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In this article, we study the inconsistency of systems of min -→ fuzzy relational equations. We give analytical formulas for computing the Chebyshev distances ∇ = inf d∈D ∥β-d∥ associated to systems of min -→ fuzzy relational equations of the form Γ□ min → x = β, where → is a residual implicator among the Gödel implication → G , the Goguen implication → GG or Łukasiewicz's implication → L and D is the set of second members of consistent systems defined with the same matrix Γ. The main preliminary result that allows us to obtain these formulas is that the Chebyshev distance ∇ is the lower bound of the solutions of a vector inequality, whatever the residual implicator used. Finally, we show that, in the case of the min -→ G system, the Chebyshev distance ∇ may be an infimum, while it is always a minimum for min -→ GG and min -→ L systems.

of consistent systems defined with the same matrix Γ. Analogously to the application F introduced in [START_REF] Baaj | Chebyshev distances associated to the second members of systems of Max-product/Lukasiewicz Fuzzy relational equations[END_REF][START_REF] Baaj | Max-min Learning of Approximate Weight Matrices from Fuzzy Data[END_REF] for systems based on max -T composition, we introduce an idempotent, increasing and right-continuous application denoted G for min -→ systems, see (24). The application G allows us to reformulate the necessary and sufficient conditions [START_REF] Miyakoshi | Solutions of composite fuzzy relational equations with triangular norms[END_REF][START_REF] Pedrycz | Applications of fuzzy relational equations for methods of reasoning in presence of fuzzy data[END_REF][START_REF] Perfilieva | System of fuzzy relation equations with inf-→ composition: Complete set of solutions[END_REF] for checking if a min -→ system defined with a fixed matrix and a given vector used as the second member is a consistent system, see (25). As a first result (Theorem 1), this application G allows us to show that the Chebyshev distance ∇ of a min -→ system Γ□ min → x = β is the lower bound of the solutions of a vector inequality expressed with this application G. Our (Theorem 1) for min -→ systems, is the version of (Theorem 1) of Cuninghame-Green and Cechlárová for a max -min system [START_REF] Ra Cuninghame-Green | Residuation in fuzzy algebra and some applications[END_REF], which was recently extended in [START_REF] Baaj | Chebyshev distances associated to the second members of systems of Max-product/Lukasiewicz Fuzzy relational equations[END_REF] for max -T systems. Furthermore, from this result, we obtain the decomposition of the Chebyshev distance ∇ = max 1≤j≤m ∇ j (Proposition 5), where for all j ∈ {1, 2, . . . , m}, each ∇ j is the lower bound of the solutions of the j-th scalar inequality in the above-mentioned vector inequality, see (36). For each of the three systems of min -→ fuzzy relational equations (depending on whether → is the Gödel implication → G , the Goguen implication → GG or Łukasiewicz's implication → L ), we give an explicit formula for computing its associated Chebyshev distance ∇ ((Theorem 2), (Theorem 3) and (Theorem 5), respectively). We also prove the following important results: for min -→ G system, the Chebyshev distance ∇ may be an infimum (based on (Proposition 8) and showed in (Example 5)) while, for min -→ GG and min -→ L systems, the Chebyshev distance ∇ is always a minimum i.e. an attainable lower bound (see (Corollary 5) and (Corollary 8)). For min -→ G systems, we give a sufficient condition for ∇ to be a minimum (see (Corollary 2) and (Corollary 3)). For min -→ GG systems, min -→ L systems, or min -→ G systems whose Chebyshev distance has been verified as a minimum, we can always compute the lowest Chebyshev approximation of the second member and an approximate solution (see (Corollary 4), (Corollary 7) and (Corollary 3)). However, for the min -→ G systems whose Chebyshev distance has been verified as not being a minimum, the set of Chebyshev approximations of its second member is empty (Lemma 7).

The article is structured as follows. In (Section 2), we remind the recent results of [START_REF] Baaj | Chebyshev distances associated to the second members of systems of Max-product/Lukasiewicz Fuzzy relational equations[END_REF][START_REF] Baaj | Max-min Learning of Approximate Weight Matrices from Fuzzy Data[END_REF] on solving systems of max -T fuzzy relational equations, where T is a continuous t-norm. In (Section 3), we introduce our main tools for studying the inconsistent systems of min -→ fuzzy relational equations: the application G and its main properties, and an important decomposition of the Chebyshev distance ∇ associated to a system of min -→ fuzzy relational equations. Then, in the next three sections, we give the explicit analytical formulas for computing the Chebyshev distances ∇ = inf d∈D ∥β -d∥ in the case where the residual implicator is the Gödel implication (Section 4), the Goguen implication (Section 5) and Łukasiewicz's implication (Section 6). Finally, we conclude with some perspectives and we propose some applications of our work.

Background

In this section, we remind the necessary background for solving systems of fuzzy relational equations. We reuse some notations of [START_REF] Baaj | Chebyshev distances associated to the second members of systems of Max-product/Lukasiewicz Fuzzy relational equations[END_REF][START_REF] Baaj | Max-min Learning of Approximate Weight Matrices from Fuzzy Data[END_REF] and denote by T a continuous t-norm and I T its associated residual implicator [START_REF] Peter Klement | Triangular norms[END_REF]. Finally, we present some recent results of [START_REF] Baaj | Chebyshev distances associated to the second members of systems of Max-product/Lukasiewicz Fuzzy relational equations[END_REF][START_REF] Baaj | Max-min Learning of Approximate Weight Matrices from Fuzzy Data[END_REF] on the inconsistency of systems of max -T fuzzy relational equations.

Notations

The set [0, 1] n×m is the set of matrices of size (n, m) i.e., n rows and m columns, whose components are in [0, 1], thus, the set [0, 1] n×1 is the set of column vectors of n components and [0, 1] 1×m denotes the set of row matrices of m components.

The order relation ≤ on the set [0, 1] n×m is defined by:

A ≤ B iff we have a ij ≤ b ij for all 1 ≤ i ≤ n, 1 ≤ j ≤ m, where A = [a ij ] 1≤i≤n,1≤j≤m and B = [b ij ] 1≤i≤n,1≤j≤m .
For x, y, z, u, δ ∈ [0, 1], we put:

• x + = max(x, 0), • z(δ) = min(z + δ, 1), • z(δ) = max(z -δ, 0) = (z -δ) + and we have the following equivalence in [0, 1]: 

| x -y |≤ δ ⇐⇒ x(δ) ≤ y ≤ x(δ). (1) 
Then, from (1), we deduce for any c = [c i ] 1≤i≤n ∈ [0, 1] n×1 :

∥b -c∥ ≤ δ ⇐⇒ b(δ) ≤ c ≤ b(δ). (3) 
where ∥b -c∥ = max 1≤i≤n | b i -c i |.

T-norms and their associated residual implicators

A triangular-norm (t-norm, see [START_REF] Peter Klement | Triangular norms[END_REF]) is a map T : [0, 1] × [0, 1] → [0, 1], which satisfies:

T is commutative: T (x, y) = T (y, x),

T is associative: T (x, T (y, z)) = T (T (x, y), z), T is increasing :

x ≤ x ′ and y ≤ y ′ =⇒ T (x, y) ≤ T (x ′ , y ′ ),
T has 1 as neutral element: T (x, 1) = x.

To the t-norm T is associated the residual implicator

I T : [0, 1] × [0, 1] → [0, 1] : (x, y) → I T (x, y) = sup{z ∈ [0, 1] | T (x, z) ≤ y}.
For all a, b ∈ [0, 1], the main properties of the residual implicator I T associated to a continuous t-norm T are:

• I T (a, b) = max{z ∈ [0, 1] | T (a, z) ≤ b}. Therefore, T (a, I T (a, b)) ≤ b.
• I T is left-continuous and decreasing in its first argument as well as right-continuous and increasing in its second argument.

• For all z ∈ [0, 1], we have:

T (a, z) ≤ b ⇐⇒ z ≤ I T (a, b). • We have b ≤ I T (a, T (a, b)).
The t-norm min denoted by T M , has a residual implicator I T M which is the Gödel implication:

T M (x, y) = min(x, y) ; I T M (x, y) = x -→ G y = 1 if x ≤ y y if x > y . ( 4 
)
The t-norm defined by the usual product is denoted by T P . Its associated residual implicator is the Goguen implication:

T P (x, y) = x • y ; I T P (x, y) = x -→ GG y = 1 if x ≤ y y x if x > y . (5) 
Łukasiewicz's t-norm is denoted by T L and its associated residual implicator I T L :

T L (x, y) = max(x + y -1, 0) = (x + y -1) + ; I T L (x, y) = x -→ L y = min(1 -x + y, 1). (6) 

Solving systems of max -T fuzzy relational equations

A system of max -T fuzzy relational equations based on a matrix

A = [a ij ] ∈ [0, 1] n×m and a column-vector b = [b i ] ∈ [0, 1] n×1 is of the form: (S) : A□ max T x = b, (7) 
where x = [x j ] 1≤j≤m ∈ [0, 1] m×1 is an unknown vector and the matrix operator □ max T is the matrix product that uses the continuous t-norm T as the product and max as the addition.

Using the vector

e = A t □ min I T b, (8) 
where A t is the transpose of A and the matrix product □ min I T uses the residual implicator I T (associated to T ) as the product and min as the addition, we have the following equivalence proved by Sanchez for max -min composition [START_REF] Sanchez | Resolution of composite fuzzy relation equations[END_REF], and extended to max -T composition by Pedrycz [START_REF] Pedrycz | Fuzzy relational equations with triangular norms and their resolutions[END_REF][START_REF] Pedrycz | On generalized fuzzy relational equations and their applications[END_REF] and Miyakoshi and Shimbo [START_REF] Miyakoshi | Solutions of composite fuzzy relational equations with triangular norms[END_REF]:

A□ max T x = b is consistent ⇐⇒ A□ max T e = b. (9) 
2.4 Chebyshev distance associated to the second member of a system of max -T fuzzy relational equations

To the matrix A and the second member b of the system (S) of max -T fuzzy relational equations, see [START_REF] Miyakoshi | Solutions of composite fuzzy relational equations with triangular norms[END_REF], is associated the set of vectors c = [c i ] ∈ [0, 1] n×1 such that the system A□ max T x = c is consistent:

C = {c = [c i ] ∈ [0, 1] n×1 | A□ max T x = c is consistent}. ( 10 
) This set allows us to define the Chebyshev distance associated to the second member b of the system (S). Definition 1. The Chebyshev distance associated to the second member b of the system (S) :

A□ max T x = b is: ∆ = ∆(A, b) = inf c∈C ∥b -c∥ (11) 
where:

∥b -c∥ = max 1≤i≤n | b i -c i | .
and Definition 2. A Chebyshev approximation of the second member b is an element c ∈ C, see [START_REF] Pedrycz | On generalized fuzzy relational equations and their applications[END_REF], such that ∥b -c∥ = ∆.

The set of Chebyshev approximations of the second member b is:

C b = {c ∈ C | ∥b -c∥ = ∆}. ( 12 
)
We have the following fundamental result, proven for max -min system in [START_REF] Ra Cuninghame-Green | Residuation in fuzzy algebra and some applications[END_REF] and extended for max -T systems in [START_REF] Baaj | Chebyshev distances associated to the second members of systems of Max-product/Lukasiewicz Fuzzy relational equations[END_REF]:

∆ = min{δ ∈ [0, 1] | b(δ) ≤ F (b(δ))}. ( 13 
)
which is based on the following application:

F : [0, 1] n×1 -→ [0, 1] n×1 : c = [c i ] → F (c) = A□ max T (A t □ min I T c) = [F (c) i ] (14) where 
: ∀i ∈ {1, 2, . . . , n}, F (c) i = max 1≤j≤m T (a ij , min 1≤k≤n I T (a kj , c k )). (15) 
By solving [START_REF] Sanchez | Resolution of composite fuzzy relation equations[END_REF] in the case of a system of max -min fuzzy relational equations A□ max T M x = b, the author of [START_REF] Baaj | Max-min Learning of Approximate Weight Matrices from Fuzzy Data[END_REF] gave the following analytical formula for computing the Chebyshev distance associated to its second member b:

∆ M = max 1≤i≤n min 1≤j≤m max[(b i -a ij ) + , max 1≤k≤n σ G (b i , a kj , b k )], (16) 
where

σ G (x, y, z) = min( (x -z) + 2 , (y -z) + ). (17) 
Similarly, for the case of a system of max-product fuzzy relational equations A□ max T P x = b, the author of [START_REF] Baaj | Chebyshev distances associated to the second members of systems of Max-product/Lukasiewicz Fuzzy relational equations[END_REF] gave the following analytical formula for computing the Chebyshev distance associated to b:

∆ P = max 1≤i≤n min 1≤j≤m max 1≤k≤n σ GG (a ij , b i , a kj , b k ), (18) 
where

σ GG (u, x, y, z) = max[(x -u) + , min(φ(u, x, y, z), (y -z) + )] (19) and φ(u, x, y, z) = (x•y-u•z) + u+y if u > 0 x if u = 0 . ( 20 
)
The author of [START_REF] Baaj | Chebyshev distances associated to the second members of systems of Max-product/Lukasiewicz Fuzzy relational equations[END_REF] also gave the following analytical formula for computing Chebyshev distance associated to the second member b of a system of max-Łukasiewicz fuzzy relational equations A□ max

T L x = b: ∆ L = max 1≤i≤n min 1≤j≤m max 1≤k≤n σ L (1 -a ij , b i , a kj , b k ), (21) 
where

σ L (u, x, y, z) = min(x, max(v + , (v + y -z) + 2 )) with v = x + u -1.
For the max -min system, the author of [START_REF] Baaj | Max-min Learning of Approximate Weight Matrices from Fuzzy Data[END_REF] showed that the formula (16) allows us to get directly its greatest approximate solution and its greatest Chebyshev approximation of its second member (thus, the set C b is non-empty and ∆ M is always a minimum). For max-product and max-Łukasiewicz systems, the author of [START_REF] Baaj | Chebyshev distances associated to the second members of systems of Max-product/Lukasiewicz Fuzzy relational equations[END_REF] showed the same results using the formulas (18) and (21). From (16), the author of [START_REF] Baaj | Max-min Learning of Approximate Weight Matrices from Fuzzy Data[END_REF] also gave a description of the set C b of Chebyshev approximations, see [START_REF] Rudin | Principles of mathematical analysis[END_REF] and that of the approximate solutions set of the inconsistent system.

3 General results on solving systems of min -→ fuzzy relational equations where → is one of the implications among Gödel's implication, Goguen's or Łukasiewicz's

In this section, we begin by reminding the solving of a system of min -→ fuzzy relational equations, which is based on a matrix Γ = [γ ji ] 1≤j≤m,1≤i≤n ∈ [0, 1] m×n of size (m, n) and a column-vector of m components

β = [β j ] 1≤j≤m ∈ [0, 1] m×1 : (Σ) : Γ□ min → x = β, (22) 
where x is an unknown column-vector of n components. Using the vector ϵ = Γ t □ max T β (where Γ t is the transpose of the matrix Γ), we have the following equivalence [START_REF] Miyakoshi | Solutions of composite fuzzy relational equations with triangular norms[END_REF][START_REF] Pedrycz | Applications of fuzzy relational equations for methods of reasoning in presence of fuzzy data[END_REF][START_REF] Perfilieva | System of fuzzy relation equations with inf-→ composition: Complete set of solutions[END_REF]:

(Σ) is consistent ⇐⇒ Γ□ min → ϵ = β. ( 23 
)
Example 1. Let us use the Gödel's implication → G , see (4), the matrix Γ = 0.6 0.49 0.26 0.9 and the vector β = 0.58 0.88 .

We have Γ t = 0.6 0.26 0.49 0.9 . We compute ϵ = Γ t □ max min β = 0.58 0.88 . The min -→ G composition of the matrix Γ by the vector ϵ is:

Γ□ min → G ϵ = 0.58 0.88 = β.
Therefore, the system Γ□ min → G x = β is consistent.

Similarly to the application F , see [START_REF] Sanchez | Solutions in composite fuzzy relation equations: Application to medical diagnosis in brouwerian logic[END_REF], studied for systems of max -T fuzzy relational equations in [START_REF] Baaj | Chebyshev distances associated to the second members of systems of Max-product/Lukasiewicz Fuzzy relational equations[END_REF][START_REF] Baaj | Max-min Learning of Approximate Weight Matrices from Fuzzy Data[END_REF], we introduce the following application for systems of min -→ fuzzy relational equations:

G : [0, 1] m×1 → [0, 1] m×1 : ξ → G(ξ) = Γ□ min I T (Γ t □ max T ξ), (24) 
which allows us to reformulate the equivalence (23) as:

(Σ) is consistent ⇐⇒ G(β) = β. (25) 
The rest of this section is structured as follows. In (Subsection 3.1) we study the main properties of the function G. In (Subsection 3.2) we define the Chebyshev distance ∇ = inf d∈D ∥β -d∥ associated to the second member β of the system (Σ) where D is the set formed by the second members of the consistent systems of min -→ fuzzy relational equations defined with the same matrix Γ. We show in (Theorem 1) that the Chebyshev distance ∇ is the lower bound of the solutions of a vector inequality expressed with the application G. From this result, we obtain the decomposition of the Chebyshev distance ∇ = max 1≤j≤m ∇ j (Proposition 5), where for all j ∈ {1, 2, . . . , m}, each ∇ j is the lower bound of the solutions of the j-th scalar inequality in the above-mentioned vector inequality, see (36).

Study of the application G

From the system (Σ) : Γ□ min I T x = β, see (22), where Γ = [γ ji ] 1≤j≤m,1≤i≤n ∈ [0, 1] m×n , let us compute the components of G(ξ) for any vector ξ = [ξ j ] 1≤j≤m ∈ [0, 1] m×1 . For 1 ≤ j ≤ m, we have:

G(ξ) j = min 1≤i≤n I T (γ ji , max 1≤l≤m T (γ li , ξ l )).
The application G has the following properties:

Proposition 1. ∀ξ ∈ [0, 1] m×1 , ξ ≤ G(ξ).
To prove the inequality ξ j ≤ G(ξ) j for each j ∈ {1, 2, . . . , m}, we rely on the inequality I T (a, T (a, b)) ≥ b.

Proof. Let j ∈ {1, 2, . . . , m}, we have:

G(ξ) j = min 1≤i≤n I T (γ ji , max 1≤l≤m T (γ li , ξ l )) ≥ min 1≤i≤n I T (γ ji , T (γ ji , ξ j )) ≥ min 1≤i≤n ξ j = ξ j .
Proposition 2. The application G is increasing ; given ξ, ξ ′ ∈ [0, 1] m×1 we have:

ξ ≤ ξ ′ =⇒ G(ξ) ≤ G(ξ ′ ).
Proof. The increasing property of the application G is a consequence of the increasing property of the t-norm T and that of its associated residual implicator I T with respect to the second variable. It results that the following two applications are also increasing:

[0, 1] n×1 → [0, 1] m×1 : c → Γ□ min I T c ; [0, 1] m×1 → [0, 1] n×1 : ξ → Γ t □ max T ξ. Proposition 3. The application G is idempotent i.e., G • G = G.
To prove the idempotent property of G, we have to show that ∀ξ ∈

[0, 1] m×1 , G(G(ξ)) = G(ξ). The proof is a consequence of the relation: ∀ξ ∈ [0, 1] m×1 , Γ t □ max T G(ξ) = Γ t □ max T
ξ, which we will deduce from a property of the application F , see [START_REF] Sanchez | Solutions in composite fuzzy relation equations: Application to medical diagnosis in brouwerian logic[END_REF].

Proof. Let ξ ∈ [0, 1] m×1 be fixed and we put c = Γ t □ max T ξ ∈ [0, 1] n×1 . Thus, Γ t □ max T x = c is a consistent system and ξ one of its solution. We remind that the application F of [START_REF] Baaj | Chebyshev distances associated to the second members of systems of Max-product/Lukasiewicz Fuzzy relational equations[END_REF][START_REF] Baaj | Max-min Learning of Approximate Weight Matrices from Fuzzy Data[END_REF], see [START_REF] Sanchez | Solutions in composite fuzzy relation equations: Application to medical diagnosis in brouwerian logic[END_REF], associated to the matrix A := Γ t satisfies F (c) = c.

We have:

Γ t □ max T G(ξ) = Γ t □ max T (Γ□ min I T (Γ t □ max T ξ)) = Γ t □ max T (Γ□ min I T c) = F (c) = c = Γ t □ max T ξ. The equality Γ t □ max T G(ξ) = Γ□ max T ξ leads to: G(G(ξ)) = Γ□ min I T (Γ t □ max T G(ξ)) = Γ□ min I T (Γ t □ max T ξ) = G(ξ).
Proposition 4. The application G is right-continuous.

If the application I

T : [0, 1] 2 → [0, 1] is continuous, then G : [0, 1] m×1 → [0, 1] m×1 is also continuous.
The right-continuity of the application G means that for any sequence (ξ

(k) ) verifying: ∀k, ξ (k) ≥ ξ and (ξ (k) ) → ξ, we have (G(ξ (k)) ) → G(ξ). Note that, in [0, 1] m×1 , the convergence of a sequence of vectors (η (k) ) to a vector η ∈ [0, 1] m×1 is the convergence component by component: ∀j ∈ {1, 2, . . . , m}, η (k) j → η j .
Proof. The right-continuity of the application G is a consequence of the continuity of the t-norm T and the rightcontinuity with respect to the second variable of the residual implicator I T associated to T . It is obtained by applying the general theorems on continuity [START_REF] Rudin | Principles of mathematical analysis[END_REF], which also allow, in the case where I T is continuous, to obtain the continuity of the application G.

In the following subsection, the application G is used for computing the Chebyshev distance associated to the second member of a system of min -→ fuzzy relational equations.

Chebyshev distance associated to the second member of a system of min -→ fuzzy relational equations

In this subsection, we begin by defining the set D formed by the second members of the consistent systems of min -→ fuzzy relational equations defined with the same matrix Γ. For max -T systems, an analogous set denoted C was defined, see [START_REF] Pedrycz | On generalized fuzzy relational equations and their applications[END_REF].

To the matrix Γ, let us associate the set of vectors d = [d j ] ∈ [0, 1] m×1 such that the system Γ□ min → x = d is consistent:

D = {d = [d j ] ∈ [0, 1] m×1 | Γ□ min → x = d is consistent}. ( 26 
)
Note that the equivalence (25) allows us to obtain a second definition of the set D:

D = {d = [d j ] ∈ [0, 1] m×1 | G(d) = d}. (27) 
Using the idempotence property of the application G (Proposition 3), we also deduce:

∀β ∈ [0, 1] m×1 , G(β) ∈ D. (28) 
The set D is non-empty: the vector d ∈ [0, 1] m×1 whose components are equal to 1, satisfies the equality G(d) = d and then d ∈ D. This set allows us to define: Definition 3. The Chebyshev distance associated to the system (Σ) :

Γ□ min → x = β is: ∇ = ∇(Γ, β) = inf d∈D ∥β -d∥ (29) 
where:

∥β -d∥ = max 1≤j≤m | β j -d j | .
and Definition 4. A Chebyshev approximation of the second member β is an element d ∈ D, see ( 27), such that ∥d-β∥ = ∇.

The set of Chebyshev approximations of the second member β is:

D β = {d ∈ D | ∥d -β∥ = ∇}. (30) 
In the case of a system of max -T fuzzy relational equations, the authors of [START_REF] Baaj | Chebyshev distances associated to the second members of systems of Max-product/Lukasiewicz Fuzzy relational equations[END_REF][START_REF] Ra Cuninghame-Green | Residuation in fuzzy algebra and some applications[END_REF] showed that its associated Chebyshev distance ∆ is the lower bound of the solutions of a vector inequality involving the application F , (see 13).

Similarly, for a system of min -→ fuzzy relational equations, we will prove in (Theorem 1) that the Chebyshev distance ( 29) is the lower bound of the solutions of a vector inequality involving the application G.

We rely on the following sets:

Notation 1. E = {δ ∈ [0, 1] | G(β(δ)) ≤ β(δ)}. ( 31 
)
For all 1 ≤ j ≤ m:

E j = {δ ∈ [0, 1] | G(β(δ)) j ≤ β(δ) j }, ∇ j = inf E j . ( 32 
)
A j = {i ∈ {1, 2, . . . , n} | γ ji > 0}, (33) 
We need the following lemma: Lemma 1. We have:

1. E = 1≤j≤m E j .

2. for all δ, δ ′ ∈ [0, 1] and j ∈ {1, 2, . . . , m} , we have:

δ ∈ E j and δ ≤ δ ′ =⇒ δ ′ ∈ E j .
Proof. The proof of the first statement is easy: for any δ ∈ [0, 1], we have:

δ ∈ E ⇐⇒ G(β(δ)) ≤ β(δ) ⇐⇒ ∀j ∈ {1, . . . , m} , G(β(δ)) j ≤ β(δ) j ⇐⇒ ∀j ∈ {1, . . . , m} , δ ∈ E j .
Let δ ∈ E j and δ ′ ∈ [0, 1] satisfy the inequality δ ≤ δ ′ . Then, using the increasing (Proposition 2) of G, we obtain:

G(β(δ ′ )) j ≤ G(β(δ)) j ≤ β(δ) j ≤ β(δ ′ ) j .
Thus, we obtain

G(β(δ ′ )) j ≤ β(δ ′ ) j , i.e., δ ′ ∈ E j .
The Chebyshev distance ∇ (Definition 3) of a min -→ system (Σ) : Γ□ min → x = β, see ( 22) is: Theorem 1. We have:

∇ = inf{δ ∈ [0, 1] | G(β(δ)) ≤ β(δ)} = inf E. (34) 
Proof. We put ∇ ′ = inf E. Let us show that we have ∇ = ∇ ′ in two steps:

1. ∇ ≤ ∇ ′ : we have to show:

∀δ ∈ E, ∇ ≤ δ. Let δ ∈ E, we put d = G(β(δ))
. From (28), we deduce that d ∈ D. Then, we obtain:

∥β -G(β(δ))∥ = ∥β -d∥ ≥ ∇.
From (Proposition 1), we have β(δ) ≤ G(β(δ)) and δ ∈ E. So, we deduce the double inequality

β(δ) ≤ G(β(δ)) ≤ β(δ).
Using the inequality (3), we conclude that: 3), we deduce:

∥β -d∥ = ∥β -G(β(δ))∥ ≤ δ and finally ∇ ≤ ∥β -d∥ ≤ δ. 2. ∇ ′ ≤ ∇: we have to show: ∀d ∈ D , ∇ ′ ≤ ∥β -d∥. Let d ∈ D, we put δ = ∥β -d∥. From (
β(δ) ≤ d ≤ β(δ).
Using that G is increasing (Proposition 2) and the equivalence (25), we obtain:

G(β(δ)) ≤ G(d) = d ≤ β(δ), so δ ∈ E and by definition of ∇ ′ , we have ∇ ′ ≤ δ = ∥β -d∥.
(Theorem 1) states that inf d∈D ∥β -d∥ = ∇ = inf E. In fact, in the following sections, we will see that, whatever the residual implicator used among the Gödel implication, the Goguen implication and the Łukasiewicz implication, we have:

∇ = min d∈D ∥β -d∥ ⇐⇒ ∇ = min E.
From the above lemma and theorem, we deduce the following useful decomposition of the Chebyshev distance ∇:

Proposition 5. ∇ = max 1≤j≤m ∇ j ( 35 
)
where:

∇ j = inf{δ ∈ [0, 1] | G(β(δ)) j ≤ β(δ) j } = inf E j . (36) 
Proof. We will prove the equality ∇ = max 1≤j≤m ∇ j in the following two steps:

1. max 1≤j≤m ∇ j ≤ ∇ ; we have to show:

∀δ ∈ E, max 1≤j≤m ∇ j ≤ δ.
Using (Lemma 1) the equality E = 1≤j≤m E j , we deduce that for any δ ∈ E, we have:

∀j ∈ {1, 2, . . . , m} ∇ j = inf E j ≤ δ. Thus, max 1≤j≤m ∇ j ≤ δ.

∇ ≤ max 1≤j≤m ∇ j

To rely on the properties of a lower bound, we use the well-known equivalence:

∇ ≤ max 1≤j≤m ∇ j ⇐⇒ ∀ε > 0 , ∇ < max 1≤j≤m ∇ j + ε.
Let ε > 0. For any j ∈ {1, 2, . . . , m}, there is an element δ j ∈ E j such that δ j < ∇ j + ε. We put δ = max 1≤j≤m δ j . Then, for any j ∈ {1, 2, . . . , m}, we get: δ j ∈ E j and δ j ≤ δ. Using (Lemma 1), we conclude that δ ∈ E and:

∇ ≤ δ = max 1≤j≤m δ j < max 1≤j≤m (∇ j + ε) = max 1≤j≤m ∇ j + ε.
As we will see in the next sections, the formula for computing ∇ j , involves the value 1 -β j (thus using the j-th component β j of the second member β), whatever the residual implicator used among the Gödel implication, the Goguen implication and the Łukasiewicz implication. Lemma 2. For any j ∈ {1, 2, . . . , m}, we have:

1. 1 -β j ∈ E j , 2. ∇ j ≤ 1 -β j .
In particular, we have:

β j = 1 =⇒ ∇ j = 0.
Proof. For δ = 1 -β j , we have β(δ) j = 1, so the inequality G(β(δ)) j ≤ β(δ) j = 1 is satisfied and therefore we have

1 -β j ∈ E j .
As we proved 1 -

β j ∈ E j , the inequality ∇ j ≤ 1 -β j is a consequence of the definition ∇ j = inf E j .
In the following sections, for each of the three systems of min -→ fuzzy relational equations (depending on whether → is Gödel's implication, Goguen's implication or Łukasiewicz's implication), we give an explicit formula for computing the Chebyshev distance associated to the second member of the system.

4 Chebyshev distance associated to the second member of systems based on min -→ G composition

In this section, our purpose is to give an explicit formula (Theorem 2) for computing the Chebyshev distance ∇, see (Definition 3), associated to the second member of a system of min -→ G fuzzy relational equations (Σ) : Γ□ min → G x = β, see ( 22), where → G is the Gödel implication, see [START_REF] Di | Fuzzy relation equation under a class of triangular norms: A survey and new results[END_REF]. The main preliminary results ((Proposition 6), (Corollary 1) and (Proposition 7)) needed for establishing the formula (Theorem 2) follow from the key result stated in (Lemma 4).

We remind from (Proposition 5) that ∇ = max 1≤j≤m ∇ j where ∇ j = inf E j and the set E j is defined in (32). As illustrated at the end of the section by (Example 5), the set E j does not necessarily admit a minimum element, i.e. ∇ j does not necessarily belong to E j . In (Proposition 8), we characterize when E j admits a minimum element i.e., ∇ j ∈ E j and deduce a sufficient condition for ∇ being a minimum element of E (Corollary 2) i.e., ∇ ∈ E. Therefore, as we will see in (Example 5), in the case of a min -→ G system, the Chebyshev distance ∇ may be an infimum. For min -→ G systems whose ∇ has been verified as a minimum, we can always compute the lowest Chebyshev approximation of the second member and an approximate solution (Corollary 3). However, for the min -→ G systems whose Chebyshev distance has been verified as not being a minimum, the set of Chebyshev approximations of its second member is empty (Lemma 7).

We use the following notations: Notation 2. For 1 ≤ j ≤ m, 1 ≤ i ≤ n, to each coefficient γ ji of the matrix Γ of the system (Σ), see (22), we associate:

• V (j, i) = l ∈ {1, 2, . . . , m} | γ ji ≤ γ li , • θ ji = max l∈V (j,i) (β l -γ ji ), • ζ ji = max 1≤l≤m σ G (β l , γ li , β j ).
where σ G (x, y, z) = min( (x -z) + 2 , (y -z) + ) was defined in (17) from [START_REF] Baaj | Max-min Learning of Approximate Weight Matrices from Fuzzy Data[END_REF].

To give the formula for computing ∇ j for j ∈ {1, 2, . . . , m}, see (36), we will study the solving of the involved inequality G(β(δ)) j ≤ β(δ) j .

The following result gives an equivalent definition of the function σ G introduced in [START_REF] Baaj | Max-min Learning of Approximate Weight Matrices from Fuzzy Data[END_REF], see (17), which is adapted to our needs: Lemma 3. For all x, y, z, δ ∈ [0, 1], we have:

min(y, x(δ)) ≤ z(δ) ⇐⇒ σ G (x, y, z) ≤ δ.
Proof. We have:

y -z(δ) = max(y -z -δ, y -1). x(δ) -z(δ) = max(x(δ) -z -δ, x(δ) -1) = max[max(x -δ, 0) -z -δ, x(δ) -1] = max[max(x -δ -z -δ, -z -δ), x(δ) -1] = max(x -z -2δ, -z -δ, x(δ) -1). (37) 
We remark that: y -1 ≤ 0, -z -δ ≤ 0, and x(δ) -1 ≤ 0.

We have:

min(y, x(δ)) ≤ z(δ) ⇐⇒ min(y -z(δ), x(δ) -z(δ)) ≤ 0 ⇐⇒ y -z(δ) ≤ 0 or x(δ) -z(δ)) ≤ 0 ⇐⇒ y -z -δ ≤ 0 or x -z -2δ ≤ 0 ⇐⇒ (y -z) + ≤ δ or (x -z) + 2 ≤ δ ⇐⇒ min( (x -z) + 2 , (y -z) + ) ≤ δ ⇐⇒ σ G (x, y, z) = min( (x -z) + 2 , (y -z) + ) ≤ δ. (38) 
Example 2. Let x = 0.6, y = 0.4 and z = 0.2. We have min(y, x) > z. We compute δ = σ G (x, y, z) = 0.2, then the inequality min(y, x(δ)) ≤ z(δ) is satisfied.

We establish the following important lemma, which will provide important information in (Proposition 6) on ∇ j , in the case where ∇ j < 1 -β j : Lemma 4. Let j ∈ {1, 2, . . . , m}. For all δ ∈ [0, 1] such that δ < 1 -β j , we have the following equivalence between these two statements:

1. G(β(δ)) j ≤ β(δ) j ,
2. there exists i ∈ {1, 2, . . . , n} such that:

γ ji > 0, θ ji < δ and ζ ji ≤ δ.
Proof.

=⇒:

We have:

G(β(δ)) j = min 1≤i≤n (γ ji → G ( max 1≤l≤m min(γ li , β(δ) l ))) ≤ β(δ) j = β j + δ < 1.
We deduce that there exists an index i ∈ {1, 2, . . . n} such that:

γ ji → G ( max 1≤l≤m min(γ li , β(δ) l )) = G(β(δ)) j ≤ β(δ) j = β j + δ < 1 which implies γ ji > max 1≤l≤m min(γ li , β(δ) l ) and max 1≤l≤m min(γ li , β(δ) l ) ≤ β j + δ so γ ji > 0 and ∀l ∈ {1, 2, . . . , m} , γ ji > min(γ li , β(δ) l ) and min(γ li , β(δ) l ) ≤ β j + δ. (39) 
By (Lemma 3), we know that for all l ∈ {1, 2, . . . , m} , we have:

min(γ li , β(δ) l ) ≤ β j + δ = β(δ) j ⇐⇒ σ G (β l , γ li , β j ) ≤ δ so (39) implies ζ ji = max 1≤l≤m σ G (β l , γ li , β j ) ≤ δ.
To establish the inequality θ ji < δ, we will show that:

∀l ∈ V (j, i) , β l -γ ji < δ.
Let l ∈ V (j, i) i.e., γ ji ≤ γ li and by (39) we have:

γ ji > min(γ li , β(δ) l ), so min(γ li , β(δ) l ) = β(δ) l < γ ji .
Then, we have:

β(δ) l -γ ji = max(β l -δ, 0) -γ ji = max(β l -γ ji -δ, -γ ji ) < 0
so β l -γ ji < δ and finally θ ji = max l∈V (j,i) β l -γ ji < δ.

⇐=:

Let i ∈ {1, 2, . . . , n} such that:

γ ji > 0, θ ji < δ, ζ ji ≤ δ.
We have:

G(β(δ)) j = min 1≤i ′ ≤n (γ ji ′ → G ( max 1≤l≤m min(γ li ′ , β(δ) l )) ≤ γ ji → G ( max 1≤l≤m min(γ li , β(δ) l )).
We will show that we have:

γ ji → G ( max 1≤l≤m min(γ li , β(δ) l ) ≤ β(δ) j .
From the general equality: x → G max(y, z) = max(x → G y, x → G z), we deduce:

γ ji → G ( max 1≤l≤m min(γ li , β(δ) l )) = max 1≤l≤m γ ji → G min(γ li , β(δ) l ).
We will establish ∀l ∈ {1, 2, . . . , m},

γ ji → G min(γ li , β(δ) l ) ≤ β(δ) j = β j + δ. (40) 
Let l ∈ {1, 2, . . . , m}. We distinguish the following two cases:

• We suppose that l ∈ V (j, i) i.e., γ ji ≤ γ li . We then have:

β l -γ li ≤ β l -γ ji ≤ θ ji < δ.
We deduce:

β l -γ li -δ ≤ β l -γ ji -δ < 0 and γ li ≥ γ ji > 0.
So:

β(δ) l -γ li = max(β l -γ li -δ, -γ li ) < 0
which leads to min(γ li , β(δ) l ) = β(δ) l . On the other hand, β l -γ ji -δ < 0 and γ ji > 0 lead to

β(δ) l -γ ji = max(β l -γ ji -δ, -γ ji ) < 0 so β(δ) l < γ ji and we obtain γ ji → G min(γ li , β(δ) l ) = min(γ li , β(δ) l ).
By taking into account σ G (β l , γ li , β j ) ≤ ζ ji ≤ δ, we deduce from (Lemma 3):

min(γ li , β(δ) l ) ≤ β(δ) j so γ ji → G min(γ li , β(δ) l ) ≤ β(δ) j = β j + δ.
• If we suppose l ∈ V (j, i) c , i.e, γ ji > γ li and taking into account that γ li ≥ min(γ li , β(δ) l ), we then have:

γ ji → G min(γ li , β(δ) l ) = min(γ li , β(δ) l ).
As by hypothesis we have σ G (β l , γ li , β j ) ≤ ζ ji ≤ δ, we deduce from (Lemma 3):

min(γ li , β(δ) l ) ≤ β(δ) j .
So:

γ ji → G min(γ li , β(δ) l ) = min(γ li , β(δ) l ) ≤ β(δ) j = β j + δ.
We have established (40) and therefore we have proven G(β(δ)) j ≤ β(δ) j .

We illustrate this result:

Example 3. Let us use the matrix Γ = 0.6 0.49 0.26 0.9 and the vector β = 0.1 0.4 . For j = 1, we have:

G(β(δ)) 1 = min 1≤i≤2 (γ 1i → G ( max 1≤l≤2 min(γ li , β(δ) l ))) = min(0.6 → G ( max 1≤l≤2 min(γ l1 , β(δ) l )), 0.49 → G ( max 1≤l≤2 min(γ l2 , β(δ) l )))
We compute:

• max 1≤l≤2 min(γ l1 , β l ) = max(min(0.6, 0.1), min(0.26, 0.4)) = 0.26,

• max 1≤l≤2 min(γ l2 , β l ) = max(min(0.49, 0.1), min(0.9, 0.4)) = 0.4

and then: 0.6 → G 0.26 = 0.26 and 0.49 → G 0.4 = 0.4. So the inequality is not satisfied for δ = 0.

For solving the inequality, we rely on: V (1, 1) = {1} and V (1, 2) = {1, 2} and we compute:

• θ 11 = β 1 -γ 11 = 0.1 -0.6 = -0.5, • θ 12 = max(β 1 -γ 12 , β 2 -γ 12 ) = max(0.1 -0.49, 0.4 -0.49) = -0.09,
• ζ 11 = max(σ G (0.1, 0.6, 0.1), σ G (0.4, 0.26, 0.1)) = 0.15,

• ζ 12 = max(σ G (0.1, 0.49, 0.1), σ G (0.4, 0.9, 0.1)) = 0.15.

We take δ = 0.15 and we have γ 11 > 0, θ 11 < δ and ζ 11 = δ.

Then we observe that G(β(δ)) 1 = min(0.6 → G 0.25, 0.49 → G 0.25) = 0.25 ≤ β(δ) 1 = 0.25. So the inequality is solved with δ = 0.15. Proposition 6. Let j ∈ {1, 2, . . . , m}. Suppose that ∇ j < 1 -β j . Then, there exists i 0 ∈ {1, 2, . . . , n} such that:

γ ji 0 > 0 and ∇ j ≥ max(θ ji 0 , ζ ji 0 ).
Proof. The inequality ∇ j < 1 -β j and the properties of the lower bound ∇ j = inf E j allow us to find a sequence (δ k ) in [0, 1] such that:

∀k , δ k ∈ E j i.e G(β(δ k )) j ≤ β(δ k ) j , (δ k ) → ∇ j , ∀k , ∇ j ≤ δ k < 1 -β j .
By applying (Lemma 4) to each δ k , we get an integer i k ∈ {1, 2, . . . , n} such that:

γ ji k > 0, θ ji k < δ k , ζ ji k ≤ δ k .
The sequence of integers k → i k takes its values in the finite set {1, 2, . . . , n}, so by (Theorem 3.6) of [START_REF] Rudin | Principles of mathematical analysis[END_REF], it admits a subsequence k → i α(k) , which is stationary (see the proof of (Theorem 3.6) of [START_REF] Rudin | Principles of mathematical analysis[END_REF]). Therefore, we have an integer i 0 ∈ {1, 2, . . . , n} such that: ∀k , i α(k) = i 0 . Then, we deduce:

γ ji 0 > 0, ∀k , θ ji 0 < δ α(k) , ζ ji 0 ≤ δ α(k)
. By passage to the limit when k → ∞, we obtain:

θ ji 0 ≤ ∇ j , ζ ji 0 ≤ ∇ j .
As a direct consequence, we have: Corollary 1. Let j ∈ {1, 2, . . . , m}. Suppose that ∇ j < 1 -β j . Then, the set A j , see (33), is non empty.

From (Proposition 6) and (Corollary 1), we establish a formula for computing ∇ j if ∇ j < 1 -β j : Proposition 7. Suppose that ∇ j < 1 -β j , then we have:

∇ j = min i∈Aj max(θ ji , ζ ji ).
Proof. We put τ j = min i∈Aj max(θ ji , ζ ji ) and we will show ∇ j = τ j in the following two steps:

• ∇ j ≥ τ j : by (Proposition 6), we have an index i 0 ∈ {1, 2, . . . , n} such that:

γ ji 0 > 0, max(θ ji 0 , ζ ji 0 ) ≤ ∇ j .
Therefore i 0 ∈ A j and max(θ ji 0 , ζ ji 0 ) ≤ ∇ j and we deduce:

τ j ≤ max(θ ji 0 , ζ ji 0 ) ≤ ∇ j .
• ∇ j = τ j . To prove this equality, we proceed by contradiction: we suppose that ∇ j ̸ = τ j . We then have ∇ j > τ j . The set A j being non-empty (Corollary 1), let i ∈ A j such that τ j = max(θ ji , ζ ji ), so we have:

γ ji > 0, max(θ ji , ζ ji ) = τ j < ∇ j . (41) 
We take a number δ verifying τ j < δ < ∇ j , then δ satisfy:

δ < ∇ j < 1 -β j ,
and the index i ∈ A j verify:

γ ji > 0, max(θ ji , ζ ji ) = τ j < δ < 1 -β j .
By (Lemma 4), we deduce that δ ∈ E j , i.e., G(β(δ)) j ≤ β(δ) j ), so ∇ j = inf E j ≤ δ, which is a contradiction.

We then give the explicit analytical formula for computing the Chebyshev distance ∇ (see (Definition 3) and (Proposition 5)), associated to the second member β of a system of min -→ G fuzzy relational equations (Σ) : Γ□ min Following (Proposition 5), we have to prove that for all j ∈ {1, 2, . . . , m}, ∇ j = inf E j is equal to min(1 -β j , τ j ).

→ G x = β, see (22) 
Proof. We distinguish the following cases:

• If β j = 1, we deduce from (Lemma 2) that ∇ j = 0 = min(1 -β j , τ j ).

• Suppose that β j < 1. We then have:

-If A j = ∅, then by (Lemma 2) and (Corollary 1), we have ∇ j = 1 -β j and τ j = 1 (by the convention). Therefore, ∇ j = min(1 -β j , τ j ), -If A j ̸ = ∅, then there exists an index i ∈ A j such that τ j = max(θ ji , ζ ji ).

Let us prove the inequality ∇ j ≤ τ j by contradiction. Assume that we have τ j < ∇ j . We know from (Lemma 2) that ∇ j ≤ 1 -β j . Let δ be a number verifying τ j < δ < ∇ j . Then, we have:

γ ji > 0 and τ j = max(θ ji , ζ ji ) < δ < ∇ j ≤ 1 -β j .
By (Lemma 4), we deduce δ ∈ E j , so ∇ j = inf E j ≤ δ which is a contradiction.

To summarize, we know that:

∇ j ≤ min(1 -β j , τ j ) and by (7) ∇ j < 1 -β j =⇒ ∇ j = τ j so ∇ j = min(1 -β j , τ j ).
We illustrate this theorem: Example 4. We continue (Example 3). For j = 1, we compute τ 1 = min i∈A1 max(θ 1i , ζ 1i ) where A 1 = {1, 2}. We obtain τ 1 = 0.15. As 1 -β 1 = 0.9, we have ∇ 1 = min(0.9, 0.15) = 0.15.

As we will see in (Example 5), ∇ j = inf E j does not always belong to the set E j (the set E j is defined in (32)) i.e., E j does not necessarily admit a minimum element. Our aim in what follows is to characterize the case in which E j admits a minimum element i.e., ∇ j ∈ E j .

We know from (Lemma 2) that 1 -β j ∈ E j and ∇ j ≤ 1 -β j . We are left with the case where ∇ j < 1 -β j . Thus, we have β j < 1. We will need the following lemma:

Lemma 5. Suppose that we have β j < 1, then for all i ∈ A j , we have ζ ji < 1 -β j .

Proof.

ζ ji = max 1≤l≤m σ G (β l , γ li , β j ) = max 1≤l≤m min( (β l -β j ) + 2 , (γ li -β j ) + ) ≤ max 1≤l≤m (β l -β j ) + 2 ≤ 1 -β j 2 < 1 -β j .
We use the following sets:

Notation 3. For j ∈ {1, 2, . . . , m}:

F j = {i ∈ A j | θ ji < ζ ji } and ∇ j = min i∈Fj ζ ji with the convention min ∅ = 1. (42) 
Lemma 6. Suppose we have β j < 1. We have:

∇ j ∈ E j .
Proof. We distinguish the following two cases:

• If F j = ∅, then ∇ j = 1 ∈ E j . • If F j ̸ = ∅, let i ∈ F j such that ∇ j = ζ ji .
From i ∈ F j and (Lemma 5), we deduce:

γ ji > 0 and θ ji < ζ ji < 1 -β j
By taking δ = ζ ji < 1 -β j , we get:

γ ji > 0 , θ ji < δ and ζ ji = δ
We deduce from (Lemma 4) that we have:

∇ j = ζ ji = δ ∈ E j .
The characterization of the case where E j admits a minimum element, here ∇ j , is given by: Proposition 8. Suppose we have ∇ j < 1 -β j . Then, we have:

1. ∇ j ≤ ∇ j , 2. ∇ j ∈ E j ⇐⇒ ∇ j = ∇ j .
We may have ∇ j / ∈ E j (see in (Example 5)).

Proof. We know from (Lemma 6) that ∇ j ∈ E j . Then the definition of ∇ j = inf E j implies that ∇ j ≤ ∇ j .

To prove the equivalence of the second statement, since from (Lemma 6) we know that ∇ j ∈ E j , the equality ∇ j = ∇ j implies that ∇ j ∈ E j .

To prove the implication =⇒, let us first remark that the hypothesis ∇ j ∈ E j means that ∇ j = min E j .

As we suppose ∇ j < 1 -β j , we deduce from (Lemma 4) that there is an index i 0 ∈ A j such that

θ ji 0 < ∇ j and ζ ji 0 ≤ ∇ j .
Let us show that we have i 0 ∈ F j i.e., θ ji 0 < ζ ji 0 by contradiction.

Suppose we have ζ ji 0 ≤ θ ji 0 . Let us take a number δ verifying:

θ ji 0 < δ < ∇ j .
We then have:

γ ji 0 > 0 and ζ ji 0 ≤ θ ji 0 < δ < ∇ j < 1 -β j .
By applying (Lemma 4) to δ,we obtain that δ ∈ E j , so ∇ j ≤ δ which is a contradiction.

Finally, we have:

∇ j = min i∈Fj ζ ji ≤ ζ ji 0 ≤ ∇ j so ∇ j = ∇ j .
We immediately deduce from (Lemma 1) and (Proposition 5):

Corollary 2. Assume that for all j ∈ {1, 2, . . . , m}, we have either ∇ j = 1 -β j or ∇ j = ∇ j , then we have ∇ ∈ E.

We then deduce:

Corollary 3. If ∇ ∈ E, then G(β(∇))
is the lowest Chebychev approximation for β. Moreover, ξ = Γ t □ max min β(∇) is an approximate solution for the system (Σ) : Γ□ min → G x = β.

(From the second part of the following proof, one can see that if ∇ = min d∈D ∥β -d∥ then ∇ ∈ E).

Proof. By definition of the application G, we have G(β(∇)) = Γ□ min → G ξ, so G(β(∇)) ∈ D is a consistent second member. By definition of ∇ (Definition 3), we have ∥β -G(β(∇))∥ ≥ ∇.

From (Proposition 1) and the equality ∇ = min E, we deduce the double inequality:

β(∇) ≤ G(β(∇)) ≤ β(∇).
By applying the inequality (3), we get:

∥β -G(β(∇))∥ ≤ ∇ so ∥β -G(β(∇))∥ = ∇.
We have proven that G(β(∇)) is a Chebyshev approximation of β and ξ is an approximate solution for the system (Σ).

Let c ∈ D β be any Chebyshev approximation of β, i.e., G(c) = c and ∥β -c∥ = ∇. By reusing the inequality (3), we get:

β(∇) ≤ c ≤ β(∇).
As G is an increasing application, see (Proposition 2), and applying this property to the inequality β(∇) ≤ c , we get:

G(β(∇)) ≤ G(c) = c.
With the help of the following example, we show that E j does not necessarily admit a minimum element and ∇ / ∈ E:

Example 5. We use Γ = 0.41 0.07 0.29 0.31 and β = 0.88 0.46 . We compute:

• V (1, 1) = {1}, θ 11 = 0.47, ζ 11 = 0, • V (1, 2) = {1, 2}, θ 12 = 0.81, ζ 12 = 0, • V (2, 1) = {1, 2}, θ 21 = 0.59, ζ 21 = 0, • V (2, 2) = {2}, θ 22 = 0.15, ζ 22 = 0.
We deduce that:

τ 1 = 0.47, 1 -β 1 = 0.12, ∇ 1 = min(0.12, 0.47) = 0.12 = 1 -

β 1 ∈ E 1 τ 2 = 0.15, 1 -β 2 = 0.54, ∇ 2 = min(0.54, 0.15) = 0.15 < 1 -β 2 .
We have ∇ = max(∇ 1 , ∇ 2 ) = 0.15. We note that for all j ∈ {1, 2}, we have F j = ∅. But, we remark that:

• We have ∇ 1 ∈ E 1 although F 1 = ∅ because ∇ 1 = 1 -β 1 . • We have ∇ 2 / ∈ E 2 because ∇ 2 < 1 -β 2 and F 2 = ∅ which implies ∇ 2 < ∇ 2 = 1.
• Therefore, we have

∇ = max(∇ 1 , ∇ 2 ) = ∇ 2 / ∈ E 2 . So, as E = E 1 ∩ E 2 , we have ∇ / ∈ E i.e.
, the set E does not admit a minimum element.

As we have seen, the Chebyshev distance ∇ may be an infimum. Therefore, as one might expect, we have: Lemma 7. If ∇ / ∈ E, then the set of Chebyshev approximations D β , see (30), of the second member β of the system Γ□ min → G x = β is empty.

Proof. We prove that D β is empty by contradiction. Assume that we have an element d ∈ D β i.e., G(d) = d and ∥d -β∥ = ∇. From the inequality (3), we deduce:

β(∇) ≤ d ≤ β(∇),
Then, by applying the increasing application G to the inequality β(∇) ≤ d, we have:

G(β(∇)) ≤ G(d) = d ≤ β(∇)
Then, we have G(β(∇)) ≤ β(∇) i.e., ∇ ∈ E, which is contradiction.

In the next two sections, we will show that for min -→ GG and min -→ L systems, the sets E j always admit a minimum element, i.e., we always have ∇ j ∈ E j and therefore by (Lemma 1) and (Proposition 5), we have ∇ ∈ E.

5 Chebyshev distance associated to the second member of systems based on min -→ GG composition

In this section, we study the Chebyshev distance ∇ associated to the second member of a system of min -→ GG fuzzy relational equations (Σ) : Γ□ min → GG x = β, see ( 22), where → GG is the Goguen implication, see [START_REF] Peter Klement | Triangular norms[END_REF]. The proofs of some (but not all) of the statements in this section are similar to those of some of the results in the previous section. To avoid repeating the same arguments in the proofs, we have retained the notations ∇ j , θ ji and ζ ji from the previous section, whose definitions are here adapted to the case of the min -→ GG system. They differ from those given for the min -→ G system in the previous section.

The formula for computing the Chebyshev distance associated to the second member of a system of min -→ GG fuzzy relational equations is established in (Theorem 3). Thanks to the choice of the same notations (∇ j , θ ji and ζ ji ) for the min -→ G system and the min -→ GG system, (Theorem 3) is formulated in the same way as (Theorem 1) for the min -→ G system.

We remind that we have ∇ = max 1≤j≤m ∇ j where ∇ j = inf E j (Proposition 5) and the set E j is defined in (32). Unlike the min -→ G system, which we studied in the previous section, we will show that in the case of the min -→ GG system, for all j ∈ {1, 2, • • • , m}, we always have ∇ j ∈ E j , i.e., ∇ j is always the minimum element of the set E j although the Goguen's implication → GG is not continuous with respect to its two variables. By applying (Lemma 1) and (Proposition 5), we obtain ∇ = min E (Theorem 4), where E is defined in (31). Therefore, in the case of a min -→ GG system, we will show that the Chebyshev distance ∇ (Definition 3) is always a minimum, see (Corollary 5). In fact, we can always compute the lowest Chebyshev approximation of the second member and an approximate solution of the system (Σ), see (Corollary 4). Lemma 9. Let j ∈ {1, 2, . . . , m}. for all δ ∈ [0, 1] such that δ < 1 -β j , we have the following equivalence between the following two statements:

1. G(β(δ)) j ≤ β(δ) j , 2. there exists i ∈ {1, 2, . . . , n} such that:

γ ji > 0, θ ji < δ, ζ ji ≤ δ.
Proof.

=⇒:

We have:

G(β(δ)) j = min 1≤i≤n γ ji → GG [ max 1≤l≤m γ li • β(δ) l ] ≤ β(δ) j = β j + δ < 1.
We deduce that there exists i ∈ {1, 2, . . . n} such that:

γ ji → GG [ max 1≤l≤m γ li β(δ) l ] = .G(β(δ)) j ≤ β(δ) j = β j + δ < 1 which implies γ ji > max 1≤l≤m γ li β(δ) l and γ ji → GG [ max 1≤l≤m γ li β(δ) l ] = 1 γ ji max 1≤l≤m γ li β(δ) l ≤ β j + δ so we have γ ji > 0 and ∀l ∈ {1, 2, . . . , m} , γ ji > γ li β(δ) l and γ li β(δ) l γ ji ≤ β j + δ = β(δ) j < 1. (46) 
By (Lemma 8), since δ < 1 -β j , we know that for all l ∈ {1, 2, . . . , m}, we have:

γ li β(δ) l γ ji ≤ β j + δ = β(δ) j ⇐⇒ P (γ ji , β l , γ li , β j ) ≤ δ so ζ ji := max 1≤l≤m P (γ ji , β l , γ li , β j ) ≤ δ.
To establish the inequality θ ji < δ, we just have to show that we have:

∀l ∈ W (j, i) , β l - γ ji γ li < δ.
(We have W (j, i) ̸ = ∅, because γ ji > 0, so j ∈ W (j, i))

Let l ∈ W (j, i) i.e., 0 < γ ji ≤ γ li , and we deduce from (46):

γ li γ ji β(δ) l = max( γ li γ ji β l - γ li γ ji δ, 0) < 1.
Therefore, we have:

γ li γ ji β l - γ li γ ji δ < 1 so β l - γ ji γ li < δ and θ ji := max l∈W (j,i) (β l - γ ji γ li ) < δ. ⇐=: Let i ∈ {1, 2, . . . , n} such that γ ji > 0, θ ji < δ, ζ ji ≤ δ. We have: G(β(δ)) j = min 1≤i ′ ≤n γ ji ′ → GG [ max 1≤l≤m γ li ′ β(δ) l ] ≤ γ ji → GG [ max 1≤l≤m γ li β(δ) l ]
and it suffices to show that:

γ ji → GG [ max 1≤l≤m γ li β(δ) l ] ≤ β(δ) j
From the general equality x → GG max(y, z) = max(x → GG y, x → GG z), we deduce:

γ ji → GG [ max 1≤l≤m γ li β(δ) l ] = max 1≤l≤m γ ji → GG γ li β(δ) l .
We will establish that ∀l ∈ {1, 2, . . . , m} ,

γ ji → GG γ li β(δ) l ≤ β(δ) j = β j + δ. (47) 
Let l ∈ {1, 2, . . . , m}. We distinguish the following two cases:

• Suppose that l ∈ W (j, i), i.e., γ ji ≤ γ li . We have γ li > 0. Then, we have

β l - γ ji γ li ≤ θ ji < δ.
We deduce:

γ li γ ji β l - γ li γ ji δ < 1 . so γ li γ ji β(δ) l = max( γ li γ ji β l - γ li γ ji δ, 0) < 1 which leads to γ ji → GG γ li β(δ) l = γ li γ ji β(δ) l .
By the hypothesis, we have

P (γ ji , β l , γ li , β j ) ≤ ζ ji ≤ δ.
As γ ji > 0 and δ < 1 -β j , by (Lemma 8), we deduce:

γ li γ ji β(δ) l ≤ β j + δ.
So, in this case, (47) is proved.

• Suppose that l ∈ W (j, i) c i.e. γ ji > γ li . Since γ li ≥ γ li β(δ) l , we have:

γ ji → GG γ li β(δ) l = γ li γ ji β(δ) l .
As in the previous case, by the inequality P (γ ji , β l , γ li , β j ) ≤ ζ ji ≤ δ and (Lemma 8) we then deduce:

γ ji → GG γ li β(δ) l = γ li γ ji β(δ) l ≤ β j + δ.
So, we proved (47).

In the previous section, for the min -→ G system, (Lemma 4) has allowed us to prove the results stated in (Proposition 6), (Corollary 1), (Proposition 7) and (Theorem 2). Thanks to the choice of notations E j , ∇ j , θ ji and ζ ji which are used for the min -→ G system and the min -→ GG system, and using (Lemma 9), it is easy to establish the same results stated in (Proposition 6), (Corollary 1), (Proposition 7) and (Theorem 2) for the min -→ GG system. To avoid unnecessary repetition, we only state a new theorem below (Theorem 3), which corresponds to (Theorem 2) for the min -→ GG system. Both theorems have the same proof.

We then give the explicit analytical formula for computing the Chebyshev distance ∇ (see (Definition 3) and (Proposition 5)), associated to the second member β of a system of min -→ GG fuzzy relational equations (Σ) : Γ□ min → GG x = β, see ( 22 We illustrate this theorem:

Example 7. Let us reuse the matrix Γ = 0.6 0.49 0.26 0.9 and the vector β = 0.1 0.4 . For j = 1, we have:

G(β(δ)) 1 = min 1≤i≤2 (γ 1i → GG ( max 1≤l≤m γ li • β(δ) l )) = min(0.6 → GG ( max 1≤l≤2 γ l1 • β(δ) l ), 0.49 → GG ( max 1≤l≤2 γ l2 • β(δ) l ))
We compute:

Proof. Let i ∈ A j , i.e., γ ji > 0, we deduce:

W (j, i) = {l ∈ {1, 2, . . . , m} | γ ji ≤ γ li and γ li > 0} ̸ = ∅.
We recall that θ ji := max l∈W (j,i) (β l -γ ji γ li ) and ζ ji = max 1≤l≤m P (γ ji , β l , γ li , β j ).

For all l ∈ W (j, i), let us show the inequality:

β l - γ ji γ li ≤ ζ ji .
Since γ ji > 0 and γ li > 0, we have: 44)

ζ ji ≥ P (γ ji , β l , γ li , β j ) = max((β l - γ ji γ li ) + , min( (β l γ li -β j γ ji ) + γ ji + γ li , 1 -β j )) see (
≥ (β l - γ ji γ li ) + ≥ β l - γ ji γ li . Therefore ζ ji ≥ max l∈W (j,i) (β l - γ ji γ li ) = θ ji .
We are now able to show that for j ∈ {1, 2, . . . , m}, we have ∇ j ∈ E j i.e., ∇ j = min E j , and therefore ∇ ∈ E i.e., ∇ = min E. Theorem 4. For all j ∈ {1, 2, . . . , m} , we have:

∇ j = min E j i.e., ∇ j ∈ E j .
Therefore: ∇ = min E.

Proof. From (Lemma 2), we know that 1 -β j ∈ E j and ∇ j ≤ 1 -β j .

It remains to show that ∇ j = min E j under the hypothesis ∇ j < 1 -β j .

From (Theorem 3) and (Lemma 11) we know:

∇ j = min(1 -β j , τ j ) = τ j < 1 and τ j = min i∈Aj max(θ ji , ζ ji ) = min i∈Aj ζ ji .
Therefore A j ̸ = ∅. Let i ∈ A j i.e., γ ji > 0, such that:

∇ j = τ j = max(θ ji , ζ ji ) = ζ ji . (48) 
To show that ∇ j ∈ E j , we will prove that ∇ j satisfies the second assumption of (Lemma 9). Taking into account the hypothesis ∇ j < 1 -β j and the equality ∇ j = ζ ji , see (48), we have to show the strict inequality:

θ ji < ζ ji . (49) 
Let us prove this strict inequality θ ji < ζ ji in the following two steps:

• If ∇ j = 0 : we must prove that θ ji < 0.

Since W (j, i) ̸ = ∅ (we have j ∈ W (j, i)), let l ∈ W (j, i) be such that θ ji = β l -γ ji γ li . We have

0 = ∇ j =ζ ji ≥ P (γ ji , β l , γ li , β j ) = max((β l - γ ji γ li ) + , min( (β l γ li -β j γ ji ) + γ ji + γ li , 1 -β j )) see (44)
Since 1 -β j > ∇ j = 0, we deduce (β l γ li -β j γ ji ) + γ ji + γ li = 0, which implies β l γ li ≤ β j γ ji . We have:

θ ji = β l - γ ji γ li ≤ γ ji γ li β j - γ ji γ li = γ ji γ li (β j -1) < 0.
• If ∇ j > 0: let us prove by contradiction the strict inequality θ ji < ζ ji . Assume we have θ ji ≥ ζ ji . Then, by (Lemma 11) we have:

θ ji = ζ ji .
Let l ∈ W (j, i) be such that θ ji = β l -γ ji γ li . So we have

∇ j = ζ ji = θ ji = β l - γ ji γ li > 0. ( 50 
)
We then have:

1 -β j > ∇ j = β l - γ ji γ li = ζ ji ≥ P (γ ji , β l , γ li , β j ) see (44) = max(β l - γ ji γ li , min( (β l γ li -β j γ ji ) + γ ji + γ li , 1 -β j )).
Therefore:

min( (β l γ li -β j γ ji ) + γ ji + γ li , 1 -β j ) ≤ β l - γ ji γ li < 1 -β j .
This last inequality implies:

(β l γ li -β j γ ji ) + γ ji + γ li ≤ β l - γ ji γ li < 1 -β j .
We put u = γ ji , x = β l , y = γ li , z = β j . By the previous calculations, we have:

• 0 < u < y because l ∈ W (j, i) and β l -

γ ji γ li = ∇ j > 0, • 0 < x - u y = β l - γ ji γ li < 1 -β j = 1 -z.
Applying (Lemma 10), we get:

(xy -uz) + u + y > x - u y .
We replace u, x, y, z with their values. This leads to the following inequality:

(β l γ li -β j γ ji ) + γ ji + γ li > β l - γ ji γ li which contradicts (β l γ li -β j γ ji ) + γ ji + γ li ≤ β l - γ ji γ li .
We have therefore shown the strict inequality θ ji < ζ ij , see (49). Therefore ∇ j ∈ E j .

As a consequence, since we proved that for all j ∈ {1, 2, . . . , m} we have ∇ j ∈ E j , we deduce from (Lemma 1) and (Proposition 5) that ∇ = min E i.e., ∇ ∈ E.

The equality ∇ = min E allows us to prove directly that the set of Chebyshev approximations D β , see (30), always has a minimum element. We also give an approximate solution: Corollary 4. G(β(∇)) is the lowest Chebychev approximation for β. Moreover, ξ = Γ t □ max T P β(∇) is an approximate solution for the system (Σ) : Γ□ min → GG x = β.

Proof. Same proof as (Corollary 3) but using the min -→ GG composition.

By definition of ∇ (Definition 3) and the above corollary, it is clear that: Corollary 5. We have:

∇ = min d∈D ∥β -d∥.
and the set of Chebyshev approximations D β , see (30), is non-empty.

6 Chebyshev distance associated to the second member of systems based on min -→ L composition

In this section, we study the Chebyshev distance ∇, see (Definition 3), associated to the second member of a system of min -→ L fuzzy relational equations (Σ) : Γ□ min → L x = β, see ( 22), where → L is the Łukasiewicz implication, see [START_REF] Li | Chebyshev approximation of inconsistent fuzzy relational equations with max-t composition[END_REF]. To establish the formula for computing the Chebyshev distance ∇, we prove a version of (Lemma 4) (or (Lemma 9)) for the min -→ L system (Lemma 13). In (Lemma 13), we have retained the two notations ∇ j and ζ ji from previous sections with their own definitions for the min -→ L system (but not the notation θ ji , which is not needed). Since Łukasiewicz's implication is continuous with respect to its two variables, establishing the formula for ∇ (Theorem 5), is easier than for min -→ G and min -→ GG systems.

We remind that we have ∇ = max 1≤j≤m ∇ j where ∇ j = inf E j (Proposition 5) and the set E j is defined in (32). Unlike the min -→ G system, we will show that in the case of the min -→ L system (as it is the same for the min -→ GG system), for all j ∈ {1, 2, • • • , m}, we always have ∇ j ∈ E j , i.e., ∇ j is always the minimum element of the set E j . By applying (Lemma 1), we obtain ∇ = min E, where E is defined in (31). Therefore, for a min -→ L system, the Chebyshev distance ∇ is always a minimum, see (Corollary 8). In fact, we can always compute the lowest Chebyshev approximation of the second member and an approximate solution of the system (Σ), see (Corollary 7).

We rely on the following function:

L(u, v, x, y) = max((u -y) + , min((x -v) + , (x -y + u -v) + ) 2 )). (51) 
and we introduce new notations: Notation 5. For 1 ≤ j ≤ m, 1 ≤ i ≤ n, to each coefficient γ ji of the matrix Γ of the system (Σ), see (22), we associate:

ζ ji = max 1≤l≤m L(1 -γ ji , 1 -γ li , β l , β j ).
The function L allows us to solve an inequality: Lemma 12. Let u, v, x, y in [0, 1]. For all δ ∈ [0, 1 -y[, we have the following equivalence:

(x(δ) -v) + ≤ y(δ) -u ⇐⇒ δ ≥ L(u, v, x, y). (52) 
Proof. =⇒:

• We have δ ≥ (u -y) + . Indeed, we deduce from the inequality of the left side of (52) and the hypothesis y + δ < 1 that we have:

0 ≤ y(δ) -u = min(y + δ -u, 1 -u) = y + δ -u, so δ ≥ u -y. As δ ≥ 0, we obtain that δ ≥ (u -y) + . • Let us prove δ ≥ min((x -v) + , (x -y + u -v) + ) 2 ).
The associativity of the function max (i.e, max(x, y, z) = max(max(x, y), z) leads to the equality:

(x(δ) -v) + = (x -δ -v) + . (53) 
Indeed, we have:

(x(δ) -v) + = max(x(δ) -v, 0) = max(x(δ), v) -v = max(max(x -δ, 0), v) -v = max(x -δ, 0, v) -v = max(x -δ -v, -v, 0) = max((x -δ -v) + , -v) = (x -δ -v) +
We then deduce:

(x(δ) -v) + = 0 ⇐⇒ (x -δ -v) + = 0 ⇐⇒ x -δ ≤ v ⇐⇒ x -v ≤ δ ⇐⇒ (x -v) + ≤ δ. (54) 
It is clear that we have:

δ ≥ (x -v) + =⇒ δ ≥ min((x -v) + , (x -y + u -v) + ) 2 ).
Suppose now that δ < (x -v) + . Then by (54), we have:

0 < (x(δ) -v) + = x(δ) -v.
and the hypothesis becomes:

0 < x(δ) -v ≤ y(δ) -u = y + δ -u The inequality x(δ) -v ≤ y(δ) -u = y + δ -u is equivalent to max(x -δ, 0) -v -[y + δ -u] = max(x -y + u -v -2δ, -v -[y + δ -u]) ≤ 0. so x -y + u -v -2δ ≤ 0.
As δ ≥ 0, we also have (x -y + u -v) + ≤ 2δ. Finally, we have:

δ ≥ (x -y + u -v) + 2 ≥ min((x -v) + , (x -y + u -v) + 2 
).

To summarize, we have proven that δ ≥ max((u -y) + , min((

x -v) + , (x -y + u -v) + ) 2 
)) = L(u, v, x, y).

⇐=:

We must show the inequality: (x(δ) -v) + ≤ y(δ) -u. We note that, by hypothesis, we have y(δ) = y + δ < 1.

• Let us show that y(δ) -u = y + δ -u is positive. In fact, we deduce from the hypothesis:

δ ≥ (u -y) + ≥ u -y so y + δ -u ≥ 0. (55) 
• If (x(δ) -v) + = 0, the inequality (x(δ) -v) + ≤ y(δ) -u is clear.

• Suppose that (x(δ) -v) + > 0. We deduce from (53) that:

0 < (x -δ -v) + = x -δ -v so δ < x -v = (x -v) + .
As we suppose that δ ≥ max((u -y) + , min((

x -v) + , (x -y + u -v) + 2 
)), we deduce:

δ ≥ (x -y + u -v) + 2 ≥ x -y + u -v 2 . ( 56 
)
We have: Lemma 14. If τ j < 1 -β j , then τ j ∈ E j , so ∇ j ≤ τ j .

Proof. Let i ∈ {1, 2, . . . , n} be such that τ j = ζ ji . As we suppose that τ j < 1 -β j , we remark that τ j satisfies the condition of the second statement of (Lemma 13). So τ j ∈ E j and then ∇ j = min E j ≤ τ j .

We now give the explicit analytical formula for computing the Chebyshev distance ∇ (see (Definition 3) and (Proposition 5)), associated to the second member β of a system of min -→ L fuzzy relational equations (Σ) : Γ□ min Proof. From (Lemma 2), we know that ∇ j ≤ 1 -β j .

→ L x = β, see (22) 
Let us show the following implication: ∇ j < 1 -β j =⇒ ∇ j = τ j . Indeed, if ∇ j < 1 -β j , as we have ∇ j ∈ E j , applying (Lemma 13), we obtain an index i ∈ {1, 2, . . . , n} such that ∇ j ≥ ζ ji . From the definition of τ j , we deduce:

τ j ≤ ζ ji ≤ ∇ j .
As ∇ j < 1 -β j , we get τ j < 1 -β j . By applying (Lemma 14), we finally obtain ∇ j ≤ τ j , so ∇ j = τ j .

Since the inequality ∇ j ≤ 1 -β j is true (Lemma 2) and using the two implications ∇ j < 1 -β j =⇒ ∇ j = τ j and by (Lemma 14) τ j < 1 -β j =⇒ ∇ j ≤ τ j lead us to obtain the equality ∇ j = min(1 -β j , τ j ).

We illustrate this theorem: We compute:

• max 1≤l≤2 T L (γ l1 , β l ) = max(T L (0.6, 0.1), T L (0.26, 0.4)) = 0,

• max 1≤l≤2 T L (γ l2 , β l ) = max(T L (0.49, 0.1), T L (0.9, 0.4)) = 0.3 and then: 0.6 → L 0 = 0.4 and 0.49 → L 0.3 = 0.81. So the inequality G(β(δ)) 1 ≤ β(δ) 1 is not satisfied for δ = 0.

For solving the inequality, we compute:

• ζ 11 = max(L(1 -0.6, 1 -0.6, 0.1, 0.1), L(1 -0.6, 1 -0.26, 0.4, 0.1)) = 0.3,

• ζ 12 = max(L(1 -0.49, 1 -0.49, 0.1, 0.1), L(1 -0.49, 1 -0.9, 0.4, 0.1)) = 0.41.

We compute τ 1 = min(0.3, 0.41) = 0.3 and ∇ 1 = min(0.9, 0.3) = 0.3.

Then we observe that G(β(∇ 1 )) 1 = min(0.6 → L 0, 0.49 → L 0) = 0.4 ≤ β(∇ 1 ) 1 = 0.4. So the inequality is solved with ∇ 1 = 0.3.

The equality ∇ = min E (Corollary 6) allows us to prove directly that the set of Chebyshev approximations D β , see (30), always has a minimum element. We can also give an approximate solution:

Corollary 7. G(β(∇)) is the lowest Chebychev approximation for β. Moreover, ξ = Γ t □ max T L β(∇) is an approximate solution for the system (Σ) : Γ□ min → L x = β.

Proof. Same proof as for (Corollary 3) but using the min -→ L composition.

By definition of ∇ (Definition 3) and the above corollary, it is clear that: Corollary 8. We have: ∇ = min d∈D ∥β -d∥.

and the set of Chebyshev approximations D β is non-empty.

Conclusion

In this article, we studied the inconsistency of systems of min -→ fuzzy relational equations. We expressed the Chebyshev distance ∇ = inf d∈D ∥β -d∥ associated to an inconsistent system of min -→ fuzzy relational equations Γ□ min → x = β, where D is the set of second members of consistent systems defined with the same matrix Γ, as the lower bound of the solutions of a vector inequality. From this result, we gave explicit analytical formulas for computing the Chebyshev distances for systems of min -→ fuzzy relational equations Γ□ min → x = β, where → is a residual implicator among the Gödel implication, the Goguen implication or Łukasiewicz's implication. An important result is that in the case of the min -→ G system, the Chebyshev distance ∇ may be an infimum while for min -→ GG and min -→ L systems the Chebyshev distance ∇ is always a minimum. For min -→ G systems, we added a sufficient condition for ∇ to be a minimum. For min -→ GG systems, min -→ L systems, or min -→ G systems whose Chebyshev distance has been verified as a minimum, we can always compute the lowest Chebyshev approximation of the second member and an approximate solution. However, for the min -→ G systems whose Chebyshev distance has been verified as not being a minimum, the set of Chebyshev approximations of its second member is empty.

As perspectives, we may study the structure of the approximate solutions set of a system of min -→ fuzzy relational equations Γ□ min → x = β and that of the set of Chebyshev approximations of the second member β with respect to the Chebyshev distance ∇. For a max -min system, the structure of these sets was given in [START_REF] Baaj | Max-min Learning of Approximate Weight Matrices from Fuzzy Data[END_REF]. One of the difficulties encountered is the determination of the set of maximal Chebyshev approximations of the second member β, which may be obtained from the solutions of a particular system of min -→ inequalities (as it is done for a max -min system in [START_REF] Baaj | Max-min Learning of Approximate Weight Matrices from Fuzzy Data[END_REF]). Currently, to our knowledge, there is no extensive study of the solutions set of systems of min -→ inequalities. Similarly to [START_REF] Baaj | Max-min Learning of Approximate Weight Matrices from Fuzzy Data[END_REF], we may also develop a learning method of approximate weight matrices based on min -→ composition according to training data.

As applications, we have the complete solution of the problem of the invertibility of a fuzzy matrix for min -→ composition, where → is the Gödel implication, the Goguen implication or Łukasiewicz's implication: we know the set of matrices which admit a pre-inverse or a post-inverse. In [START_REF] Wu | Analytical method for solving max-min inverse fuzzy relation[END_REF], this problem was tackled in the case of the max -min composition.

  To a column-vector b = [b i ] 1≤i≤n and a number δ ∈ [0, 1], we associate two column-vectors: b(δ) = [(b i -δ) + ] 1≤i≤n and b(δ) = [min(b i + δ, 1)] 1≤i≤n .

∇

  j where for j ∈ {1, 2, . . . , m}, ∇ j = min(1 -β j , τ j ) with τ j = min i∈Aj max(θ ji , ζ ji ) and the convention min ∅ = 1.

∇

  j where for j ∈ {1, 2, . . . , m}, ∇ j = min(1 -β j , τ j ) with τ j = min i∈Aj max(θ ji , ζ ji ) and the convention min ∅ = 1.

:

  Theorem 5. ∇ = max 1≤j≤m ∇ j where for j ∈ {1, 2, . . . , m}, ∇ j = min(1 -β j , τ j ) with τ j = min 1≤i≤n ζ ji .
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 94 Let us reuse the matrix Γ = 0For j = 1, we have:G(β(δ)) 1 = min 1≤i≤2 (γ 1i → L ( max 1≤l≤2 T L (γ li , β(δ) l ))) = min(0.6 → L ( max 1≤l≤2 T L (γ l1 , β(δ) l )), 0.49 → L ( max 1≤l≤2 T L (γ l2 , β(δ) l ))).

We begin by introducing a new function based on the function σ GG , see (19), which was introduced in [START_REF] Baaj | Chebyshev distances associated to the second members of systems of Max-product/Lukasiewicz Fuzzy relational equations[END_REF]:

We have:

We use the following notations: Notation 4. For 1 ≤ j ≤ m, 1 ≤ i ≤ n, to each coefficient γ ji of the matrix Γ of the system (Σ), see ( 22), we associate:

• W (j, i) = {l ∈ {1, 2, . . . , m} | γ ji ≤ γ li and γ li > 0},

• θ ji = max l∈W (j,i) (β l -γ ji γ li ) with the convention max ∅ = 0,

• ζ ji = max 1≤l≤m P (γ ji , β l , γ li , β j ).

The function P , see (43), allows us to solve a particular inequality: Lemma 8. For all u, x, y, z, δ ∈ [0, 1] with u > 0 and δ < 1 -z, we have:

Proof.

We remind that if y > 0, the following equivalence was established in (Proposition 2) of [START_REF] Baaj | Chebyshev distances associated to the second members of systems of Max-product/Lukasiewicz Fuzzy relational equations[END_REF]:

=⇒:

If y = 0, we have P (u, x, y, z) = 0 ≤ δ. If y > 0, from the inequality z(δ) < 1 , we deduce :

So, by (45), we have P (u, x, y, z) = σ GG ( u y , x, 1, z) ≤ δ.

⇐=:

Suppose that P (u, x, y, z) ≤ δ.

• If y = 0, the inequality y x(δ) u ≤ z(δ) is trivial.

• If y > 0, since z(δ) < 1, the inequality to prove is:

As we have P (u, x, y, z

We illustrate this result:

Example 6. Let u = 0.3, x = 0.6, y = 0.4 and z = 0.2. We compute δ := P (0.3, 0.6, 0.4, 0.2) = xy -uz u + y then y x(δ) u = z(δ) so the inequality is satisfied with δ ≃ 0.257.

We establish the following version of (Lemma 4) for the min -→ GG system:

• max 1≤l≤2 γ l1 • β l = max(0.6 • 0.1, 0.26 • 0.4) = 0.10,

• max 1≤l≤2 γ l2 • β l = max(0.49 • 0.1, 0.9 • 0.4) = 0.36 and then: 0.6 → GG 0.10 = 0.16 and 0.49

For solving the inequality, we rely on: W (1, 1) = {1} and W (1, 2) = {1, 2} and we compute:

• ζ 11 = max(P (0.6, 0.1, 0.6, 0.1), P (0.6, 0.4, 0.26, 0.1)) = 0.05,

• ζ 12 = max(P (0.49, 0.1, 0.49, 0.1), P (0.49, 0.4, 0.9, 0.1)) = 0.22.

We compute τ 1 = min(0.05, 0.22) = 0.05 so we have ∇ 1 = min(0.9, 0.05) = 0.05.

Then we observe that G(β(∇ 1 ))

Although for the t-norm product, its associated residual implicator → GG (called Goguen's implication) is not continuous with respect to its two variables, we show in the remainder of this section that the lower bounds ∇ j and ∇ are in fact minimum elements of the sets E j and E respectively, i.e., we have ∇ j ∈ E j and ∇ ∈ E. Recall that, by (Example 5), these properties are not always true for the min -→ G system.

We begin by establishing two useful lemmas to show that we have ∇ j ∈ E j for all j ∈ {1, 2, . . . , m}.

Lemma 10. Let u, x, y, z ∈ [0, 1] satisfy the following two conditions:

Then, we have :

Proof. Since by hypothesis we have x -u y > 0 and u + y > 0, We just have to show the strict inequality xy -uz u + y >

x -u y .

We have:

Lemma 11. We have:

Let us show now the inequality (x(δ) -v) + ≤ y(δ) -u. We have:

because the numbers x -y + u -v -2δ and -v -[y + δ -u] are negative (see ( 55) and ( 56)).

We illustrate this result: Example 8. Let u = 0.3, v = 0.4, x = 0.5, y = 0.2. We have 0.1 = x -v > y -u = -0.1. We compute δ = L(u, v, x, y) = 0.1 then we have δ = 0.1 < 1 -y = 0.8 and the inequality (x(δ) -v) + ≤ y(δ) -u is satisfied.

The version of (Lemma 4) (or (Lemma 9)) for the min -→ L system is: Lemma 13. Let j ∈ {1, 2, . . . , m}. For all δ ∈ [0, 1] such that δ < 1 -β j , there is an equivalence between the following two statements:

There exists i ∈ {1, 2, . . . , n} such that:

Proof.

=⇒:

We have:

The hypothesis implies that we have an index i ∈ {1, 2, . . . , n} such that:

As we suppose that β j + δ < 1, we have β(δ) j = β j + δ < 1, and we deduce:

For all l ∈ {1, 2, . . . , m}, we deduce:

Let us show that ∀l ∈ {1, 2, . . . , m} , δ ≥ L(1 -γ ji , 1 -γ li , β l , β j ). We have for all l ∈ {1, 2, . . . , m}:

With these notations, we can easily check that we have:

The previous inequality is rewritten as:

and we also have δ < 1 -β j = 1 -y.

By applying (Lemma 12), we obtain δ ≥ L(u, v, x, y) = L(1 -γ ji , 1 -γ li , β l , β j ).

We have shown δ

⇐=: Suppose we have an index i ∈ {1, 2, . . . , n} such that:

We have:

Let us show the inequality

which will lead to the inequality to be proved. We have:

We deduce:

To prove (57), it is sufficient to check that ∀l ∈ {1, 2, . . . , m}, min(1 -γ ji + (γ li + β(δ) l -1) + , 1) ≤ β(δ) j .

In fact, we just have to show that for all l ∈ {1, 2, . . . , m}, that we have:

Let l ∈ {1, 2, . . . , m}. By hypothesis, we have:

As δ < 1 -β j , by applying (Lemma 12) with u = 1 -γ ji , v = 1 -γ li , x = β l , y = β j , we obtain:

Therefore:

This last inequality is equivalent to the inequality (58).

We prove that for all j ∈ {1, 2, . . . , m}, the set E j , see (32), admits ∇ j as minimum element: Proposition 9. For all j ∈ {1, 2, . . . , m}, we have ∇ j = min E j i.e., ∇ j ∈ E j .

Proof. For any δ ∈ [0, 1], we have:

Since the functions [0, 1] → [0, 1] : δ → β(δ) l are continuous, we deduce that the function

Since the function δ → β j (δ) is also continuous, by applying general continuity theorems (see Corollary of Theorem 4.8 in [START_REF] Rudin | Principles of mathematical analysis[END_REF]), we deduce that the set E j is a closed (non-empty) set of [0, 1], and then

Corollary 6. We have:

Proof. Consequence of (Proposition 9), (Lemma 1) and (Proposition 5).

For all j ∈ {1, 2, . . . , m}, to establish the formula for computing ∇ j , we put: Notation 6. τ j := min 1≤i≤n ζ ji where ζ ji = max 1≤l≤m L(1 -γ ji , 1 -γ li , β l , β j ) (Notation 5).