoretical properties of
the proposed approach, both in terms of computational complexity and metric properties.
Furthermore, we study its relationship with other existing proposals providing, in particular,
necessary and sufficient conditions for the equivalence between distributional measures and
the recently proposed framework of transport-theoretic measures. We also propose sampling-
based approximation algorithms with convergence guarantees, making it possible to apply
the proposed method to real-world datasets. Finally, we apply the distributional measures
in a computational experiment in order to illustrate their usefulness.
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1. Introduction

Clustering [36] refers to the act of (as well as to the algorithms for) partitioning a set of
objects into groups, called clusters, supposed to encode some unknown classification defined
according to a given property. Depending on the formalism that is adopted to represent
the mentioned partitioning of the data, one can distinguish two main families of clusterings
(and, consequently, of clustering algorithms), namely: hard clustering and soft clustering.

In the case of hard clustering, the assignment of objects to clusters is one-to-one: each
object is precisely assigned to one and only cluster. In the case of soft clustering [32, 22], by
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contrast, the assignment of objects to clusters is affected by uncertainty, which is explicitly
represented in the partitioning through some uncertainty quantification formalism. Popular
approaches in this category include: probabilistic and fuzzy clustering [35], in which the
assignment is represented through a fuzzy partition; three-way and rough clustering [31, 45,
7], in which the assignment is represented through a rough partition; possibilistic clustering
[26], in which the assignment is represented through a possibilistic partition; and evidential
clustering [19, 17, 15], in which the assignment is represented through an evidential partition:
thus, it is the most general formalism among the mentioned ones.

When clustering is applied to real data, with the aim of discovering interesting relation-
ships among a given set of instances, one of the most critical steps is clustering evaluation
[44], that is, the evaluation of the obtained results. In this context, internal validation
criteria refer to measures that evaluate the goodness of a given clustering based only on
characteristics of the clustering itself, such as its intra-cluster homogeneity or inter-cluster
separatedness, while external validation criteria refer to evaluation approaches and metrics
that compare two different clusterings of the data at hand. While internal validation cri-
teria can be important as goodness–of–fit measures, only external validation criteria can
be used to objectively assess the quality of a given clustering [34], whenever the reference
clustering to be compared with it is interpreted as the ground truth. For this reason, exter-
nal validation is of fundamental importance in the evaluation of newly developed clustering
algorithms1: we will focus solely on this family of measures, which we simply refer to as
validation measures.

While several external validation measures have been proposed in the context of hard
clustering (including, among others, the Rand index [33], the mutual information [43], or
the partition distance [11]), how to properly evaluate the results of a clustering analysis
is much less clear in the case of soft clustering methods. Indeed, the interplay between
the uncertainty represented in the object-cluster assignments and the errors in the given
partitioning (in comparison with the given ground truth partitioning of the data) makes the
evaluation of such soft clustering algorithms particularly difficult [9]. For this reason, the
development of evaluation measures for soft clustering has largely focused on the extension
of common measures [1], notably the Rand index [10, 18, 23, 24], while a general approach
to extend other comparison measures to soft clustering has so far been largely lacking.

As a way to bridge this gap, in a series of recent articles [8, 9] we proposed some principles
for developing new evaluation metrics for soft clustering, based on the intuition that any
given soft clustering can be represented as a distribution (in particular, a mass function)
that encodes the belief about an underlying, but unknown, true hard clustering. Indeed, an
evidential clustering (as the most general form of soft clustering among the ones considered in

1 The described application is actually one of the two most common use cases for external validation
measures: we have developed a new clustering algorithm and we want to assess its quality by comparing
its results on some datasets for which we know the ground truth partitioning. That is, basically, we have
a collection of supervised datasets that we use to benchmark the newly developed algorithm as a way to
evaluate whether, on new datasets, it will similarly work well. The other major application of external
validation measures is instead to compare two different clusterings of the same data, in order to assess
whether these identify similar clustering structures.
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this article) associates with each instance a mass function over the clusters, which represents
the uncertainty about the assignment of that specific instance. Obviously, such instance-wise
uncertainty quantification can be transformed to a partition-wise uncertainty quantification
by simply transferring the mass functions for the single instances to a global mass function
over hard clusterings: this latter mass function is considered as a representation of the
uncertainty (determined by the evidential clustering algorithm that generated the evidential
clustering at hand) about a set of compatible hard clusterings of the data, one of which is
assumed to be optimal (i.e., the hard clustering, among the ones compatible with the given
soft clustering, which is as similar as possible to the true, unknown clustering of the data).

In particular, we noted that one can distinguish two different purposes in such an evalu-
ation. First, to objectively evaluate the quality of a soft clustering with respect to a known
ground truth partitioning: since any given soft clustering, as mentioned above, can be rep-
resented as a distribution of hard clusterings, this amounts to finding bounds on the quality,
with respect to the given ground truth, of the hard clusterings compatible with the given soft
clustering. Second, to compare two different soft clusterings2 and to quantify the uncer-
tainty arising from their comparison: that is, to compare all the hard clusterings compatible
with the given soft clusterings, and to propagate the degree of uncertainty represented by the
two soft clusterings to the quality comparison. Based on these two principles, we proposed a
general mathematical framework [9] aimed at addressing the former need mentioned above
(i.e. evaluating the result of a soft clustering algorithm in comparison with a given ground
truth). This approach, grounded on optimal transport theory and a novel representation of
soft clustering in distributional terms, allows us to extend any validation measure from the
hard clustering setting to the soft clustering one using a principled approach.

In this article, which is an extension of our previous conference paper [8], we continue
our study of validation measures for soft clustering. After recalling our previous contri-
butions in [9], we provide three main new contributions. First, we propose an alternative
approach for the comparison of soft clusterings, which aims at comprehensively evaluating
the uncertainty represented by a soft clustering, through the definition of so-called distri-
butional measures. Second, we draw connections between the transport-theoretic measures
introduced in [9] and the framework of distributional measures, showing their equivalence
in the special but important case in which one of the two clusterings to be compared is a
hard clustering. Finally, we propose algorithms (both exact and approximation ones) for
computing distributional measures and we show their application to a sample collection of
datasets, so as to evaluate their practical applicability and illustrate the kind of reasoning
they enable.

2 A possible use case for the mentioned comparison is when the two soft clusterings are obtained from
two different clustering algorithms, applied to the same set of data. In this case, our aim would be to assess
whether the underlying hard clusterings compatible with the soft clusterings represent similar clustering
structures. However, one could also consider to compare two clusterings obtained by the same algorithm,
but with different hyper-parameter settings, or different randomization choices taken through the course
of the clustering process. In this case, our aim would be to evaluate the stability of the compatible hard
clusterings. In both cases, the existence of a hard clustering C compatible with both the soft clusterings
could be taken as evidence that C indeed represents some latent characteristic of the data.
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The rest of the paper is organized as follows. The necessary background on soft clustering
and evaluation measures will first be recalled in Section 2. Our new framework will be then
introduced in Section 3, and approximation methods will be presented in Section 4. Finally,
illustrative experiment will be reported in Section 5, and Section 6 will conclude the paper.

2. Background and Related Work

General background on clustering will first be exposed in Section 2.1. The distributional
representation introduced in [9] will then be recalled in Section 2.2, and an overview of
evaluation measures for soft clustering will be provided in Section 2.3.

2.1. Background on Clustering

Let X = {x1, . . . , xn} be a collection of objects. A hard clustering is a partitioning of
objects in X into groups, called clusters. Formally, a hard clustering can be represented
by a surjective mapping C : X → Ω, where Ω = {ω1, . . . , ωk} is a set of clusters. This
representation is called “object-based”. We denote with CΩ = {C : X → Ω} the set of
hard clusterings having Ω as codomain. Given a hard clustering C ∈ CΩ, we can define
the equivalence relation [C] = {(x, x′) ∈ X × X : C(x) = C(x′)}, called the relational
representation of C. Two hard clusterings C1, C2 are said to be equivalent iff [C1] = [C2];
we then write C1 ∼ C2. We denote by Cπ = CΩ\ ∼ the quotient of CΩ with respect to ∼.

Example 2.1. Let X = {x1, . . . , x5} and Ω = {ω1, ω2, ω3}. Then, the clustering C : X 7→ Ω
defined by C(x1) = C(x5) = ω1, C(x2) = C(x3) = ω2 and C(x4) = ω3 is a hard clustering.
For simplicity, we will also represent C as the tuple c = (1, 2, 2, 3, 1), where ci = j iff
C(xi) = ωj. One can equivalently describe C in terms of its relation representation:

[C] = {(x1, x5), (x5, x1), (x2, x3), (x3, x2), (x1, x1), (x2, x2), (x3, x3), (x4, x4), (x5, x5)}.

As mentioned in Section 1, in soft clustering, objects are no longer restricted to fully
belong to a single cluster: instead, they can partially belong to multiple clusters, where a
partial assignment represents the uncertainty in the cluster assignments. Though different
formalisms have been proposed to represent such uncertainty in a clustering, here we will
focus on the general framework of evidential clustering, in which the uncertainty about
the assignment of objects to clusters is represented in the form of a Dempster-Shafer mass
function [19, 3, 47]. Formally, using the object-based representation, an evidential clustering
is a set M = {mx}x∈X , where each mx is a mass function, i.e., a function mx : 2Ω 7→ [0, 1]
such that

∑
A⊆Ω mx(A) = 1.

If the mass functions mx are logical (i.e. they have only one focal set3.), then the
collection R = {mx}x∈X is said to be a rough clustering. As in the case of hard clustering,
multiple equivalent formalisms can be used to represent a rough clustering. Indeed, a rough
clustering can be seen equivalently as a set-valued function R : X → 2Ω, where R(x) = A

3We recall that A is a focal set if mx(A) > 0.
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with mx(A) = 1. Similarly, a rough clustering can also be represented as a set of hard
clusterings [6]. To this end, a hard clustering C is said to be compatible with R if ∀x ∈ X,
it holds that C(x) ∈ R(x): then, the rough clustering R can be equivalently understood
as representing the collection of hard clusterings compatible with it, i.e., C(R) = {C :
C is compatible with R}.

Example 2.2. Let X and Ω be defined as in Example 2.1. Then M = {mxi
}xi∈X defined

as mx1(ω1) = 1; mx2(ω2) = 1; mx3({ω2, ω3}) = mx3(Ω) = 0.5; mx4(ω2) = 1; mx5(Ω) =
0.5,mx5(ω1) = mx5(ω2) = mx5(ω3) =

1
6
is an evidential clustering.

Example 2.3. Let X and Ω be defined as in Example 2.1. Then R defined by R(x1) = ω1,
R(x2) = ω2, R(x3) = {ω2, ω3}, R(x4) = ω3, R(x5) = Ω is a rough clustering. Using the
tuple-based notation introduced in Example 2.1, R can be equivalently represented as the set

C(R) = {(1, 2, 3, 3, 3), (1, 2, 3, 3, 2), (1, 2, 3, 3, 1), (1, 2, 2, 3, 3), (1, 2, 2, 3, 2), (1, 2, 2, 3, 1)}.

For simplicity, we can represent C(R) as (1, 2, {2, 3}, 3, {1, 2, 3}).

In addition to hard and rough clusterings, evidential clustering also generalizes other
forms of soft clustering. Indeed, when all the mass functions mx are Bayesian (i.e., it
holds that

∑
ω∈Ωmx({ω}) = 1), then the collection F = {mx}x∈X is a fuzzy clustering.

Similarly, if all mx are consonant (i.e., the focal sets of mx are nested, that is ∀A,B such
that mx(A),mx(B) > 0, either A ⊆ B or B ⊆ A), then the collection P = {mx}x∈X is
a possibilistic clustering. As in the case of rough clustering, both for fuzzy clustering and
possibilistic clustering, an alternative and simpler representation can be given in terms of
cluster membership vectors F = {µx}x∈X . In possibilistic clustering it is assumed that for
all x ∈ X, maxω∈Ω µx(ω) ≤ 1, while in fuzzy clustering we assume that for all x ∈ X,∑

ω∈Ω µx(ω) = 1.

Example 2.4. Let X and Ω be defined as in Example 2.1. Then,

1. F defined as µx1(ω1) = 1, µx2(ω2) = 1, µx3(ω2) = µx3(ω3) = 0.5, µx4(ω3) = 1 and
µx5(ω1) = µx5(ω2) = µx5(ω3) =

1
3
is a fuzzy clustering;

2. P defined as µx1(ω1) = 1, µx2(ω2) = 1, µx3(ω2) = µx3(ω3) = 1, µx4(ω3) = 1 and
µx5(ω1) = µx5(ω2) = 1, µx5(ω3) = 0.8 is a possibilistic clustering.

As for the case of hard clustering, we can define a relational representation also for the
case of evidential clustering: we refer the reader to [9, 18] for additional details on this
alternative representation of soft clusterings.

Finally, we note that, as we mentioned in Section 1, since a soft clustering describes the
uncertainty in regard to an underlying (unknown) hard clustering, two forms of uncertainty
can be distinguished. First, partial assignment (or conflict), i.e., the fact that for two sets
of clusters A,B ⊂ Ω with A∩B = ∅ it may happen that masses mx(A) and mx(B) are both
positive: intuitively, partial assignment refers to the fact that the mass functions in the given
evidential clustering encode evidence that is partially conflicting due to aleatory uncertainty

5



about the assignment of object x to the clusters. Second, ambiguity, i.e., the assignment of
some mass to non-singleton events (that is, ∃A ⊆ Ω such that |A| > 1 and mx(A) > 0):
intuitively, ambiguity describes the inability to exactly determine to which cluster an object
belongs, and can thus be considered as a way to represent epistemic uncertainty. It is easy
to observe that in a fuzzy clustering only partial assignment is relevant, since all the mass is
assigned to the singletons, while in the case of rough clustering, only ambiguity is present.
By contrast, the evidential clustering formalism is flexible enough to represent both types
of uncertainty.

2.2. Distributional Representation of Soft Clustering

As a way to more comprehensively represent the uncertainty underlying any given soft
clustering, in [9] we proposed a novel representation of soft clustering, alternative to both the
object-based and relational ones. This representation is based on the observation, illustrated
above, that any rough clustering R can be represented as a set C(R) of hard clusterings.
Noting that such a set of hard clusterings can be interpreted as a Boolean possibility dis-
tribution over the space of hard clusterings, this representation can be extended to general
soft clustering. The intuitive idea underlying this distributional representation is that any
soft clustering can be understood as a belief function [12, 16, 37] over the collection of hard
clusterings: depending on the specific class of soft clustering considered, a corresponding
special class of belief functions is used as a representation formalism. Consequently, for
example, a fuzzy clustering can be represented as a probability (i.e., a Bayesian belief func-
tion) distribution over hard clusterings, while a possibilistic clustering can be represented
as a possibility distribution (i.e., a consonant belief function) over hard clustering. More
generally, an evidential clustering can be interpreted as general mass function over hard
clustering or, equivalently, a probability distribution over rough clusterings (as each rough
clustering can be represented as a set of hard clusterings).

Formally, given an evidential clustering M , obtained by any evidential clustering algo-
rithm applied to the data X, we consider the following probability distribution over rough
clusterings:

mM(R) =
∏
x∈X

mx(R(x)), (1)

which can also be seen as a Dempster-Shafer mass function over hard clusterings. Intu-
itively, any evidential clustering M can be interpreted as a way to quantify the uncertainty
about the assignment of instances to clusters: indeed, M associates with each x ∈ X a
mass function mx, such that, for any set of clusters A ⊆ Ω, mx(A) represents the evi-
dence supporting the assignment of x to one of the clusters in A. Then, the distributional
representation mM of M transforms the above mentioned instance-wise uncertainty repre-
sentation into a clustering-wise uncertainty representation: given any rough clustering R
(i.e., a set of hard clusterings), mM(R) represents the evidence supporting the statement
that the optimal clustering of the data lies among the hard clusterings in R. Given an
evidential clustering M we denote by F(M) the collection of focal rough clusterings of
M , that is F(M) = {R : mM(R) > 0}, where mM is the distributional representation of
M . We say that two evidential clusterings M1,M2 are equivalent, denoted M1 ∼e M2, if
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∀R1 ∈ F(M1), R2 ∈ F(M2), ∀C1 ∈ C(R1), C2 ∈ C(R2) it holds that C1 ∼ C2 (see Section
2.1). We denote with MΩ the set of all evidential clusterings with Ω being the set of
clusters.

The distributional representation for rough, fuzzy and possibilistic clusterings can then
be obtained as special cases of (1), by restricting the collection of focal rough clusterings.
Indeed, in the case of rough clustering, mM is logical and assigns all the evidence to a single
rough clustering (i.e. |F(mM)| = 1). In the case of a fuzzy clustering F = {µx}x, where
µx : Ω → [0, 1] is a probability distribution, the focal rough clusterings are all singletons
(i.e., hard clusterings); we can, thus, define PrF (C) =

∏
x∈X µx(C(x)). Finally, given a

possibilistic clustering P and any t-norm ∧, P can be represented as a possibility distribution
over hard clusterings PossP (C) =

∧
x∈X µx(C(x)), which corresponds to a consonant mass

function over rough clusterings. We define RΩ (resp., FΩ,PΩ) by restricting MΩ to the
set of rough (resp., fuzzy, possibilistic) clusterings.

Example 2.5. Let F, P,M be the soft clusterings defined in Examples 2.4 and 2.2. Then,
PrF is defined as:

PrF ((1, 2, 2, 3, 1)) = PrF ((1, 2, 2, 3, 2)) = PrF ((1, 2, 2, 3, 3)) =

PrF ((1, 2, 3, 3, 1)) = PrF ((1, 2, 3, 3, 2)) = PrF ((1, 2, 3, 3, 3)) =
1

6
.

Similarly, PossP is defined as

PossP ((1, 2, 3, 3, 3)) = PossP ((1, 2, 2, 3, 3)) = 0.8,

PossP ((1, 2, 3, 3, 2)) = PossP ((1, 2, 3, 3, 1)) = 1,

PossP ((1, 2, 2, 3, 2)) = PossP ((1, 2, 2, 3, 1)) = 1.

Finally, mM is defined as

mM((1, 2, {2, 3}, 3,Ω)) = mM((1, 2,Ω, 3,Ω)) = 0.25,

mM((1, 2, {2, 3}, 3, 1)) = mM((1, 2, {2, 3}, 3, 2)) = mM((1, 2, {2, 3}, 3, 3)) = 1

12
,

mM((1, 2,Ω, 3, 1)) = mM((1, 2,Ω, 3, 2)) = mM((1, 2,Ω, 3, 3)) =
1

12
.

Remark. Let M be any evidential clustering. Even though the distributional representation
mM explicitly quantifies the uncertainty about clusterings compatible with M , it can also
be understood as implicitly quantifying the uncertainty about properties of such compatible
clusterings. A relevant example in this sense, would be to consider the number of clusters:
indeed, mM implicitly encodes information about the uncertainty concerning different possible
values for the number of clusters in the unknown, true clustering of the data. For example,
let X = {x1, x2, x3} and Ω = {ω1, ω2, ω3}. Let M be the evidential clustering given by:

mx1({ω1}) = 1

mx2({ω2}) = 1

mx3({ω1, ω2}) = mx3(Ω) = 0.5.
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Then, the distributional representation mM of M is given by:

mM((1, 2, {1, 2})) = 0.5,

mM((1, 2,Ω)) = 0.5.

It can be easily seen that we can compute the belief and plausibility that the number of
clusters is equal to 2 as follows:

Bel(2 clusters) =
∑

R∈F(M):∀C∈R,C:X→A with |A|=2

mM(R) = mM((1, 2, {1, 2})) = 0.5,

P l(2 clusters) =
∑

R∈F(M):∃C∈R,C:X→A with |A|=2

mM(R) = mM((1, 2, {1, 2})) +mM((1, 2,Ω)) = 1.

Similarly, we could compute Bel(1 cluster) = Bel(3 clusters) = 0, as well as Pl(1 cluster) =
0, Pl(3 clusters) = 0.5.

2.3. Clustering Comparison Measures

Several measures have been defined to compare hard clusterings. For example, the widely
used Rand index is defined, for any two hard clusterings C1, C2, as the proportion of object
pairs that are either assigned to the same cluster by C1 and C2, or are assigned to different
clusters by both C1 and C2, i.e.,

Rand(C1, C2) =
|{(x, y) ∈ X2 : (x, y) ∈ ([C1] ∩ [C2]) ∪ ([C1]

c ∩ [C2]
c)}|

|X|2
. (2)

The partition distance [11] is defined as the minimum number of objects to be moved to
transform C1 into C2 (or, equivalently, C2 into C1); it can be computed as

dπ(C1, C2) =
1

|X| − 1
min
w

1

2

∑
i

|ω1
i∆ω2

w(i)|, (3)

where w is a permutation function, and ∆ is the symmetric difference operator. Yet another
clustering comparison measure is variation of information [43], defined as

VI(C1, C2) = H(C1) +H(C2)− 2
∑

ω1
i ∈Ω1

∑
ω2
j∈Ω2

pij log
pij

p1i · p2j
, (4)

where p1i = |{x ∈ X : C1(x) = ω1
i }|/|X|, and similarly for each ω2

i ∈ Ω2, while pij = |{x ∈
X : C1(x) = ω1

i and C2(x) = ω2
j}|/|X|, and H(Ck) =

∑|Ω|
i=1 p

k
i log

1
pki
.

We remark that, even though 1− Rand, dπ and VI are defined as mappings in the form
d : CΩ × CΩ → R (that is, as mappings that take as input two object-based representations
of clusterings and return a real number), they can easily be seen to be metrics on Cπ: that
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is, given two clusterings C1, C2 : X → Ω with C1 ∼ C2 (i.e., [C1] = [C2]), then it holds that
d(C1, C2) = 0. Indeed, this is evident for the Rand index (as its definition explicitly refers to
the relational representation of the clusterings to be compared), and it can be seen to hold
true also for the partition distance and variation of information by noting that these two
do not change when given two clusterings that are equivalent up to a relabeling of clusters.
Notice that this property implies that 1 − Rand, dπ and VI are pseudo-metrics on CΩ, but
in general it holds that, given C1, C2, their value is equal to 0 iff C1 ∼ C2. We refer to
measures d that satisfy this property as hard clustering metrics.

Several extensions of the above mentioned measures has been proposed in the soft clus-
tering setting, for fuzzy clustering [1, 2, 5, 10, 23, 24, 46], rough clustering [6, 20], possibilistic
clustering [1, 2] and evidential clustering [18]: we refer the reader to [9] for a more compre-
hensive survey of previous works on the development of soft clustering evaluation measures.
While such previous research was devoted to the definition and evaluation of specific eval-
uation measures, in [9] we proposed a general framework to extend any hard clustering
validation measure to the setting of evidential clustering based on the distributional repre-
sentation of soft clustering recalled in Section 2.2.

Before recalling this approach, we first describe some general requirements that a valida-
tion measure for soft clustering should meet. As briefly explained in the introduction, any
such measure may have two different purposes:

1. On the one hand, it may aim to provide reliable bounds on the similarity (or, dually,
the distance) between any given soft clustering and a ground truth partitioning of
the data, taking into account the uncertainty represented by the soft clusterings to
be compared. In the simplest case, wherein the given ground truth partitioning is
a hard clustering, this corresponds to finding optimistic and pessimistic bounds on
the similarity between the ground truth partitioning and the unknown, optimal hard
clustering underlying the soft clustering to be compared. More generally, when also
the ground truth partitioning is a soft clustering 4, this corresponds to bounding the
similarity between the true, unknown hard clustering underlying the given soft ground
truth and the soft clustering to be compared to it;

2. On the other hand, the objective may be to comprehensively characterize the uncer-
tainty in the given soft clusterings and, henceforth, the uncertainty emerging from
their comparison. That is, to comprehensively assess the similarities among all pairs
of hard clusterings compatible with the two given soft clusterings and, most impor-
tantly, to lift the uncertainty represented in the soft clusterings to the results of such
a comparison (i.e., to obtain a distribution over similarity values corresponding to the
outcomes of the above comparison), so as to holistically evaluate the similarity among
the clustering structures compatible with the two soft clusterings being compared.

While both approaches aim at providing an indication about the quality and information in
a soft clustering, they are largely orthogonal and hence correspond to different properties

4Such a soft ground truth can arise, for example, in the context of semi-supervised learning, so that we
evaluate a clustering algorithm based on a partial labelling of data.
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that should be required for a given validation measure to satisfy that aim. In [9] we focused
on the former of the above objectives, and remarked that it can be met by a pair of validation
measures, representing an interval of values: the lower bound of the interval should quantify
the compatibility between two soft clusterings to be compared, i.e. whether there exists
a hard clustering which is compatible with both soft clusterings, while the upper bound
should quantify their equality. To provide a formal translation of these principles, it is
required that the lower bound be a consistency measure, while the upper bound should be a
metric (or, dually, a similarity). Intuitively, the lower bound disregards the ambiguity in the
soft clusterings to be compared and only focuses on the conflict among them, in the most
optimistic case; by contrast, the upper bound equates ambiguity to an error or conflict and
hence provides a more conservative validation assessment.

The approach proposed in [9] is based on the Wasserstein construction from Optimal
Transport theory [42], which is used to compute a measure of distance between the distribu-
tional representations of the two soft clusterings to be compared: such measures are called
transport-theoretic measures. To briefly recall this approach, we note that every evidential
clustering can be represented as a distribution over rough clusterings. Let d be a normalized
hard clustering metric. This measure is extended to the setting of rough clustering through
the following pair of measures,

dR0 (R1, R2) = dlR(R1, R2), (5)

dR1 (R1, R2) = dH(C(R1), C(R2)), (6)

where

dlR(R1, R2) = min{v ∈ R : ∃C1 ∈ C(R1), C2 ∈ C(R2) such that v = d(C1, C2)},

and dH is the Hausdorff distance between C(R1) and C(R2) based on d. Intuitively, dR0
represents an optimistic lower bound on the distance between R1, R2, computed by taking
the two hard clusterings C1, C2 (compatible with R1, R2) such that their distance is minimal.
By contrast, dR1 can be represented as the dual upper bound, under the constraint that the
obtained measure is a metric (hence, the use of the Hausdorff distance rather than the max
operator). These measures can then be extended to the case of evidential clustering by
applying the Wasserstein construction as follows:

dMα (M1,M2) = min
σ

∑
(R1,R2)∈F(M1)×F(M2)

σ(R1, R2)d
R
α (R1, R2) (7)

such that
∑

R2∈F(M2)

σ(R1, R2) = mM1(R1)∑
R1∈F(M1)

σ(R1, R2) = mM2(R2)∑
(R1,R2)∈F(M1)×F(M2)

σ(R1, R2) = 1

∀(R1, R2) ∈ F(M1)×F(M2), σ(R1, R2) ≥ 0

10



where α ∈ {0, 1} and σ is a probability distribution over F(M1) × F(M2). Intuitively,
computing dMα (M1,M2) amounts to finding a joint distribution σ (indeed, the third and
fourth constraint in Eq. (7) amount to requiring that σ is a probability distribution) whose
marginals coincide with the two distributional representations of M1,M2 (as required by the
first and second constraint in Eq. (7)) and such that the expected distance (computed as
dRα , defined above) between rough clusterings compatible with M1,M2 is minimized. Then,
dM0 represents a lower bound on the distance between (hard clusterings compatible with)
M1 and M2, while, dually, d

M
1 represents an upper bound for the same comparison. Thus,

the above construction allows to lift a base distance over rough clusterings to a distance over
general distributions (i.e., mass functions) over hard clusterings.

In the following example, adapted from [9], we illustrate the computation of the transport-
theoretic measures on the soft clusterings introduced in the previous examples.

Example 2.6. Let C,F, P,M be the clusterings defined in Examples 2.1, 2.4, 2.2, and
assume that d = 1 − Rand, where Rand is the Rand index over hard clusterings. Then, it
holds that

• For all α ∈ {0, 1}, dMα (C,F ) = 0.267;

• dM0 (C,P ) = 0, dM1 (C,P ) = 0.48;

• dM0 (C,M) = 1
12
, dM1 (C,M) = 0.442.

3. A General Framework for Soft Clustering Evaluation Measures

As shown in Section 2.3, most of the research on comparison measures for soft clustering
has focused on the analysis of some specific indices [24, 18]. Furthermore, we have described
a recent proposal for a general framework to extend validation and comparison measures to
the setting of evidential clustering, aimed at addressing the need for measures that enable
the objective comparison of two clusterings. In this section, we propose another framework
aimed at the second goal described in the introduction, namely comprehensively describing
the uncertainty in the assessment of similarity among a pair of soft clusterings and arising
from their comparison.

3.1. Distributional Measures

Let d be a hard clustering metric5. Since, as shown in Section 2.2, any soft clustering
can be seen as a distribution (in general, a mass function) over hard clusterings, an intuitive
approach to comprehensively evaluate the uncertainty arising from the comparison of two soft
clusterings would be to extend d to a distribution-valued function, providing a quantification

5As previously highlighted in Section 2.3, the fact that d is a hard clustering metric implies that the
metric properties introduced in Section A are defined with respect to the equivalence relation ∼. Starting
from this section, when we will study the metric properties of extensions of d to evidential clustering, we
will assume metric properties to be defined with respect to the relation ∼e.
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of the uncertainty about the full range of similarities among the hard clusterings compatible
with the two soft clusterings to be compared. The intuition behind this approach is based on
the definition of soft clustering as representing a clustering with some uncertainty affecting
our knowledge with respect to the assignment of objects to clusters, as described in Section
2.2. Thus, it is natural to require that an evaluation measure for soft clustering should
transfer this uncertainty to the possible outcomes of the evaluation.

Therefore, a measure over rough clusterings would provide, given two rough clusterings
R1, R2, a set of values, representing all possible distances between hard clusterings compat-
ible with R1, R2. Similarly, given two fuzzy clusterings F1, F2, a measure would provide a
probability distribution over possible distance values; while given two possibilistic clustering
P1, P2 a measure would provide instead a possibility distribution over distance values. More
generally, a measure over evidential clusterings would provide a mass function over possible
values of d. Thus, the existence of a small distance value associated with a positive mass
would denote the existence of a clustering structure compatible with both the soft clus-
terings being compared: thus, lower values of d could be interpreted as evidence that the
above mentioned clustering structure shares some characteristics with the true, unknown
clustering of the data. Formally, we define the distributional measure, based on d, between
two rough clusterings as the set

dR(R1, R2) = {d(C1, C2) : C1 ∈ C(R1) and C2 ∈ C(R2)}, (8)

and, for two general evidential clusterings (with fuzzy and possibilistic clustering as special
cases), the mass function on R+ defined by6

∀V ⊂ R+, dM(M1,M2)(V ) =
∑

R1,R2:dR(R1,R2)=V

mM1(R1) ·mM2(R2), (9)

It is easy to observe that dM is a generalization of dR. Indeed, in the specific case where
M1,M2 are rough it holds that dM(M1,M2)(dR(M1,M2)) = 1. We also note that, when
M1,M2 are fuzzy clusterings, the distributional measure dM can be simplified to a probability
distribution denoted by the symbol dF , since all mass is assigned to singletons. In particular,
the computation of dF can be simplified as the probability distribution dF (F1, F2) on R+

defined by

∀v ∈ R+, dF (F1, F2)(v) =
∑

C1,C2:d(C1,C2)=v

PrF1(C1) · PrF2(C2),

6We note that Eq. (9) resembles to the conjuctive rule of combination [38] (or, unnormalized Demp-
ster’s rule) ∩ defined, for two mass functions m1,m2 as: m1 ∩m2(A) =

∑
B∩C=A m1(B) · m2(C).

Indeed, dM can be obtained by first computing the conjunctive combination of (the cylindrical ex-
tensions to F(M1) × F(M2) of) mM1

,mM1
as mM1 ∩mM2(R1, R2) = mM1(R1) · mM2(R2), and then

computing the restriction of mM1 ∩mM2 to R given by dM (M1,M2)(V ) = (mM1 ∩mM2 ↓ R)(V ) =∑
R1,R2:dR(R1,R2)=V mM1

∩mM2(R1, R2). We note, furthermore, that in the given setting the conjuc-

tive rule of combination coincides with Dempster’s rule, that is ∩ =
⊕

: indeed, it is easy to see that
dM (M1,M2)(∅) = 0.
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We also denote with dP the possibility distribution on R+ obtained from dM when the
two evidential clusterings M1,M2 to be compared are possibilistic clusterings. It can be
computed as

∀v ∈ R+, dP (P1, P2)(v) =
∑

V ∈F(dM (P1,P2)):v∈V

dM(P1, P2)(V ),

where F(dM(P1, P2)) = {V ⊆ R+ : dM(P1, P2)(V ) > 0} is the collection of focal sets of the
distributional measure dM(P1, P2).

Intuitively, dM(M1,M2)(V ), where V ⊆ R+ is a set of distance values, can be interpreted
as the mass of belief assigned to the statement “The true value of the distance between the
two optimal hard clusterings underlyingM1,M2 is within the set V ”. Therefore, dM provides
a complete representation of the possible distance values that arise when comparing hard
clusterings compatible with M1,M2, obtained by transferring the mass functions over hard
clustering defined by M1,M2 to a mass function over distance values.

From the point of view of its metric properties, it is clear that dM is not a metric:
indeed, dM is not even defined as a single-valued function, but rather as a distribution,
since its main aim is to quantify the uncertainty arising from the comparison between two
evidential clusterings. However, dM satisfies the properties stated in the following theorems.

Proposition 3.1. Function dM is symmetric, i.e., for any two evidential clusterings M1

and M2, dM(M1,M2) = dM(M2,M1).

Proof. The result directly follows from the definition of dM .

Theorem 3.1. dM(M1,M2)({0}) = 1 iff M1 ∼e M2, i.e., ∀(R1, R2) ∈ F(M1) × F(M2),
∀C1 ∈ C(R1), ∀C2 ∈ C(R2), it holds that C ′ ∼ C. In particular, if M1,M2 are equivalent
hard clusterings, then dM(M1,M2)({0}) = 1.

Proof. The result directly follows from the definition of dM .

Theorem 3.2. Once defined

BelM1,M2({v}) =
∑

R1,R2:dR(R1,R2)={v}

mM1(R1) ·mM2(R2) (10)

PlM1,M2({v}) =
∑

R1,R2:v∈dR(R1,R2)

mM1(R1) ·mM2(R2). (11)

then, it holds that

• ∀v ∈ R, the mappings (M1,M2) 7→ BelM1,M2({v}) and (M1,M2) 7→ PlM1,M2({v})
that assign to each pair of evidential clusterings (M1,M2) the corresponding belief and
plausibility values, satisfy (M2) and (M3) (see Section A);

• BelM1,M2({0}) = 1 iff M1 ∼e M2;
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• PlM1,M2({0}) = 1 iff ∀(R1, R2) ∈ F(M1) × F(M2), ∃C1 ∈ C(R1), C2 ∈ C(R2) such
that C1 ∼ C2.

Proof. The result directly follows from the definition of dM .

Corollary 3.1. Let M be an evidential clustering and C a hard clustering. Then, it holds
that dM(M,C)({0}) = 1 iff ∀R ∈ F(M), ∃C ′ ∈ C(R) such that C ′ ∼ C. Moreover, it holds
that

dM(M,C)(V ) =
∑

R∈F(M):dR(R,C)=V

mM(R), (12)

BelM,C({v}) =
∑

{C′}∈F(M):d(C′,C)={v}

mM({C ′}), (13)

PlM,C({v}) =
∑

R∈F(M):v∈dR(R,C)

mM(R). (14)

As a consequence of the previous result, the value dM(M1,M2)({0}) can be interpreted
as the mass of belief assigned to the hypothesis that the unknown optimal hard cluster-
ing structures underlying M1 and M2 are the same (have a distance equal to 0). Indeed,
dM(M1,M2) assigns full belief to 0, if and only if M1,M2 are totally compatible. In particu-
lar, simple equality between M1,M2 does not suffice to obtain dM(M1,M2)({0}) = 1, unless
M1,M2 are both hard clusterings. Thus, we see that even though dM was not developed
with the aim of enabling an objective comparison between the two evidential clusterings
M1,M2, its restriction to the value 0 satisfies some reasonable metric properties that enable
its use also in this application context, as a potential, more informative alternative to the
transport-theoretic framework described in Section 2.3.

In regard to computational complexity, it is easy to show that computing dM (resp., dR,
dF , dP ) is computationally easy with respect to the size of the distributional representation
introduced in the previous section. Indeed, the computation of the above measures simply
requires one to enumerate the collection of compatible hard clusterings of the two soft
clusterings to be compared, along with the respective mass function values. At the same
time, it is easy to show that computing dM (resp., dR, dF , dP ) is computationally intractable
with respect to the size of both the object-based and relational representations (which are
the representations most commonly adopted by soft clustering algorithms).

Theorem 3.3. The problem of computing dM (resp., dR, dF , dP ) has complexity O(km),
where m = |{x ∈ X : ∃R ∈ F(M) such that |R(x)| ≠ 1}| and k = |Ω| is the number
of clusters. More precisely, dR can be computed in constant amortized time (i.e., dR ∈
O(CAT (k,m))), while dF , dP , dM can be computed in at most linear amortized time (i.e.
dM ∈ O(LAT (k,m))).

Proof. For the first part of the result, we note that, given a rough clustering R, the size
of C(R) is in the worst case exponential in the size of R [6]. Thus, the statement for dR
follows. Similar considerations can be applied to the cases of dF , dP and dM . We note that
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in all cases the size of the distributional representation is on the order of O(km), therefore
for this latter representation the problem of computing dR (resp., dF , dP , dM) has at most
quadratic complexity with respect to the size of the input.

For the second part, we note that enumeration of all partitions of a set can be performed
in constant amortized time [39], therefore the same holds for computing dR. For the case
of dF , dP , dM , the same algorithm used for computing dR can be used as a sub-routine.
Specifically, in this case, for each hard clustering we also need to determine its mass. This
can be easily performed in time O(nk), which, assuming n > k, is linear in the size of the
problem (in the worst case, where n = k, it is quadratic).

3.2. Interval representation

In the previous section we introduced distributional measures as a comprehensive frame-
work to evaluate the uncertainty arising from the comparison among two soft clusterings.
Even though this framework satisfies some intuitively appealing properties, we have also
shown that computing the distributional measures is computationally intractable, as it has
complexity that is in general exponential in the size of the given soft clustering to be com-
pared (although the complexity is polynomial in the size of their distributional represen-
tations). A possible solution to the above mentioned intractability would be to consider,
instead of the complete description of the distributional measures, a compact representa-
tion (that is, a summary) of it, thus bridging the two aims for a clustering quality measure
described above in the introduction.

For the case of rough clustering, it is easy to see that dR can be summarized as the
interval defined by the lower and upper bounds of dR itself. That is:

⟨dlR, duR⟩(R1, R2) = ⟨min{v ∈ R : v ∈ dR(R1, R2)},max{v ∈ R : v ∈ dR(R1, R2)}⟩.

We note that this definition satisfies the following properties:

Proposition 3.2. Let R1, R2 be two rough clusterings. Then, 1 − dlR is a consistency on
RΩ: in particular dlR(R1, R2) = 0 iff ∃(C1, C2) ∈ C(R1) × C(R2) such that C1 ∼ C2. By
contrast, duR satisfies (M1b) , (M2) , (M3) and duR(R1, R2) = 0 iff R1 ∼e R2.

Proof. Clearly, dlR and duR satisfy (M3). Furthermore, it is easy to show that dlR satisfies also
(M1), while it fails to satisfy (M2). For the case of (M4), consider three rough clusterings
R1, R2, R3 such that ∃C1 ∈ C(R1), C2 ∈ C(R2) with C1 ∼ C2, ∃C2 ∈ C(R2), C3 ∈ C(R3)
with C2 ∼ C3, while ∄C1 ∈ C(R1), C3 ∈ C(R3) with C1 ∼ C3. Thus, dlR does not satisfy
(M4). Claims for duR similarly follow.

Corollary 3.2. duR satisfies properties (M1), (M2), (M3) and (M4) iff either R1 or R2 is a
hard clustering.

Proof. One side of the implication directly derives from the observation that in case R1 or
R2 is a hard clustering, duR coincides with the Hausdorff distance between C(R1) and C(R2).
On the other hand, assume duR satisfies properties (M1), (M2), (M3) and (M4) on some
subset of RΩ. Then, in particular duR(R,R) = 0. Thus, dR(R,R) = {0} =⇒ ∀C,C ′ ∈ C(R)
it holds C ∼ C ′ and hence R is a hard clustering.
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As a result of the previous corollary, in the special case where the aim is to evaluate a
rough clusteringR against a hard clustering C which represents the ground truth partitioning
of a data set, then duR is guaranteed to be a metric, enabling the use of pair dlR, d

u
R also to

the aim of objectively comparing the given rough clustering R with the ground truth hard
clustering C. Despite this intuitively appealing property, it is easy to observe that computing
⟨dlR, duR⟩ is still computationally hard:

Theorem 3.4. Let R1, R2 be two rough clusterings, represented through the object-based
representation. Then, the problem of computing ⟨dlR, duR⟩ is NP-HARD7.

Proof. We note that the problems of computing dlR and duR can be formulated as 0/1 pro-
gramming problems. In particular, for the case of dlR, it holds that

dlR(R1, R2) = min d({z1ix}i,x, {z1jx}j,x)

such that ∀x ∈ X,
∑

ω1
i ∈R1(x)

z1ix = 1

∀x ∈ X,
∑

ω1
i /∈R1(x)

z1ix = 0

∀x ∈ X,
∑

ω2
j∈R2(x)

z2jx = 1

∀x ∈ X,
∑

ω2
j /∈R2(x)

z2jx = 0

∀x ∈ X,ω1
i , z

1
ix ∈ {0, 1}

∀x ∈ X,ω2
j , z

2
jx ∈ {0, 1}

In general, the objective is not guaranteed to be linear: in any case, computational in-
tractability of computing dlR follows from the general intractability of 0/1 programming
[27]. A similar reduction is also applicable to duR.

For the cases of fuzzy, possibilistic and, more generally, evidential clustering, we can
obtain a similar summarization by applying a decision rule to transform the distribution-
valued dF , dP , dM into simpler summary indices [14]. An example of this approach is to
compute the following lower and upper expectations:

E(dM)(M1,M2) =
∑
V⊆2R

[
dM(M1,M2)(V )min

d∈V
d

]
= E(dlR), (15)

E(dM)(M1,M2) =
∑
V⊆2R

[
dM(M1,M2)(V )max

d∈V
d

]
= E(duR). (16)

If M1,M2 are two fuzzy clusterings we obtain that E(dM) = E(dM) = E(dF ).

7The problem is trivially in P with respect to the distributional representation of R1, R2.
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Example 3.1. Let C,F, P,M be the soft clusterings defined in Examples 2.1, 2.4 and 2.2,
and let d = 1 − Rand. Then E(dF (C,F )) = 0.267, E(dP (C,P )) = 0,E(dP (C,P )) =
0.48, while E(dM(C,M)) = 1

12
,E(dM(C,M)) = 0.442. By contrast, if we let d = dπ,

then E(dF (C,F )) = 0.233, E(dP (C,P )) = 0,E(dP (C,P )) = 0.4, while E(dM(C,M)) =
0.067,E(dM(C,M)) = 0.367.

Similarly to the case of rough clustering, it is easy to show that the following properties
hold:

Theorem 3.5. Let M1,M2 be two evidential clusterings. Then E(dM) satisfies properties
(M1b), (M2), (M3) and (M4), and 1−E(dM) is a consistency on MΩ. In particular:

• If either M1 or M2 is a hard clustering, then E(dM) satisfies properties (M1) and (M3)
and E(dM) satisfies properties (M1), (M2), (M3) and (M4);

• If F1 and F2 are two fuzzy clusterings, then E(dF ) satisfies properties (M1b), (M3)
and (M4).

Proof. Clearly, E(dM) satisfies (M2), (M3), (M4). Furthermore, it is easy to see that if
either M1 or M2 is a hard clustering then E(dM) is equivalent to (7), which was proved to
satisfy properties (M1), (M2), (M3) and (M4) in [9]. In particular E(dM) = 0 iff M1,M2 are
equivalent hard clusterings. For E(dM), the statement directly derives from Proposition 3.2.
The remaining claims follow, respectively, from Corollary 3.2 and the definition of dF .

More generally, in the following section, we will show that some interesting relation-
ships hold among the above defined summary indices and the transport-theoretic measures
discussed in Section 2.3.

From the computational complexity point of view, it is easy to show that, in general,
computing E(dM) and E(dM) is at least as hard as computing ⟨dlR, duR⟩. However, for the case
of fuzzy clustering and some base distances d, E(dF ) can be computed efficiently. Indeed,
the computational hardness of computing E(dM),E(dM) seems to stem from the ambiguity
in the focal rough clusterings:

Proposition 3.3. Let d = 1− Rand. Then, E(dF ) can be computed in time O(n2).

Proof. From the definition of dF , it is easy to show that E(dF ) = 1− RandF , where RandF
is the Rand index defined in [23].

We leave it as an open problem to characterize the general complexity of computing
E(dM),E(dM) .

3.3. Relations between the Frameworks

It is interesting to study the connection between the distributional measures introduced in
this paper, and the transport-theoretic measures introduced in [9]. In particular, in Examples
3.1 and 2.6 we showed that the distributional and transport-based measures provided the
same results when one of the two clusterings to be compared was a hard clustering. The
following theorem proves that this observation holds in general, as long as we compare a
soft clustering with a hard clustering:
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Theorem 3.6 ([9], Theorem 3.3). Let M,C be, respectively, an evidential clustering and a
hard clustering. Then dM0 = E(dM) and dM1 = E(dM).

Therefore, as a consequence of Theorem 3.6, even though the distributional and transport-
based measures have different objectives, they are equivalent if our aim is to compare a soft
clustering with a reference hard clustering, at least if we adopt lower and upper expectations
as a summarization criterion for the distributional measures. In particular, this result also
lends support to this choice, insofar as it allows us to obtain an objective comparison mea-
sure. However, we note that the equivalence between the two approaches does not hold in
general, as will be shown in the following example, and the transport-based measures should
be preferred when the aim is to obtain an objective comparison between two soft clusterings
(one of which is assumed to be the ground truth).

Example 3.2. Let M be the evidential clustering defined in Example 2.2. Then E(dM(M,M)) =
0.038, and E(dM(M,M)) = 0.48. By contrast, for all α ∈ {0, 1}, it holds that dMα (M,M) =
0.

The following results provide a full characterization of the conditions under which the
distributional and transport-theoretic measures coincide, as well as provide bounds for their
difference when the conditions are not met:

Theorem 3.7. Let M1,M2 be two evidential clusterings. Let σ∗ be the joint distribution
over F(M1)× F(M2) which minimizes Eq. (7). Then dM0 = E(dM) iff one of the following
conditions is met:

1. ∀(R1, R2) ∈ F(M1)×F(M2), ∃(C1, C2) ∈ C(R1)× C(R2) such that C1 ∼ C2;

2. σ∗ = mM1 ⊗mM2, where (mM1 ⊗mM2)(R1, R2) = mM1(R1) ·mM2(R2)

In all cases, it holds that 0 ≤ E(dM) − dM0 ≤ |F (M1)| · |F (M2)| · || [mM1 ⊗mM2 ] ||, where
|| · || is the Euclidean norm and ∀A,B ∈ 2Ω × 2Ω, [mM1 ⊗mM2 ] (A,B) is defined as

[mM1 ⊗mM2 ] (A,B) =

{
1−mM1 ⊗mM2(A,B) if mM1 ⊗mM2(A,B) ≤ 0.5

mM1 ⊗mM2(A,B) otherwise.
(17)

Proof. LetM1,M2 be two evidential clusterings andmM1 ,mM2 their respective distributional
representations. We consider the finite-dimensional vector space V = R

2Ω×2Ω . Each mass
function mMi

is represented as a vector in the probability simplex of dimensionality 2Ω

and support F(Mi). Similarly, we can represent the values of dR0 as a vector that lies in a
F(M1)×F(M2)-dimensional subspace of V . Then, both dM0 and E(dM) can be represented
as inner products on V , in particular:

dM0 (M1,M2) = ⟨σ∗, dR0 ⟩ (18)

E(dM(M1,M2)) = ⟨mM1 ⊗mM2 , d
R
0 ⟩, (19)
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where we note that mM1 ⊗mM2 , defined as in the statement of the theorem, is the tensor
product between mM1 ,mM2 .

It is easy to observe that E(dM(M1,M2)) ≥ dM0 (M1,M2), thus it holds that ⟨mM1 ⊗
mM2 , d

R
0 ⟩ − minσ⟨σ, dR0 ⟩ ≥ 0. Hence, due to linearity of the inner product, it follows that

⟨mM1 ⊗ mM2 − σ∗, dR0 ⟩ ≥ 0, where σ∗ is defined as in the theorem statement. Due to
Cauchy-Schwarz inequality [40], it follows that

0 ≤ E(dM(M1,M2))− dM0 (M1,M2) ≤ ||mM1 ⊗mM2 − σ∗|| · ||dR0 || (20)

Consequently, E(dM(M1,M2)) = dM0 (M1,M2) iff eithermM1⊗mM2 = σ∗ (which is Condition
2 in the theorem) or ||dR0 || = 0: this happens iff Condition 1 in the theorem is satisfied (in
which case, ∀R1 ∈ F(M1), R2 ∈ F(M2) it holds that d

R
0 (R1, R2) = 0).

The upper bound on the value of E(dM(M1,M2)) − dM0 (M1,M2) follows from above by
noting that ||dR0 || ≤ |F(M1) × F(M2)| (in particular, it is equal when ∀R1 ∈ F(M1), R2 ∈
F(M2) it holds that d

R
0 (R1, R2) = 1) and bounding the value of ||mM1 ⊗mM2 − σ∗||.

Theorem 3.8. Let M1,M2 be two evidential clusterings. Let σ∗ be the joint measure over
F(M1) × F(M2) which minimizes Eq. (7). Then dM1 = E(dM) iff at least one of M1 and
M2 is a hard clustering.

Proof. We have already proved that if at least one of M1,M2 is a hard clustering then
dM1 = E(dM). For the converse statement, following a similar argument as to Theorem 3.7
it can be shown that

0 ≤ E(dM)− dM1 = ⟨mM1 ⊗mM2 , d
u
R⟩ − ⟨σ∗, dR1 ⟩.

Since duR ≥ dR1 , the rightmost expression is equivalent to

⟨mM1 ⊗mM2 , d
u
R − dR1 ⟩+ ⟨mM1 ⊗mM2 , d

R
1 ⟩ − ⟨σ∗, dR1 ⟩,

which, in turn, is equivalent to

⟨mM1 ⊗mM2 , d
u
R − dR1 ⟩+ ⟨mM1 ⊗mM2 − σ∗, dR1 ⟩.

Therefore, by applying Cauchy-Schwarz inequality to the two inner product terms above, it
follows that

0 ≤ E(dM)− dM1 ≤ ||mM1 ⊗mM2 − σ∗|| · ||dR1 ||+ ||mM1 ⊗mM2|| · ||duR − dR1 ||. (21)

Then, it easily follows that for the above expression to be equal to 0 it is required that one
of the following holds:

• ||m1⊗m2− σ∗|| = 0 and ||duR − dR1 || = 0, which only holds if at least one of M1,M2 is
a hard clustering;

• ||duR|| = ||dR1 || = 0, which in turn implies that M1,M2 are equivalent hard clusterings.
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Hence, the theorem follows.

Thus, as a consequence of the previous results we know that the upper bounds for
the distributional and transport-theoretic measures coincide if and only if one of the two
clusterings to be compared is a hard clustering. By contrast, the criteria for equivalence
between the corresponding lower bounds are much weaker: indeed, it suffices that either the
two soft clusterings to be compared are partially compatible (i.e., they are not defined on
totally distinct bodies of evidence) or that the solution of the optimal transport problem
coincides with the element-wise product of the corresponding distributional measures. As
we will show in the next section, these equivalences enable us to use efficient approximation
algorithms for the distributional measures also to approximate the transport-theoretic ones.

4. Approximation Methods

In the previous section we proposed distributional measures as a general approach to
extend any hard clustering comparison measure to a soft clustering comparison measure.
Nonetheless, the computation of these distributional measures is, in general, intractable.
For this reason, in this section, we introduce some approximation methods and algorithms,
based on a sampling approach, which can be applied to any base distance between hard
clusterings.

We start with the case of the summarized representation of dR, that is, with dlR, d
u
R.

Given two rough clusterings R1, R2, we draw s independent samples (C1
1 , C

1
2), . . . , (C

s
1 , C

s
2)

uniformly from C(R1), C(R2). Then, we can approximate dlR and duR as, respectively, d̂lR =

mini∈{1,...,s} d(C
i
1, C

i
2) and d̂uR = maxi∈{1,...,s} d(C

i
1, C

i
2). The algorithm, for the case of dlR, is

illustrated in Algorithm 1.
Clearly, the following result holds:

Proposition 4.1. The following bounds hold for any ϵ > 0:

Pr(duR − d̂uR > ϵ) ≤ F (duR − ϵ)s, P r(d̂lR − dlR > ϵ) ≤
(
1− F (ϵ− dlR)

)s
(22)

where F is the cumulative distribution function (CDF) of the probability distribution pR
defined as pR(t) =

|{C1∈C(R1),C2∈C(R2):d(C1,C2)=t}|
|dR(R1,R2)| .

Furthermore, let F̂ be the empirical estimator of F obtained from Algorithm 1. Then,
for any α ∈ (0, 1), it holds that[

d̂uR,min
{
1, d̂uR +

(
1− F̂−1

(
s
√
α
))}]

is an asymptotic, one-sided, 1− α confidence interval for duR. Similarly, it holds that[
max

{
0, d̂lR − F̂−1

(
1− s
√
α
)}

, d̂lR

]
is an asymptotic, one-sided, 1− α confidence interval for dlR.
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Algorithm 1 The procedure to approximate the lower bound for the distributional measure
of rough clustering through sampling.

procedure rough distributional sampling(R1: rough clustering, R2: rough clus-
tering, s: number of samples, d: normalized measure)

min←∞
for all iterations it = 1 to s do

C1 ← ∅
for all x ∈ X do

C1(x)← Uniform(R1(x))
C2(x)← Uniform(R2(x))

end for
val← d(C1, C2)
if val ≤ min then

min← val
end if

end for
return min

end procedure

Proof. The first result follows from the distribution of the order statistics d̂lR, d̂
u
R. The form of

the confidence intervals derives from the first statement and by applying Dvoretzky-Kiefer-
Wolfowitz inequality [29] to F . In particular, it holds that

Pr(sup
t∈R
|F̂ (t)− F (t)| > δ) ≤ 2e−2sδ2 ,

hence the asymptotic convergence rate is exponential in the sample size s.

Since for each ϵ, the quantity F (duR − ϵ) (resp., F (ϵ− duR)) is stricly less than 1, it holds

that Pr(duR − d̂uR > ϵ) (resp., Pr(d̂lR − dlR > ϵ)) decays exponentially with respect to the
sample size s. However, we note that the quality of the previously described approximation
method largely depends on dR. In particular, the convergence in (22) is influenced by the
tailedness of pR: the heavier the tails of pR, the lower the approximation error.

For the case of fuzzy clustering, if we use the expected value E(dF ) to summarize dF and
we use a sampling procedure to estimate E(dF ) as d̂F then we can obtain a tail bound by
applying Hoeffding’s inequality:

Proposition 4.2. Assume that d is a normalized hard clustering metric. Then:

Pr(|d̂F −E(dF )| ≥ ϵ) ≤ 2e−2sϵ2 (23)

Hence, the deviation between the empirical mean d̂F and E(dF ) has exponential decay in the
sample size s. Furthermore, for any α ∈ (0, 1),

d̂F ±

√
1

2s
log

(
2

α

)
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is a 1− α confidence interval for E(dF ).

Algorithm 2 The procedure to approximate the bounds for the distributional measure of
evidential clustering through sampling.

procedure evidential distributional sampling(M1: rough clustering, M2: rough
clustering, s: number of samples, d: normalized measure, i ∈ {l, u})

res←∞
for all iterations it = 1 to s do

R1 ← ∅
R2 ← ∅
for all x ∈ X do

R1(x)← R ∼ mM1
x

R2(x)← R ∼ mM2
x

end for
val← diR(R1, R2)
res← res+ val

end for
return res

s

end procedure

A similar result holds also for dM , using a sampling approach as defined in Algorithm 2:

Proposition 4.3. Assume that d is a normalized hard clustering metric. Let d̂lM , d̂uM be the
sample estimates of E(dM),E(dM). Then:

Pr(|d̂lM −E(dM)| ≥ ϵ) ≤ 2e−2sϵ2 , P r(|d̂uM −E(dM)| ≥ ϵ) ≤ 2e−2sϵ2 . (24)

Furthermore, it holds that

d̂lM ±

√
1

2s
log

(
2

α

)
is a 1− α confidence interval for E(dM). The same holds for d̂uM and E(dM).

Proof. The result directly derives from an application of Hoeffding’s inequality.

Given two evidential clusterings M1,M2, the previous estimate requires that d̂lM , d̂uM are
computed by sampling pairs R1, R2 of rough clusterings from the distributions mM1 ,mM2

and then computing the exact values of dlR(R1, R2) and duR(R1, R2). As a consequence of
Proposition 3.4, this may not be feasible when |X| is large. In such cases, a possible solution
would be to compute d̂lM , d̂uM by means of nested sampling (i.e, first we sample a rough
clustering R from mM , then we sample a hard clustering C from C(R)), as described in
Algorithm 3. In this case, however, one should expect a larger approximation error, as
described by the following theorem:
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Algorithm 3 The procedure to approximate the bounds for the distributional measure of
evidential clustering through nested sampling.

procedure evidential nested sampling(M1: rough clustering, M2: rough clustering,
si: inner samples, so: outer samples, d: normalized measure, i ∈ {l, u})

res←∞
for all iterations it = 1 to so do

R1 ← ∅
R2 ← ∅
for all x ∈ X do

R1(x)← R ∼ mM1
x

R2(x)← R ∼ mM2
x

end for
valit ← rough distributional sampling(R1, R2, si, d)
res← res+ valit

end for
return res

s

end procedure

Theorem 4.1. Let F be the cumulative distribution function (CDF) of the probability dis-
tribution pM defined as

pM(t) = PrR1∼mM1
,R2∼mM2

|{C1 ∈ C(R1), C2 ∈ C(R2) : d(C1, C2) = t}|
|dR(R1, R2)|

.

Let sui be such that sui ≥
log( δ

so
)

log(F (duR− ϵ
2so

))
. Similarly, let sli be such that sli ≥

log( δ
so

)

log(1−F ( ϵ
2so

−dlR))
.

Then, if d̂lM , d̂uM are the sample estimates of E(dM),E(dM) computed through Algorithm 3,
it holds with probability greater than 1− δ that

Pr(|d̂lM −E(dM)| ≥ ϵ) ≤ 2e−8soϵ2 , P r(|d̂uM −E(dM)| ≥ ϵ) ≤ 2e−8soϵ2 . (25)

Furthermore, under the same assumptions as above, it holds that

d̂lM ±

√
1

8so
log

(
2

α

)
is an asymptotic 1−α confidence interval for E(dM). The same holds for d̂uM and E(dM).

Proof. If sli, s
u
i are selected as in the statement of the theorem then, by Proposition 4.1, it

holds that, with probability greater than 1− δ
so

over the sampling of rough clusterings R1, R2

from the given evidential clusteringsM1,M2, |val−djR(R1, R2)| ≤ ϵ
2so

, where val is defined as
in Algorithm 1 and j ∈ {l, u}. In particular, this implies that, with probability greater than
1−δ, all of the iterations of the inner for loop in Algorithm 3 will have an error smaller than
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ϵ
2so

. Thus, Pr(|d̂lM −E(dM)| ≥ ϵ
2
) ≤ Pr( 1

so

∑
i=1 so|vali − dlR(i)|+ |

∑so
i=1 d

l
R(i)−E(dM)| ≥

ϵ
2
) ≤ Pr(|

∑so
i=1 d

l
R(i)−E(dM)| ≥ ϵ) ≤ 2e−8soϵ2 . Similarly, the result holds also for the case

of d̂uM ,E(dM) and the theorem follows.

Also, it is easy to show that Algorithms 1 and 3 are computable in polynomial time:

Proposition 4.4. Let Td be the complexity of the base measure d. Then, the complex-
ity of Algorithm 1 is O (s(|X||Ω|+ Td)). Similarly, the time complexity of Algorithm 3 is
O
(
so(|X|2|Ω| + si(|X||Ω|+ Td))

)
. In all cases, if |Ω| ∈ O(log |X|), then the above algorithms

have time complexity polynomial in |X|.

Finally, we conclude with a remark on the significance of the proposed sampling ap-
proximation methods and their theoretical guarantees. Obviously, these methods enable
us to efficiently and effectively approximate the values of the interval representation of a
distributional measure. Indeed, the above tail bound guarantees ensure that the speed of
convergence of these approximations to the corresponding exact results is almost exponen-
tial: such a speed-up with respect to the exact interval representaion of distributional
measures is particularly significant since Algorithms 1, 2 and 3 can all be trivially imple-
mented as parallel algorithms (indeed, it is easy to see that the approximation methods are
embarassingly parallel). Furthermore, the above theoretical results concerning the conver-
gence of the approximation methods provide a way to obtain confidence intervals for interval
representation of a distributional measure that will contain, with high probability, the exact
value of the latter statistic. Most relevantly, however, in light of the results in Section 3.3,
we also know that when the conditions for equivalence between the (interval representa-
tions of the) distributional and transport-theoretic measures hold (in particular, when one
of the two clusterings to be compared is hard), the sampling approaches presented in this
section enable also to approximate the values of the transport-theoretic measures. This is
particularly significant because the transport-theoretic measures are computationally hard
to compute in their exact form [9]. Though in [9] we presented some approximation methods
for specific evaluation measures (namely, the Rand index and the partition distance), we
notice that the approaches presented here have the advantage of being fully general (i.e.,
they can be applied irrespective of the base clustering evaluation measure) and satisfying
strong convergence guarantees.

5. Illustrative Experiments

In this section we discuss two sets of experiments, with the aim of illustrating the ap-
plication of the proposed sampling-based approximations for the distributional measures, as
well as to evaluate their accuracy and convergence speed. In particular, in Section 5.1 we will
analyze the accuracy and speed with which the sampling-based approximations converge to
the exact values of the (interval representations of the) distributional measures. By contrast,
in Section 5.2 we will illustrate the applicability of the sampling-based approximations on a
collection of real-world datasets.
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In both experiments, we considered five different clustering algorithms, namely: k-means
(KM), rough k-means (RKM) [31], fuzzy c-means (FCM) [4], possibilistic c-means (PCM)
[26] and evidential c-means (ECM) [28]. In regard to the algorithm hyper-parameters, since
our goal was only to illustrate the applications of our metrics rather than to provide a bias-
free comparison of the considered algorithms, we considered the default values as defined in
the corresponding articles. Code (for both the clustering algorithms, as well as the evaluation
measures) was implemented in Python (v. 3.8.8), using scikit-learn (v. 0.24.1), numpy (v.
1.20.1) and scipy (v. 1.6.2). The code for all the metrics and implementations of clustering
algorithms is publicly available on GitHub8.

5.1. Convergence Analysis

In Section 4 we studied the sampling-based approximations for the distributional mea-
sures, as a way to side-step the high computational complexity of computing the correspond-
ing exact interval representations (indeed, in Section 3.2 we showed that for all forms of soft
clustering, computing the interval representation of the distributional measures is NP-hard).
To this aim, we studied the converge of the sampling-based approximation from a theoretical
point of view, using tools from concentration inequality theory. However, while these re-
sults provide evidence that the sampling-based approximations converge exponentially-fast
to their exact versions, they do not provide any practical indication about the selection
of the number of samples to draw, as well as (for the case of possibilistic and evidential
clustering) about how to select a trade-off between the number of outer and inner samples
(see Algorithm 3). To address these limitations, in this section we study the convergence
properties of the sampling-based approximations from an empirical point of view.

To this aim, we considered two small synthetic datasets. In each of the two datasets we
considered a sample of 50 objects and 2 different clusters: the dimensionality of the dataset
was selected so that the computation of the exact versions of the interval representations for
the distributional measures could be performed in a reasonable amount of time. The two
datasets differ with respect to the degree of overlap between the two clusters: in the first
case (no-noise), the clusters have a very limited overlap (the two clusters were generated
using the make blob function from the scikit-learn library, with two centers and cluster
standard deviation equal to 1.25); by contrast, in the second synthetic dataset (noisy), the
two clusters exhibit a significantly larger degree of overlap (the cluster standard deviation
was set equal to 2.5). In both cases, we evaluated the degree of error (measured as the
absolute difference between the approximated and exact values of the distributional Rand
index, i.e. |Exact(Rand) − Approx.(Rand)|) and its variation with increasing number of
iterations of the sampling-based procedures: for the case of RKM we considered Algorithm
1; for the case of FCM we considered a simple implementation of Monte Carlo sampling;
while for the case of PCM and ECM we considered the nested sampling procedure described
in Algorithm 3. In all cases, we varied the number of iterations (for PCM and ECM, outer
samples) between 10 and 1000; for the case of PCM and ECM we also varied the number
of inner samples, with values in {1, 5, 10, 50, 100}. The results for the no-noise synthetic

8https://github.com/AndreaCampagner/scikit-cautious
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Figure 1: The two synthetic datasets for the converge analysis experiment: (left) the dataset with minimal
cluster overlap; (right) the dataset with larger cluster overlap.

dataset, in terms of lower and upper bounds of the distributional measures, are depicted
in Figures 2 and 3, for RKM and FCM, and for PCM and ECM, respectively; the results
for the noisy synthetic dataset, in terms of lower and upper bounds of the distributional
measures, are depicted in Figures 4, for RKM and FCM, and 5, for PCM and ECM.

We can observe that, for the case of rough and fuzzy clustering, the convergence was
very rapid, for both the noisy and well separated datasets. In both cases, RKM converged to
almost zero error already with 10 iterations of the sampling-based procedure, similarly also
FCM exhibited a very rapid convergence to the exact value of the evaluation metrics: in the
worst case (which was the approximation of the lower bound of distributional Rand index
for the noisy dataset), the error exponentially decreased below 5 × 10−2 in fewer than 100
iterations. By contrast, both the convergence of both PCM and ECM strongly depended
on the number of inner samples considered in the nested sampling procedure. When using
less than 50 inner samples, the sampling-based approximation did not converge and, after
an exponential decrease phase, reached a plateau (whose value decreased with the increas-
ing number of inner samples). By contrast, when using a number of inner samples equal
or greater to 50 (and, in particular, in the case of 100 inner samples) the sampling-based
approximations for possibilistic and evidential clustering exhibited a convergence pattern
similar to that observed in fuzzy clustering. The lack of convergence observed in the case
of possibilistic and evidential clustering, when using a small number of inner samples, likely
stems from the fact that the nested sampling procedure in Algorithm 3 needs to approximate
the pairwise distance between the focal rough sets of the two soft clustering to be compared:
if the number of inner samples for this approximation is not sufficiently high, with high
probability the internal sampling estimates will significantly deviate from each other, thus
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Figure 2: Results of the convergence analysis for the no-noise dataset, for rough clustering and fuzzy
clustering.

preventing convergence of the sampling procedure. In fact, also from the theoretical point
of view, the convergence result for Algorithm 3 (see Theorem 4.1), which was used for possi-
bilistic and evidential clustering, is much weaker than the corresponding convergence results
that hold for the sampling procedures for rough and fuzzy clustering. Indeed, in the former
case convergence and error reduction of the sampling procedure can be guaranteed only if
the number of inner samples is sufficiently high so as to reach a desirable approximation
quality for the inner sampling procedure. Interestingly, however, we note that, for both
possibilistic and evidential clustering, the sampling approaches reported a much lower ap-
proximation error and more rapid convergence for the upper bound of the distributional
measure, as compared with the corresponding lower bound. We plan to further investigate
this observation in future work.

The observed results provide some practical indications for the application of the sampling-
based approximations in real-world settings:

• For both rough clustering and fuzzy clustering, the sampling-based approximations
seem to provide good convergence speed and, even with a small number of samples,
can be used as a good proxy for the exact values of the distributional measure, hence
enabling its approximation;

• The approximation quality of the nested sampling procedure for possibilistic and ev-
idential clustering is strongly dependent on the number of inner samples: a small
number of inner samples may impede convergence, even when a large number of outer
samples are used. Thus, when a fixed computational budget is available, inner samples
should be preferred to outer samples when executing Algorithm 3;
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Figure 3: Results of the convergence analysis for the no-noise dataset, for possibilistic clustering and evi-
dential clustering.
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Figure 4: Results of the convergence analysis for the noisy dataset, for rough clustering and fuzzy clustering.
The approximation error for RKM was equal to 0 as RKM converged to a hard clustering partition.

• In all cases, a number of iterations on the order of O(mk), with m being the number
of objects and k the number of clusters, seems to be sufficient for good approximation
quality, provided that (for the case of possibilistic and evidential clustering) the number
of inner samples is on the order of O(m) and at least greater than 100.

5.2. Experiments on Real Datasets

In this section, we illustrate the use of the proposed metrics using a collection of bench-
mark datasets from the UCI repository [21], as shown in Table 1.

Table 1: Selected datasets table

Dataset Results Name Samples Features Classes
Iris Iris 150 4 3
Wine Wine 178 13 3
Breast Cancer Wisconsin (Diagnostic) WDBC 569 30 2
Glass Glass 214 9 6
Ecoli Ecoli 336 7 8
Wine Quality (Red) WineQuality 1599 11 6
Yeast Yeast 1484 8 10
Optical Recognition of Digits OptDigits 5620 64 10
Crowdsourced Mapping (Training) Crowdsource 10545 28 6
Isolet (Training) Isolet 6238 617 26

For each benchmark dataset, the soft clusterings given as output by each of the al-
gorithms were compared with the ground truth labeling of the corresponding dataset, as
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Figure 5: Results of the convergence analysis for the noisy dataset, for possibilistic clustering and evidential
clustering.
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provided in the UCI repository: the aim of these experiments was to illustrate the applica-
tion of the proposed distributional measures as a way to evaluate soft clustering algorithms’
to reconstruct a true clustering structure (see also Section 1). We considered the distribu-
tional generalization of the Rand index and, in particular, its sampling-based approximation
as defined in Section 4. We decided to focus only on the sampling-based approximations
not only due to the computational intractability of computing the exact values of the dis-
tributional measures, but also to illustrate how these approximations enable the application
of our metrics to medium and large-scale datasets. For a comparison between the exact
and approximated versions of the metrics, we refer the reader to [8, 9]. In regard to the
sampling scheme, based also on the results discussed in Section 5.1, for RKM and FCM we
considered, for each dataset (with m instances and k classes), Algorithm 1 and standard
sampling, respectively, with a number of samples equal to m · k; by contrast, for the case
of PCM and ECM we considered Algorithm 3, with m · k samples in the outer loop and a
constant number of 100 samples in the inner loop.

The results of the experiments are represented in Figure 6, in terms of raw performance
values, and in Figure 7, in terms of a Critical Difference diagram [13]. The width of the
interval representations (for RKM, PCM and ECM), represented in terms of a Critical
Difference diagram, is reported in Figure 8. The running times for the sampling-based
approximations of the distributional measures are represented in Figure 9, in terms of raw
computing seconds, and in Figure 10, in terms of a Critical Difference diagram. In all
cases, significant differences were evaluated through Wilcoxon signed-rank test and Holm
correction for multiple testing.

Though our analysis has no pretense of generalizability or of drawing definitive conclu-
sions on the performance of the considered algorithms, it is easy to see that the application
of the proposed measures (and in particular, their sampling-based approximations) allows us
to compare soft clustering methods that belong to completely different families in a mean-
ingful manner. For example, it is easy to see that FCM and KM generally had comparable
performance; except if we consider only the lower bounds on the interval representation of
the distributional measures, they were outperformed by all other soft clustering methods,
both in terms of average performance as well as (even more relevantly) in terms of the corre-
sponding upper bounds. In this last respect, in particular, ECM significantly outperformed
all other methods. This advantage of ECM can easily be seen to stem from the higher degree
of ambiguity contained in the evidential clusterings returned by this algorithm: indeed, it
can be seen from Figure 8 that ECM had a significantly larger gap between the lower and
upper bounds of the distributional measure, as compared to the other considered algorithms.
In any case, PCM and RKM also achieved good performances; in particular, RKM is the
second best algorithm in terms of the lower bound, as well as the average, of the distribu-
tional measure. These results, all together, seem to suggest that allowing uncertainty and,
specifically, ambiguity in the output of a clustering algorithm might provide a benefit in
terms of performance. We plan to further investigate this conjecture in future work. At the
same time, we see that, in general, algorithms which produced more ambiguous clustering
also had worse performance in terms of running time required to compute the sampling-
based approximations. For example, ECM (which was the algorithm that produced the
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Figure 6: Performance of the considered soft clustering algorithms, as measured by the sampling-based
approximation of the distributional measure (using the Rand index as base measure).

most ambiguous clusterings) was associated with the worst running time required for the
approximation of the distributional measure, though the difference with respect to PCM
was not significantly different. By contrast, FCM (which always produces clustering with
no ambiguity) had the best running time: also in this case, it can be seen that computing
the sampling-based approximations for RKM did not require significantly more time than
for FCM: this may be a consequence of what we previously discussed in regard to Figure
8, as RKM was (among RKM, PCM and ECM) the algorithm which produced the least
ambiguous clusterings. Thus, while ambiguity may be helpful to find soft clusterings with
good performance, it may have an impact in terms of computational resources needed to
compute the corresponding evaluation measures, as more candidate hard clusterings need
to be evaluated to obtain sufficiently reliable results.

6. Conclusion

In this article, which is an extension of [8], we proposed and studied a mathematical
approach, as well as computational algorithms, making it possible to lift any clustering
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Figure 7: Critical difference diagram of the mean ranks of the considered soft clustering algorithm, in terms
of: (top) lower bound on the performance; (middle) average performance; (bottom) upper bound on the
performance. Ranks are based on the performance values shown in Figure 6: namely, for each dataset,
algorithms were ranked according to their performance, and then the average rank for each algorithm (across
all datasets) was computed. Thick horizontal bars denote lack of significant differences among a group of
algorithms (Wilcoxon signed-rank test): that is, when two algorithms are connected by a horizontal bar,
then, no significant difference was found among their performance.

Figure 8: Critical difference diagram of the mean ranks of the considered soft clustering algorithm. Ranks
are based on the gap between the upper and lower bound of the performance values shown in Figure 6. Thick
horizontal bars denote lack of significant differences among a group of algorithms (Wilcoxon signed-rank
test). See also Figure 7 for an extended explanation of critical difference diagrams.

comparison measures from hard clustering to evidential clustering (hence, as special cases,
also to rough, fuzzy and possibilistic clustering). We studied the metric and complexity-
theoretic properties of the proposed distributional measures. We have shown that computing
these measures, or their interval representation, is in general computationally intractable,
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Figure 9: Running time (in seconds) of the sampling-based approximation of the distributional measure
(using the Rand index as base measure).

Figure 10: Critical difference diagram of the mean ranks of the running time for the sampling-based approx-
imation of the distributional measure, based on the running time values shown in Figure 9. Thick horizontal
bars denote lack of significant differences among a group of algorithms (Wilcoxon signed-rank test)

and we have proposed approximation strategies based on sampling with strong convergence
guarantees. We have also provided sufficient and necessary conditions for the equivalence
between distributional and transport-theoretic measures [9], setting the ground for a unified
theory of soft clustering comparison measures. Finally, we illustrated the application of the
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proposed methods through some simple experiments.
We believe that this work makes a step toward the development of general and princi-

pled approaches for the comparison of soft clustering algorithms. With this perspective in
mind, we deem the following problems to be worthy of further investigation: 1) Generalizing
Proposition 3.3 to other base distance measures, and determining whether this result can
be extended to evidential clustering; 2) Designing more efficient sampling approaches, both
from the theoretical point of view (i.e., new sampling algorithms with convergence bounds
that are sharper or simpler than those proved in Section 4) and from the application-oriented
one (e.g., by exploiting parallel computing approaches, or state-of-the-art Monte-Carlo en-
gines [30]); 3) Extending our experimental results to more recent and state-of-the-art soft
clustering algorithms, so as to delineate a comprehensive picture of their performance.
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A. Metric Spaces

Let X be a set and ∼ be a symmetric and transitive relation over X. A metric over
X is a function d : X × X 7→ R+ such that: (M1) ∀x ∈ X, d(x, x) = 0; (M2) ∀x, y ∈ X,
x ≁ y =⇒ d(x, y) > 0; (M3) ∀x, y ∈ X, d(x, y) = d(y, x); and (M4) ∀x, y, z ∈ X,
d(x, z) ≤ d(x, y)+d(y, z). Metric d is normalized if maxx,y∈X d(x, y) = 1. If d is a normalized
metric, then its dual s = 1− d is called a similarity over X. Mapping d is a pseudo-metric
iff it satisfies (M1), (M3) and (M4); it is a semi-metric iff it satisfies (M1), (M2) and (M3);
it is a meta-metric iff it satisfies (M2), (M3) and (M4) and (M1b) ∀(x, y) ∈ X2, d(x, y) =
0 =⇒ x ∼ y. A consistency is a semi-pseudo similarity, i.e. a c function such that 1 − c
satisfies (M1) and (M3). For additional background on metric structures we refer the reader
to [41]. A metric d over X can be extended to a metric over 2X . The resulting metric dH is
called the Hausdorff metric based on d, defined as

dH(A,B) = max{max
a∈A

d(a,B),max
b∈B

d(A, b)}, (26)

where d(a,B) = minb∈B d(a, b) and d(A, b) = mina∈A d(a, b). If d is a (pseudo-, meta-, semi-)
metric, then dH satisfies the same properties.

Similarly, a metric d over X can be extended to a metric over the space P(X) of prob-
ability measures over X. The resulting metric, denoted as dW , is called the Wasserstein
metric (also known as Kantorovich-Rubinstein metric) [25, 42] based on d. It is formally
defined, for any two probability measures Pr1 and Pr2 on X, as

dW (Pr1, P r2) = min
σ

∑
(x1,x2)∈X2

σ(x1, x2)d(x1, x2) (27)

such that
∑
x2∈X

σ(x1, x2) = Pr1(x1)∑
x1∈X

σ(x1, x2) = Pr2(x2)∑
(x1,x2)∈X2

σ(x1, x2) = 1

∀(x1, x2) ∈ X, σ(x1, x2) ≥ 0.

If d is a (pseudo-, meta-, semi-) metric then dW satisfies the same properties.
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