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Emergence failure of early epidemics: A mathematical modeling approach
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Epidemic or pathogen emergence is the phenomenon by which a poorly transmissible pathogen finds its evolutionary pathway to become a mutant which can cause an epidemic. Many mathematical models of pathogen emergence rely on branching processes. Here, we discuss pathogen emergence using Markov chains, for a more tractable analysis, generalizing previous work by Kendall and Bartlett about disease invasion. We discuss the probability of emergence failure for early epidemics, when the number of infected individuals is small and the number of the susceptible individuals is virtually unlimited. Our formalism addresses both directly transmitted and vector-borne diseases, in the cases where the original pathogen is 1) one step-mutation away from the epidemic strain, and 2) undergoing a long chain of neutral mutations which does not change the epidemiology. We obtained analytic results for the probabilities of emergence failure, and two features transcending the transmission mechanism. First, the reproduction number of the original pathogen is determinant for the probability of pathogen emergence, more important than the mutation rate or the transmissibility of the emerged pathogen. Second, the probability of mutation within infected individuals must be sufficiently high for the pathogen undergoing neutral mutations to start an epidemic, the mutation threshold depending again on the basic reproduction number of the original pathogen. Finally, we discuss the parameterization of models of pathogen emergence, using SARS-CoV1 as an example of zoonotic emergence, and HIV as an example for the emergence of drug resistance. We also discuss assumptions of our models and implications for epidemiology.

Highlights

• The foundations of modeling disease invasion were laid more than 50 years ago.

• Markov chains provide a unifying framework for both disease invasion and emergence.

• We obtain analytic results for the probability of pathogen emergence.

Introduction

Emerging infectious diseases (EID) are explained by the World Health Organization (WHO) as the diseases whose incidence in humans has increased during the last two decades or which threaten to increase in the near future. The term includes newly-appearing infectious diseases or those spreading to new geographical areas. It also refers to those that were easily controlled by chemotherapy and antibiotics but have developed antimicrobial resistance [START_REF] Who | The world health report -fighting disease, fostering development[END_REF]. New human pathogens causing EID are continuously being discovered [START_REF] Woolhouse | Ecological origins of novel human pathogens[END_REF][START_REF] Mark | Temporal trends in the discovery of human viruses[END_REF], whilst the frequency of EID outbreaks has steadily increased [START_REF] Smith | Global rise in human infectious disease outbreaks[END_REF]. Therefore, EID pose an ever increasing threat [START_REF] Jones | Global trends in emerging infectious diseases[END_REF][START_REF] David | Emerging Infectious Diseases in 2012: 20 Years after the Institute of Medicine Report[END_REF]. Of equal concerns are zoonoses, which could result in new human pathogens [START_REF] William B Karesh | Zoonoses 1 Ecology of zoonoses: natural and unnatural histories[END_REF][START_REF] Thomas P Van Boeckel | Global trends in antimicrobial resistance in animals in low-and middleincome countries[END_REF][START_REF] Carroll | Building a global atlas of zoonotic viruses[END_REF] and thus, EID.

Chances are that EID initiate new epidemics, leading, in the long term, to endemic disease. The typical abstraction is that an epidemic starts with a patient zero [START_REF] Pépin | The origins of AIDS: from patient zero to ground zero[END_REF][START_REF] Divvy K Upadhyay | Ebola US Patient Zero: lessons on misdiagnosis and effective use of electronic health records[END_REF], in a disease-naive community, that is expected to further pass the infection to R 0 other individuals, n.b., R 0 > 1. Then, each newly infected individual is expected to further transmit disease to R 0 other individuals; therefore, cases are expected to increase exponentially. Two possibilities have been identified for how a patient zero might occur.

Firstly, a patient zero may occur as a case of a new disease or an imported case. Over the past two decades, the WHO repeatedly warned against importation of cases of polio, MERS, Zika, etc.: A single imported case can reignite an outbreak or bring cases to a new area, if preparedness measures are weak [12]. Furthermore, the traffic of animals [START_REF] Maureen | Impact of Dog Transport on High-Risk Infectious Diseases[END_REF] contributed to the importation of zoonotic diseases [START_REF] De Diego | The One Health approach for the management of an imported case of rabies in mainland Spain in 2013[END_REF][START_REF] C W Ryan | Public health response to an imported case of canine melioidosis[END_REF][START_REF] Melski | Multistate Outbreak of Monkeypox -Illinois, Indiana, and Wisconsin[END_REF]. Traffic of passengers, live animals and merchandise, altogether, also contributed to the dispersal of disease vectors (e.g., mosquitos, ticks, etc.), which can import disease from respective endemic areas [START_REF] Griffitts | Mosquitoes Transported by Airplanes: Staining Method Used in Determining Their Importation[END_REF][START_REF] Tatem | Global traffic and disease vector dispersal[END_REF]. These epidemiological setups are known under the name of disease invasion. The mathematical foundations to conceptualize disease invasion were laid by Kendall [START_REF] David | On the generalized "birth-and-death" process[END_REF] and Bartlett [20] more than 50 years ago. More recently, Allen et al. [START_REF] Allen | Relations between deterministic and stochastic thresholds for disease extinction in continuous-and discrete-time infectious disease models[END_REF][START_REF] Allen | Extinction thresholds in deterministic and stochastic epidemic models[END_REF] proposed generalizations of the mathematical formalism describing disease invasion. Reference [START_REF] Chowell | Mathematical models to characterize early epidemic growth: A review[END_REF] reviews mathematical models of early epidemics.

Secondly, a patient zero can occur through pathogen evolution, from an individual infected with a disease that is poorly transmitted, so the basic reproduction number is R 0 < 1; we call this individual patient minus one. Evidently, patient minus one cannot trigger a mass-scale epidemic, but, through pathogen evolution, s/he may become a patient zero who can. This phenomenon can arise as the pathogen mutates and adapts within the human host. Thus, the initial pathogen population infecting patient minus one, can be replaced by a mutant pathogen population such that the patient minus one becomes a patient zero, transmitting the mutant pathogen with R 0 > 1. Antia et al. [START_REF] Antia | The role of evolution in the emergence of infectious diseases[END_REF] called this phenomenon pathogen emergence, studied it numerically, and used it to illustrate the emergence of SARS-CoV1 disease, and HIV disease, from wild-type pathogens. Subsequently, pathogen emergence has been thoroughly studied.

Upon analysis of the key biological principles [START_REF] Nathan D Wolfe | Origins of major human infectious diseases[END_REF][START_REF] James O Lloyd-Smith | Nine challenges in modelling the emergence of novel pathogens[END_REF][START_REF] Engering | Pathogen-host-environment interplay and disease emergence[END_REF][START_REF] Stephen S Morse | Zoonoses 3 Prediction and prevention of the next pandemic zoonosis[END_REF][START_REF] Juliet | Viral host jumps: moving toward a predictive framework[END_REF][START_REF] John | Evolutionary ecology of virus emergence[END_REF][START_REF] Brown | Emerging zoonoses and pathogens of public health significance-an overview[END_REF][START_REF] Daniel M Tompkins | Emerging infectious diseases of wildlife: a critical perspective[END_REF], an array of factors has been empirically identified, to justify why some pathogens do emerge, while others do not. This includes the pathogen's host range [START_REF] Woolhouse | Ecological origins of novel human pathogens[END_REF][START_REF] Cleaveland | Diseases of humans and their domestic mammals: Pathogen characteristics, host range and the risk of emergence[END_REF][START_REF] Taylor | Risk factors for human disease emergence[END_REF][START_REF] Mark | Host range and emerging and reemerging pathogens[END_REF][START_REF] Woolhouse | Human viruses: discovery and emergence[END_REF][START_REF] Paul E Turner | Role of evolved host breadth in the initial emergence of an RNA virus[END_REF], host susceptibility [START_REF] Woolhouse | Ecological origins of novel human pathogens[END_REF][START_REF] Mark | Emerging pathogens: The epidemiology and evolution of species jumps[END_REF][START_REF] Yingying | Mammal assemblage composition predicts global patterns in emerging infectious disease risk[END_REF], host-genetic diversity [START_REF] Rodríguez-Nevado | The impact of host genetic diversity on virus evolution and emergence[END_REF][START_REF] Longdon | The evolution and genetics of virus host shifts[END_REF][START_REF] Ekroth | Host genotype and genetic diversity shape the evolution of a novel bacterial infection[END_REF] and species richness [START_REF] Mollentze | Viral zoonotic risk is homogenous among taxonomic orders of mammalian and avian reservoir hosts[END_REF][START_REF] Kreuder | Spillover and pandemic properties of zoonotic viruses with high host plasticity[END_REF], contact patterns in the host population [START_REF] Woolhouse | Ecological origins of novel human pathogens[END_REF][START_REF] Mark | Emerging pathogens: The epidemiology and evolution of species jumps[END_REF][START_REF] Kuiken | Host species barriers to influenza virus infections[END_REF][START_REF] John | Bacteriophages as model organisms for virus emergence research[END_REF][START_REF] Benmayor | Host Mixing and Disease Emergence[END_REF][START_REF] Eric M Fèvre | Animal movements and the spread of infectious diseases[END_REF][START_REF] Meurens | Animal board invited review: Risks of zoonotic disease emergence at the interface of wildlife and livestock systems[END_REF], mechanisms of pathogen adaptation [START_REF] Mark | Emerging pathogens: The epidemiology and evolution of species jumps[END_REF][START_REF] Balasubramanian | Molecular mechanisms and drivers of pathogen emergence[END_REF], pathogen taxonomic classification [START_REF] Cleaveland | Diseases of humans and their domestic mammals: Pathogen characteristics, host range and the risk of emergence[END_REF][START_REF] Taylor | Risk factors for human disease emergence[END_REF], pathogen generation time [START_REF] Cleaveland | Diseases of humans and their domestic mammals: Pathogen characteristics, host range and the risk of emergence[END_REF][START_REF] Taylor | Risk factors for human disease emergence[END_REF] and growth rate [START_REF] John | Bacteriophages as model organisms for virus emergence research[END_REF], pathogen mutation dynamics [START_REF] Cleaveland | Diseases of humans and their domestic mammals: Pathogen characteristics, host range and the risk of emergence[END_REF][START_REF] Taylor | Risk factors for human disease emergence[END_REF][START_REF] Mark | Emerging pathogens: The epidemiology and evolution of species jumps[END_REF][START_REF] John | Bacteriophages as model organisms for virus emergence research[END_REF][START_REF] Parrish | Cross-species virus transmission and the emergence of new epidemic diseases[END_REF], and environmental changes [START_REF] Jones | Global trends in emerging infectious diseases[END_REF][START_REF] Meurens | Animal board invited review: Risks of zoonotic disease emergence at the interface of wildlife and livestock systems[END_REF][START_REF] Jones | Zoonosis emergence linked to agricultural intensification and environmental change[END_REF][START_REF] Estrada-Peña | Effects of environmental change on zoonotic disease risk: an ecological primer[END_REF].

The numerical framework by Antia et al. [START_REF] Antia | The role of evolution in the emergence of infectious diseases[END_REF], based on branching processes, has later been amended to study the impact of biological factors on various aspects of emergence, such as: host-type heterogeneity [START_REF] Yates | How do pathogen evolution and host heterogeneity interact in disease emergence[END_REF][START_REF] Gandon | What limits the evolutionary emergence of pathogens? Philosophical transactions of the Royal Society of London Series B[END_REF], adaptation pathways [START_REF] Gandon | What limits the evolutionary emergence of pathogens? Philosophical transactions of the Royal Society of London Series B[END_REF][START_REF] Alexander | Risk factors for the evolutionary emergence of pathogens[END_REF], spatial heterogeneity [START_REF] Ruben J Kubiak | Insights into the Evolution and Emergence of a Novel Infectious Disease[END_REF], on-going reservoir interactions [START_REF] Reluga | Reservoir interactions and disease emergence[END_REF], host-population viscosity [START_REF] Timothy | Population viscosity suppresses disease emergence by preserving local herd immunity[END_REF], and surveillance conditions [START_REF] Arinaminpathy | Evolution and emergence of novel human infections[END_REF]. Furthermore, complex networks [START_REF] Alexander | Risk factors for the evolutionary emergence of pathogens[END_REF][START_REF] Gabriel E Leventhal | Evolution and emergence of infectious diseases in theoretical and real-world networks[END_REF][START_REF] Eletreby | The effects of evolutionary adaptations on spreading processes in complex networks[END_REF] have been introduced to study host-contact patterns which may favor EID epidemics, modeled as bond percolations within complex networks. The emergence of vector-borne pathogens [START_REF] Simon A Babayan | Predicting reservoir hosts and arthropod vectors from evolutionary signatures in RNA virus genomes[END_REF][START_REF] Swei | Patterns, Drivers, and Challenges of Vector-Borne Disease Emergence[END_REF][START_REF] Alun | Stochasticity and heterogeneity in host-vector models[END_REF] and parasitic zoonoses [START_REF] Polley | Navigating parasite webs and parasite flow: emerging and re-emerging parasitic zoonoses of wildlife origin[END_REF][START_REF] Pfenning-Butterworth | Identifying co-phylogenetic hotspots for zoonotic disease[END_REF] have been dedicated considerably less attention.

The choice of mathematical/numerical framework is very important to solve emergence problems. Kendall [START_REF] David | On the generalized "birth-and-death" process[END_REF] and Bartlett [20] used Markov chains to solve analytically for the probability that an imported case is a patient zero, who initiates an epidemic, or else the transmission process s/he initiates goes extinct. Their results would have been very different should they have used branching processes instead of Markov chains. We say that the extinction of a Markov chain occurs in time; i.e., after an arbitrarily large time interval, the process is extinct. In contrast, the extinction of a branching process occurs in the generation number; after an arbitrarily large number of generations, all subsequent generations have zero individuals. The relationship between time and generation number is complex; individuals ordered by time of infection may not also be ordered by generation number. For a brief illustration, we invoke the Crump-Mode-Jagger continuous-time branching process, corresponding to the SI model of disease invasion [START_REF] Kenny | A general age-dependent branching process[END_REF][START_REF] Jagers | Branching processes with biological applications[END_REF][START_REF] Charles | Stochastic Processes in Epidemiology. HIV/AIDS, Other Infectious Diseases, and Computers[END_REF]. This model has a Markov chain embedding, the so-called Kendall process, whose extinction probability is 1/R 0 [START_REF] David | On the generalized "birth-and-death" process[END_REF]. However, the model also has an embedding consisting of a Bienaymé-Galton-Watson discrete-time branching process, where the distribution of secondary cases is Poisson. The extinction probability p of the branching process verifies p = exp[-R 0 (1 -p)]. It is obvious that p = 1/R 0 is not a solution and, therefore, the probability of extinction of the discrete-time branching process differs from that of the Markov chain.

In this paper, we generalize the work of Kendall [START_REF] David | On the generalized "birth-and-death" process[END_REF] and Bartlett [20] about disease invasion, to include the mathematical principles of pathogen emergence. Our primary focus is the analytic derivation of the probability that a patient minus one fails to initiate an epidemic of a directly-transmitted or vector-borne disease. This probability could be retrieved from data structured as time series of cases resulting from outbreak investigations. Data on the generation of disease transmission requires contact tracing and is more costly to obtain. We discuss our results not only in the language of zoonotic emergence, but also in the language of emergence of drug-resistant pathogens, such as HIV.

Pathogen emergence in the SIR formalism

We start with a population-level model, expressed by ordinary differential equations (ODE), to set up the context of zoonotic emergence from a wild-type strain

dS dt = π -S β I N + β I N -µS, (1) 
dI dt = S β I N -(µ + γ )I -m I , (2) 
dI dt = m I + S β I N -(µ + γ)I, (3) 
dR dt = γ I -µR , (4) 
dR dt = γI -µR. (5) 
S represents the number of susceptible individuals. I and I represent the numbers of infected and infectious individuals with the wild-type and mutant strains, respectively. R and R represent the numbers of individuals recovered from infections with the wild-type and mutant strains, respectively. The symbol N stands for the total population size; i.e., N = S + I + I + R + R. The parameters π and µ are demographic and designate, respectively, the inflow of susceptibles and per-capita disease-unrelated mortality rate. The parameters β and γ characterize the transmissibility and per-capita recovery rate for the disease with the wild type-strain; β and γ are similar, they only refer to the mutant strain. The symbol m stands for the rate at which patient minus one becomes a patient zero, the so-called mutation rate at the population level. It is assumed that, due to their genetic proximity, the wild type and the mutant strains can be considered in relationship of perfect cross immunity. According to the next generation method [START_REF] Van Den Driessche | Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission[END_REF], the basic reproduction number of the above model is the maximum between R 0 = β /(γ + m + µ) and R 0 = β/(γ + µ); n.b., our problem setup assumes R 0 < 1 and R 0 > 1, thus the overall reproduction number of the model is R 0 . We consider eqs. (1)-( 5) at disease invasion, where I , I, R and R are small (i.e., S/N ≈ 1), and the cross-immunity assumption is not strictly needed, because the number of cross infections is negligible. We investigate time scales much less than individual's expected lifetime and neglect µ next to γ. This represents a singular perturbation for the model (1)-( 5), but applies well to the model of disease invasion, where we have R 0 ≈ β /(γ + m ) and R 0 ≈ β/γ, and maintain the requirements R 0 < 1 and R 0 > 1. The model of disease invasion is expressed by two linear ODE

dI dt = β I -γ I -m I , (6) 
dI dt = βI + m I -γI. (7) 
Hence, the model cannot address problems of population extinction. Solutions for the population numbers, with positive initial conditions, are sums of exponentials, and do not reach zero after an arbitrarily large time interval. To address this shortcoming, we introduce a continuous-time Markov chain, with two nonnegative-integer random variables, i (t) and i(t), such that the expectation values of i (t) and i(t) satisfy eqs. ( 6)-(7) (i.e., i (t) = I (t) and i(t) = I(t)). This adds realism to the ODE model of disease invasion and opens the discussion about epidemic extinction. The point processes of the Markov chain and their corresponding rates are listed in the table 1. Indeed, straightforward calculations, using moment closure techniques [START_REF] Bartlett | An Introduction to Stochastic Processes[END_REF][START_REF] Isham | Assessing the variability of stochastic epidemics[END_REF][START_REF] Alun | Estimating variability in models for recurrent epidemics: assessing the use of moment closure techniques[END_REF][START_REF] Whittle | On the use of the normal approximation in the treatment of stochastic processes[END_REF], show that the expectation values of i (t) and i(t) satisfy eqs. ( 6)- [START_REF] William B Karesh | Zoonoses 1 Ecology of zoonoses: natural and unnatural histories[END_REF]. The moment expansion closes exactly at the expectation because all the rates of the Markov chain are linear in the stochastic variables. Furthermore, we note that if β , γ and m vanish, then the Markov chain reduces to the Kendall process [START_REF] David | On the generalized "birth-and-death" process[END_REF].

To obtain the probability that one patient minus one fails to initiate an epidemic, we invoke the Gillespie's exact method [START_REF] Dt Gillespie | Exact stochastic simulation of coupled chemical reactions[END_REF], an algorithm to integrate continuous-time Markov chains, where each run of the algorithm provides a realization of the stochastic model. The Gillespie's algorithm is a repetition of two basic steps. Firstly, using the initial conditions and the model parameters (see table 1), the total rate R = 5 j=1 R j is calculated, and the time to the next process is chosen as an exponential deviate with the total rate R; i.e., ∆t ∼ Exp(R). Secondly, the process j is chosen with probability R j /R to be performed next, and the population variables are changed accordingly. The algorithm repeats from step one, using the current population variables.

Using the Gillespie's algorithm, with one patient minus one as initial condition (i.e., i (0) = 1, i(0) = 0), we obtain the probabilities that the individual participates in each available process after one time step. Because i(0) = 0, only processes 1-3 contribute nonzero rates; their corresponding probabilities to occur as the first process are β /(β +γ +m ), γ /(β + γ + m ), and m /(β + γ + m ). We denote by p 1 the probability that the Markov chain, starting with one patient minus one, goes extinct, and pathogen emergence fails. We rationalize why the Markov chain went extinct.

Extinction occurred because, at the first process: 1) the patient minus one infected another individual who also failed in pathogen emergence, with probability p 2 1 β /(β + γ + m ), or 2) patient minus one recovered, with probability γ /(β + γ + m ), or 3) became a patient zero and the epidemic went extinct, with probability p 1 m /(β + γ + m ). For the probability of stochastic extinction of the SIR model at disease invasion (i.e., the ODE version is Eq. ( 7) with m = 0 and I = 0), Kendall [START_REF] David | On the generalized "birth-and-death" process[END_REF] obtained

p 1 = 1/R 0 if R 0 = β/γ > 1 and p 1 = 1,
otherwise. Hence, using the above-mentioned results, we write a selfconsistent equation for p 1

p 1 = p 2 1 β β + γ + m + γ β + γ + m + p 1 m β + γ + m , ( 8 
)
whose solution is expressed as a function of p 1 and just two ratios of the parameters β , γ and m . For these, we chose R 0 = β /(γ +m ) and m ≡ m /(γ +m ), where m is interpreted as the expected number of opportunities patient minus one has to become a patient zero, during his/her entire infectious period. Equation ( 8) is quadratic in p 1 and has a unique subunitary solution, which can be written as

p 1 (R 0 , m ; p 1 ) = 1 + R -1 0 2   1 -1 - 1 -m (1 -p 1 ) R 0 1+R -1 0 2 2    ≡ F µ (p 1 ), (9) 
where we introduced the function F µ (•), depending on a set of two parameters µ ≡ (R 0 , m ).

In figure 1, we compare the output of equation ( 9) (continuous lines) with results from the brute-force integration of the Markov chain described in table 1 (points with error bars). Particularly, we integrate the Markov chain repeatedly, using the Gillespie algorithm, and starting with one patient minus one as initial condition; i.e., i (0) = 1, i(0) = 0. We stop the integration at time t, if i (t)+i(t) = 0 or i(t) > 10, 000, under the assumption that, once i(t) reaches 10,000, further extinction is highly improbable. We use the fraction of times when the population went extinct (i.e., i (t) + i(t) = 0) as an estimate of the extinction probability of the Markov chain starting with a single patient minus one. Furthermore, to obtain the error bars, we calculate the 95% confidence interval of each probability of extinction estimate, using binomial statistics.

The black plot refers to m = 0.1, the blue plot to m = 0.001, and the red plot to m = 0.00001. The horizontal axis represents R 0 , which goes from 0 to 1 and R 0 = 2. With this input, we chose the following parameters for the Markov chain:

β = 1, m = β m /R 0 , γ = β /R 0 -m , β = 1 and γ = 0.5.
The number of repeat integrations are, respectively 1000, 100,000, and 10,000,000, such that error bars are clearly discernible in the linearlogarithmic scale. Overall, there is good agreement between the colored lines and the corresponding error bars. Furthermore, increasing the number of repeat integrations by a factor of 10 (results not shown), the error bars decrease considerably in height and the agreement is much improved.

Note that, with decreasing mutation rate, the probability curve develops a hyperbolic trend in the vicinity of R 0 . This is confirmed by analytic results. Assuming that the mutation rate of the pathogen is low, p 1 depends weakly on the variable m , and the first order series expansion in m yields

p 1 (R 0 , m ; p 1 ) ≈ 1 - m (1 -p 1 ) 1 -R 0 . (10) 
Hence, as R 0 approaches 1 from below, R 0 becomes the most important parameter determining changes in the probability of emergence. Previous numerical works [START_REF] Antia | The role of evolution in the emergence of infectious diseases[END_REF][START_REF] Ruben J Kubiak | Insights into the Evolution and Emergence of a Novel Infectious Disease[END_REF][START_REF] Arinaminpathy | Evolution and emergence of novel human infections[END_REF] support a similar parameter classification. It is important to note that Eq. ( 10) is just an asymptotic form and, judging Eq. ( 9), the singularity in the denominator is only apparent. Finally, note that R 0 = 0 yields a simple formula

p 1 (0, m ; p 1 ) = 1 -m (1 -p 1 ), (11) 
which can be read as follows. The probability of emergence (1 -p 1 ) equals the probability of acquiring the mutant strain m times the probability patient zero triggers an epidemic (1 -p 1 ).

The case of n-step mutation

A meaningful and straightforward generalization of the above problem is where the relevant mutation occurs in a sequence of n steps [START_REF] Antia | The role of evolution in the emergence of infectious diseases[END_REF][START_REF] Ruben J Kubiak | Insights into the Evolution and Emergence of a Novel Infectious Disease[END_REF][START_REF] Arinaminpathy | Evolution and emergence of novel human infections[END_REF]. Tracking the dynamics of all the pathogen-subpopulations involved in the mutation sequence, the single mutation model ( 6)-( 7) becomes

dI (n) dt = β (n) I (n) -γ (n) I (n) -m (n) I (n) , (12) 
dI (n-1) dt = β (n-1) I (n-1) -γ (n-1) I (n-1) + m (n) I (n) -m (n-1) I (n-1) , (13) 
. . .

dI dt = βI -γI + m I . ( 14 
)
We assume that the initial, wild-type pathogen, with R

(n) 0 ≡ β (n) /(γ (n) + m (n) ) < 1, undergoes n successive step-mutations. The first n -1 mutated pathogens have R (k) 0 ≡ β (k) /(γ (k) + m (k) ) < 1; k = n -1, n -2, ..., 1.
Lastly, the nth mutation yields a stable pathogen; i.e., m (0) ≡ m = 0, β (0) ≡ β, γ (0) ≡ γ and R (0) 0 ≡ R 0 = β/γ > 1. Furthermore, the Markov chain described in table 1 can be straightforwardly generalized to include all the populations infected with mutant pathogens described by the eqs. ( 12)- [START_REF] De Diego | The One Health approach for the management of an imported case of rabies in mainland Spain in 2013[END_REF]. The equations for the extinction probability of the generalized Markov chain, starting with one patient minus n, p

(n) 1 , are p (n) 1 = p (n) 1 2 β (n) β (n) + γ (n) + m (n) + γ (n) β (n) + γ (n) + m (n) + p (n-1) 1 m (n) β (n) + γ (n) + m (n) , (15) p 
(n-1) 1 = p (n-1) 1 2 β (n-1) β (n-1) + γ (n-1) + m (n-1) + γ (n-1) β (n-1) + γ (n-1) + m (n-1) + p (n-2) 1 m (n-1) β (n-1) + γ (n-1) + m (n-1) , (16) 
. . .

p 1 = p 2 1 β β + γ + γ β + γ . ( 17 
)
Equation (n -k + 1) in the above system of n + 1 equations is quadratic in p

(k)
1 and can be solved analytically. Assuming the parameterization provided by R

(k) 0 = β (k) /(m (k) + γ (k) ) and m (k) ≡ m (k) /(m (k) + γ (k)
), we denote the solution for p 

p (n) 1 = F (n) µ F (n-1) µ ... F µ p 1 ... , (18) 
where p 1 = 1/R 0 = γ/β. Equation ( 18) has many parameters and potential to describe a variety of biological setups. We formalize a simple problem, with reduced number of parameters, that may be relevant for further qualitative understanding of the evolutionary path to pathogen emergence. We consider the case where, once imported within host, the wild-type pathogen (i.e., strain n) finds itself in unstable evolutionary equilibrium. Most mutations are neutral, not changing R (k) 0 or m (k) , and non-neutral mutations occur very rarely. We investigate the probability that pathogen emergence fails during an arbitrary long chain of neutral mutations. For this, we interpret Eq. ( 18) as a backward iteration of n steps along the neutral mutation chain, where pathogen parameters stay the same: R

(k) 0 = R 0 = β /(γ + m ) < 1 and m (k) = m < 1, ∀k = 1, ..., n.
We write a one-dimensional, discrete dynamical system or map [START_REF] Devaney | An Introduction to Chaotic Dynamical Systems[END_REF] for the probability of extinction in the unit interval [0, 1]

p (k+1) 1 = F µ (p (k) 1 ), (19) 
where the explicit form of F µ (•) can be read from eq. ( 9). Going backwards in the mutation chain, the unstable equilibrium appears as a stable equilibrium or fixed point. The map F µ (•) has two fixed points. First, p1 = 1 is a fixed point for all the parameter space, with the stability condition

∂F µ ∂p 1 p1 =1 = m 1 -R 0 < 1 ⇔ β γ < 1. ( 20 
)
If p1 is stable, then orbits with initial conditions around p1 will be attracted to p1 and pathogen extinction is likely. If p1 is unstable, then orbits with initial conditions around p1 , except p1 , will wonder away from p1 and pathogen extinction is unlikely.

The second fixed point of F µ (•) is p1 = (1m )/R 0 , and acquires biological and probabilistic interpretation as the first fixed point becomes unstable; i.e.,

p1 = (1 -m )/R 0 < 1 ⇔ β γ > 1 (21)
The biological interpretation is that each strain in the mutation chain, except the stable one, has R 0 < 1. They guaranteedly go extinct. However, if they replicate and mutate fast enough [i.e., with mutation rate m > (1 -R 0 )], then they have the chance (1 -p1 ) to advance along the mutation chain before going extinct. The neutral-mutation dynamic remains stable if and only if

dF µ dp 1 p1 =γ /β = m 2m + R 0 -1 < 1 ⇔ β γ > 1, (22) 
which is satisfied owing to Eq. ( 21). This fixed point structure is reminiscent of a transcritical bifurcation. Indeed, figure 2 shows two graphs of F µ (p (k) 1 ), for two different parameter sets, suggesting that F µ (p (k) 1 ) undergoes a transcritical bifurcation. By the transcritical bifurcation theorem [START_REF] Whitley | Discrete dynamical systems in dimensions one and two[END_REF], a map G µ (•), depending on one variable and having one parameter µ, undergoes a transcritical bifurcation at (p * 1 , µ * ), if and only if

G µ (p * 1 ) = p * 1 , (23) 
λ(µ * ) = 1, where λ(µ) ≡ ∂G µ (p (k) 1 ) ∂p (k) 1 p (k) 1 =p * 1 , (24) 
dλ(µ) dµ µ=µ * = 0, ∂ 2 G µ * (p (k) 1 ) ∂ 2 p (k) 1 p (k) 1 =p * 1 = 0. ( 25 
)
Redefining the parameter set

µ = (R 0 , m h ) → R 0 , λ ≡ m h 1 -R 0 , (26) 
and choosing λ for the bifurcation parameter, the map F µ (•) ≡ F λ (•) satisfies the conditions ( 23) and ( 24) for having a transcritical bifurcation at (p * 1 , λ * ) = (1, 1); the conditions (25) check out numerically.

This setup can offer qualitative understanding for the within-host dynamics of diseases where each pathogen strain undergoes frequent neutral mutations (e.g., HIV), has R 0 < 1, and necessarily goes extinct within each patient. However, the entire mixed-pathogen population can persist within the host and is further transmitted to other individuals, with a basic reproduction number R0 > 1. Using the results of Kendall [START_REF] David | On the generalized "birth-and-death" process[END_REF], the second fixed point p1 can be formally interpreted as the probability of epidemic extinction for a fictitious pathogen (i.e., all pathogen strains together considered as a single strain) with R0 = 1/p 1 > 1, which does not undergo neutral mutation.

Pathogen emergence for vector-borne diseases

Understanding epidemic extinction and emergence for diseases like Chikungunya, dengue and malaria requires mathematical models describing vector-borne transmission. Among others, Bartlett [START_REF] Bartlett | The relevance of stochastic models for large-scale epidemiological phenomena[END_REF], Griffiths [START_REF] Griffiths | A bivariate birth-death process which approximates to the spread of a disease involving a vector[END_REF] and Lloyd [START_REF] Alun | Stochasticity and heterogeneity in host-vector models[END_REF] addressed epidemic extinction using stochastic models of vector-borne, disease invasion. The probability of extinction was obtained analytically, function of the model parameters, where transmission starts from any number of patients zero and vectors zero. Notably, if transmission starts from one patient zero and one vector zero, then the probability of epidemic extinction is 1/R 0 [START_REF] Bartlett | The relevance of stochastic models for large-scale epidemiological phenomena[END_REF][START_REF] Griffiths | A bivariate birth-death process which approximates to the spread of a disease involving a vector[END_REF]. In contrast to the R 0 recipe by Van den Driessche and Watmough [START_REF] Van Den Driessche | Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission[END_REF], here we say that R 0 describes the vector-borne transmission from host to host, just like direct transmission, ignoring the details of transmission from host to vector or vector to host. Hence, our R 0 is the square of that proposed by Van den Driessche and Watmough [START_REF] Van Den Driessche | Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission[END_REF].

The spread of emergent vector-borne diseases has been studied using deterministic models, alone. The most popular problem has been, by a large margin, the epidemiology of malarial drug resistance [START_REF] Mackinnon | Drug resistance models for malaria[END_REF]81]. Here, as well, we start with an ODE framework to setup the epidemiological context. We propose an SI/SIR-structure for the vector/host population compartments, where the variables and parameters carry, respectively, the subscripts v and h. Following previous studies, we assume that pathogen mutation occurs only within hosts, and vectors do not recover from infection

dS h dt = π h -S h β v I v N v + β v I v N v -µ h S h , (27) 
dI h dt = S h β v I v N v -(µ h + γ h )I h -m h I h , (28) 
dI h dt = m h I h + S h β v I v N v -(µ h + γ h )I h , (29) 
dR h dt = γ h I h -µ h R h , (30) 
dR h dt = γ h I h -µ h R h , (31) 
dS v dt = π v -S v β h I h N h + β h I h N h -µ v S v , (32) 
dI v dt = S v β h I h N h -(µ v + γ v )I v , (33) 
dI v dt = S v β h I h N h -(µ v + γ v )I v . (34) 
The parameter definitions are the same as for the model ( 1)-( 5); however, they refer to hosts or vectors, depending on the subscript. The exceptions are the subscripts of β and β , which indicate that the disease transmissibility is from vectors to humans (i.e., subscript v) and humans to vectors (i.e., subscript h), respectively. Neglecting the per-host natural-mortality rate, we obtain

R 0 = β v β h (µ h + γ h + m h )(µ v + γ v ) ≈ β v β h (γ h + m h )(µ v + γ v ) , (35) 
for modeling the transmission of the wild type strain alone (i.e., the model consists of equations ( 27), ( 28), ( 30), ( 27), [START_REF] Stephen S Morse | Zoonoses 3 Prediction and prevention of the next pandemic zoonosis[END_REF], where m h = 0, I h = 0 and I v = 0) and

R 0 = β v β h (µ h + γ h )(µ v + γ v ) ≈ β v β h γ h (µ v + γ v ) , (36) 
for modeling the transmission of the mutant strain alone (i.e., the model consists of equations ( 27), ( 29), ( 31), ( 27), [START_REF] Juliet | Viral host jumps: moving toward a predictive framework[END_REF], where m h = 0, I h = 0 and I v = 0). Just like before, we assume R 0 < 1 and R 0 > 1.

We rewrite the model ( 27)-( 34) at disease invasion, where S h,v ≈ N h,v , and neglect the host demographic dynamics. We also introduce the parameter N ≡ π v µ h /(π h µ v ), estimating N v /N h , the number of vectors per capita, at the demographic equilibrium in absence of disease. We therefore obtain

dI h dt = (β v /N)I v -γ h I h -m h I h , (37) 
dI h dt = m h I h + (β v /N)I v -γ h I h , (38) 
dI v dt = (Nβ h )I h -(µ v + γ v )I v , (39) 
dI v dt = (Nβ h )I h -(µ v + γ v )I v . (40) 
Just like before, a continuous-time Markov chain can be naturally defined, such that the biological processes described in eqs. ( 37)-( 40) are represented as point processes; see table 2. Each stochastic variable in the Markov chain corresponds to an ODE variable in eqs. ( 37)- [START_REF] Rodríguez-Nevado | The impact of host genetic diversity on virus evolution and emergence[END_REF]. In fact, it can be checked straightforwardly that the moment expansion of the Markov chain variables closes at the expectation, and leads to eqs. ( 37)- [START_REF] Rodríguez-Nevado | The impact of host genetic diversity on virus evolution and emergence[END_REF], where

i h = I h , i h = I h , i v = I v , i v = I v . (41) 
The extinction probability of the Markov chain represents the probability of emergence failure of the wild-type strain. However, if only the mutant strain circulates, then this represents the probability of epidemic extinction. Assuming that the epidemic started with j patients zero and k vectors zero, previous results [START_REF] Bartlett | The relevance of stochastic models for large-scale epidemiological phenomena[END_REF][START_REF] Griffiths | A bivariate birth-death process which approximates to the spread of a disease involving a vector[END_REF] yield

p jk = γ h β v /N j µ v + γ v Nβ h k β v /N + (γ v + µ v ) Nβ h + γ h j-k . (42) 
It is interesting to note that p jk can be written as p jk = (p 10 ) j (p 01 ) k . The factorization is intuitive since we model disease invasion, where the number of susceptibles is virtually infinite, and the transmission chains are independent. In the rest of this section, we obtain an analytic formula for p jk , the probability of emergence failure for the wild-type strain. We adapt ideas from Sec. 2. We integrate the Markov chain in table 2 for one time step, using the Gillespie's algorithm. The initial condition is one patient minus one (i.e., i h (0) = 1, i h (0) = 0, i v (0) = 0, i v (0) = 0). Only processes 2, 3, and 6 have non-zero rates at t = 0. The probabilities that they occur as the first process are, respectively, γ h /(Nβ h + γ h + m h ), m h /(Nβ h + γ h + m h ) and Nβ h /(Nβ h + γ h + m h ). We now formulate an equation for p 10 based on the processes where patient minus one participates

p 10 = γ h Nβ h + γ h + m h + p 10 m h Nβ h + γ h + m h + p 11 (Nβ h ) Nβ h + γ h + m h . (43) 
The Eq. ( 43) can be read as follows. Extinction of transmission starting from one patient minus one occurs because 1) the patient recovers with probability γ h /(Nβ h + γ h + m h ), or 2) the patient minus one becomes a patient zero with probability m h /(Nβ h + γ h + m h ), and forward transmission from the patient zero goes extinct with probability p 10 , or 3) the patient minus one infects a vector, with probability (Nβ h )/(Nβ h + γ h + m h ), and forward transmission from the patient minus one and the vector minus one goes extinct with probability p 11 = p 10 p 01 . The unknowns in Eq. ( 43) are p 10 and p 11 = p 10 p 01 , so the equation is not sufficient. We now integrate the Markov chain for one time step, where the initial condition is one vector minus one (i.e., i h (0) = 0, i h (0) = 0, i v (0) = 1, i v (0) = 0). In this case, only processes 1 and 7 have non-zero rates at t = 0. They occur as the first process in the Markov chain with the respective probabilities (

β v /N)/(β v /N+γ v +µ v ) and (γ v +µ v )/(β v /N+γ v +µ v ).
We now obtain the following equation for p 01

p 01 = p 11 β v /N β v /N + γ v + µ v + γ v + µ v β v /N + γ v + µ v . ( 44 
)
The failure of transmission from one vector minus one is accounted as follows: the vector either 1) infects a host, with probability (Nβ h )/(Nβ h + γ v + µ v ), and forward transmission from the vector minus one and the patient minus one goes extinct with probability p 11 or 2) dies, with probability (γ v + µ v )/(Nβ h + γ v + µ v ). Equations ( 43) and ( 44) form a selfconsistent system with two unknowns, which can be solved analytically. We multiply eqs. ( 43) and ( 44) for an equation quadratic in p 11

p 11 = 1 -(1 -p 10 )m h 1 + R 0h + p 11 R 0h 1 + R 0h 1 1 + R 0v + p 11 R 0v 1 + R 0v , (45) 
where we changed notation to reduce the number of parameters (n.b.,

R 0h R 0v = R 0 ) R 0h ≡ Nβ h γ h + m h , R 0v ≡ β v /N γ v + µ v , m h ≡ m h γ h + m h . ( 46 
)
We discard the solution p 11 = 1, which occurs only when p 10 = 1. In fact, since R 0 < 1, Eq. ( 45) has a unique solution to be interpreted as a probability

p 11 = 1 + R 0 2R 0 + m h (1 -p 10 ) 2R 0h - 1 + R 0 2R 0 + m h (1 -p 10 ) 2R 0h 2 - 1 -m h (1 -p 10 ) R 0 . ( 47 
)
Considering that the mutation rate m h is small, first order calculations yield

p 11 ≈ 1 -(1 + R 0v ) m h (1 -p 10 ) 1 -R 0 , (48) 
showing that, just like in the case of direct transmission, the key parameter driving the probability of emergence failure is the basic reproduction ratio of the wild type strain, R 0 . The probabilities p 10 and p 01 can be immediately obtained from substituting p 11 in eqs. ( 43)- [START_REF] Kreuder | Spillover and pandemic properties of zoonotic viruses with high host plasticity[END_REF]. For example, p 10 can be written as

p 10 (R 0h , m h ; p 10 ) = [(1 -m h ) + p 10 m h + p 11 R 0h ]/(R 0h + 1). ( 49 
)
We illustrate the agreement between values of p 10 provided by the above equation (continuous lines) and brute-force, repeat integration of the Markov chain in table 2 (points with error bars); see fig. 3. The integration of the Markov chain starts with the initial condition of one patient minus one (i.e., i h (0) = 1, i h (0) = 0, i v (0) = 0, i v (0) = 0) and terminates when i h (t)+i h (t)+i v (t)+i v (t) = 0 or i h (t) > 10, 000. The fraction of times that the population went extinct (i.e., i h (t) + i h (t) + i v (t) + i v (t) = 0) estimates the extinction probability of the Markov chain. The error bars estimate the 95% confidence interval of the probability of extinction.

Just like in fig. 1, the black plot refers to m = 0.1, the blue plot to m = 0.001, and the red plot to m = 0.00001. The horizontal axis represents R 0 , going from 0 to 1, and we choose p 10 = 0.5. With this input, our choice of parameters for the Markov chain is:

β v = 1, N = 1, m = m / R 0 , γ h = 1/ R 0 -m , β v = 1, γ h = 1/3, β h = 1, µ v + γ v = 1/ R 0 , β h = 1, µ v + γ v = 1.
The number of repeat integrations are, respectively 1000, 100,000, and 10,000,000. Overall, there is good agreement between the colored lines and the corresponding error bars.

The probability of emergence failure when the transmission process starts with j patients minus one and k vectors minus one is then given by p jk = (p 10 ) j (p 01 ) k . Finally, note that β v = 0 yields

p 10 (0, m h ; p 10 ) = 1 -m h (1 -p 10 ), (50) 
which is similar to Eq. ( 11).

The case of n-step mutation

Just like for the case of direct transmission (see section 2.1), we investigate the probability that pathogen emergence fails during an arbitrary long chain of neutral mutations. We assume that mutations occur only within hosts, yet the pathogen may be transmitted to, or be acquired from vectors, at any step in the mutation sequence, without consequences for the genetic dynamics.

The one-dimensional map that gives p (k+1) 10

versus p (k) 10 results from combining eqs. ( 47) and ( 49)

p (k+1) 10 = 1 -m h (1 -p (k) 10 ) R 0h + 1 + R 0h R 0h + 1 1 + R 0 2R 0 + m h (1 -p (k) 10 ) 2R 0h - 1 + R 0 2R 0 + m h (1 -p (k) 10 ) 2R 0h 2 - 1 -m h (1 -p (k) 10 ) R 0      ≡ f µ (p (k) 10 ). (51) 
The map f µ (•) depends on a set of three parameters µ ≡ (R 0h , R 0 , m h ) and has a fixed point at p10 = 1, for all parameter values. If

∂f µ (p (k) 10 ) ∂p (k) 10 p10 =1 = m h (1 -R 0 ) < 1, (52) 
then p10 = 1 is stable and extinction is likely. Figure 4 shows two graphs of f µ (p

(k) 10 
), for two different parameter sets, suggesting that f µ (p (k) 10 ) undergoes a transcritical bifurcation. Redefining the parameter set

µ = (R 0h , R 0 , m h ) → R 0h , R 0 , λ ≡ m h (1 -R 0 ) , (53) 
and choosing λ, the third parameter in the set, as the bifurcation parameter, the map f µ (•) ≡ f λ (•) satisfies the conditions for having a transcritical bifurcation at (p * 10 , λ * ) = (1, 1) [START_REF] Whitley | Discrete dynamical systems in dimensions one and two[END_REF].

The existence of the transcritical bifurcation has important implications for the fixed point dynamics. With increasing the mutation rate above the threshold (1 -R 0 ) (i.e., m h > (1 -R 0 ) or λ > 1), p10 = 1 becomes unstable and a second fixed point p10 < 1 becomes stable. The neutral mutation chain can survive extinction because the pathogen replicates and mutates fast enough, a mechanism similar to that identified for directly transmitted pathogens. In contrast, if the mutation rate is below the threshold (1 -R 0 ) (i.e., m h < (1 -R 0 ) or λ < 1), then p10 is stable and extinction occurs with probability 1.

On the parameterization of models of pathogen emergence

The diverse and broad challenges in modeling the emergence of novel pathogens are discussed in ref. [START_REF] Glennon | Challenges in modeling the emergence of novel pathogens[END_REF]. Here, we address the challenges in parameterizing simple Markov chain models using existing data. For the case of the zoonotic emergence of SARS-CoV1, the basic reproduction number of the wild-type pathogen R 0 [START_REF] Breban | Interhuman transmissibility of middle east respiratory syndrome coronavirus: estimation of pandemic risk[END_REF][START_REF] Kwok | Epidemic models of contact tracing: Systematic review of transmission studies of severe acute respiratory syndrome and middle east respiratory syndrome[END_REF], and that of the emerged pathogen R 0 [START_REF] Kwok | Epidemic models of contact tracing: Systematic review of transmission studies of severe acute respiratory syndrome and middle east respiratory syndrome[END_REF] have been estimated, but not the mutation rate m . It is perhaps reasonable to assume that the mutations required for the emergence of SARS-CoV1 occurred just a few times, sufficient for the emerging SARS-CoV1 to cause a pandemic. For a reliable estimate of the mutation rate m , many more mutation challenges should be documented, to reduce the uncertainty in the central estimate of m . In turn, this would allow for the estimation of p 1 , the probability of SARS-CoV1 to emerge. For other zoonoses such as MERS-CoV and monkeypox, epidemiological data lacks even more. Subthreshold transmission of MERS-CoV [START_REF] Breban | Interhuman transmissibility of middle east respiratory syndrome coronavirus: estimation of pandemic risk[END_REF][START_REF] Kwok | Epidemic models of contact tracing: Systematic review of transmission studies of severe acute respiratory syndrome and middle east respiratory syndrome[END_REF] and monkeypox [START_REF] Blumberg | Inference of r(0) and transmission heterogeneity from the size distribution of stuttering chains[END_REF] has been quantified. However, these zoonoses did not emerge as pandemics, so far, and data about the transmissibility of the emerged pathogen are missing. In the case of SARS-CoV2, the basic reproduction number of the wild-type pathogen in the human population was larger than 1 (i.e., R 0 > 1), to begin with [START_REF] Li | Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus-Infected Pneumonia[END_REF]. Therefore, SARS-CoV2 caused a pandemic among humans directly, without undergoing emergence.

Gathering all required parameters to model emergence of drug resistance seems difficult, as well, but the difficulties are of different nature. It is broadly accepted that effective therapy can reduce the infectiousness of patients. Therefore, the transmission potential of a patient can decrease from R 0 > 1, the basic reproduction number of the running epidemic, to R < 1, the effective reproduction number of the epidemic of the treated disease. However, data lacks to quantify this effect across infectious diseases. The only exception may be the HIV disease, for which it has been documented that virally suppressed individuals, undergoing HIV therapy, do not transmit HIV [START_REF] Supervie | Brief report: Per sex-act risk of hiv transmission under antiretroviral treatment: A data-driven approach[END_REF]; i.e., R = 0. Still, individuals may lose their state of viral suppression and, subsequently, develop virologic failure [START_REF] Mccluskey | Management of Virologic Failure and HIV Drug Resistance[END_REF][START_REF] Dana S Clutter | HIV-1 drug resistance and resistance testing[END_REF]. Recent figures show that, in many settings, the rate of virologic failure is less than 10% [START_REF] Cesar | Incidence of virological failure and major regimen change of initial combination antiretroviral therapy in the Latin America and the Caribbean: An observational cohort study[END_REF][START_REF] Delaugerre | Signif-icant reduction in HIV virologic failure during a 15-year period in a setting with free healthcare access[END_REF][START_REF] Jemma | Durability of viral suppression with first-line antiretroviral therapy in patients with HIV in the UK: an observational cohort study[END_REF], answering the 90-90-90 WHO/UNAIDS targets. Hence, virologic failure is considered a rare event in HIV therapy [START_REF] Mccluskey | Management of Virologic Failure and HIV Drug Resistance[END_REF]. Furthermore, it is reasonable to assume that, with relentless efforts to optimize the HIV therapy, virologic failure will become even rarer [START_REF] Delaugerre | Signif-icant reduction in HIV virologic failure during a 15-year period in a setting with free healthcare access[END_REF][START_REF] Yang | Successful virologic outcomes over time among HAART-treated HIV-infected patients[END_REF].

More than 70-80% of HIV patients developing virologic failure, also acquire drugresistant HIV [START_REF] Dana S Clutter | HIV-1 drug resistance and resistance testing[END_REF]. WHO surveys show that the prevalence of acquired drug resistance, among people receiving ART in various settings, is 3-29% [START_REF] Who | HIV DRUG RESISTANCE REPORT[END_REF]; the total HIV mutation rate depends on the setting and decreases slowly with time. The database of the International Antiviral Society lists 171 clinically relevant, single mutations of HIV, associated with HIV drugs in 5 therapeutic classes [START_REF] Wensing | update of the drug resistance mutations in HIV-1[END_REF]. However, typical drug-resistant HIV contains several mutations, and the total number of relevant strains is much more than 171. Indeed, HIV has ample possibilities for evolution under drug pressure. To document HIV emergence, we have to stratify the total mutation rate by drug-resistant strain and identify the strains transmitted with R > 1. This requires much data, because HIV has many mutations relevant to treatment and the mutation rates are expected to be low. Instead, analyses often grouped drug resistant HIV strains by resistance to the drug classes [START_REF] Mccluskey | Management of Virologic Failure and HIV Drug Resistance[END_REF][START_REF] Dana S Clutter | HIV-1 drug resistance and resistance testing[END_REF][START_REF] Quang | Global burden of transmitted HIV drug resistance and HIV-exposure categories: a systematic review and meta-analysis[END_REF].

There is ample evidence that acquired drug resistant HIV can be transmitted forward to others. In particular, the phrase transmitted HIV drug resistance refers to therapynaïve individuals undergoing primary infection due to drug resistant HIV. The prevalence of transmitted drug resistance by standard genotypic resistance testing is about 12-24% in the U.S., 5-10% in Europe, Latin America, and high-income Asian countries, and less than 5% for most of the sub-Saharan Africa and South/Southeast Asia [START_REF] Dana S Clutter | HIV-1 drug resistance and resistance testing[END_REF]. In principle, an individual harboring drug resistant HIV, not being virally suppressed because of this, can transmit HIV in two different circumstances. First, the individual undergoes HIV therapy and thus the drug-resistant strains have a higher within-host fitness than the fully-susceptible strains, which remain suppressed. The individual can pass drug resistant HIV to others, unless the virological failure is detected and resistance tests are performed. Subsequently, changing the HIV regimen to the next line will likely bring the individual back to viral suppression, so s/he no longer transmits HIV. Second, the individual does not undergo HIV therapy. In this case, the drug resistant strains have a lower within-host fitness than the fully-susceptible strains. It is thus only matter of time, typically, several years, that HIV gradually loses its drug-resistant mutations and reverts to wild type [START_REF] Dana S Clutter | HIV-1 drug resistance and resistance testing[END_REF]. Hence, the individual can pass drug resistant HIV to others for only a window of time.

The epidemiological dynamics of HIV drug resistance have often been modeled mathematically. However, only on rare occasions drug resistance has been stratified [START_REF] Robert | Evolutionary dynamics of complex networks of HIV drug-resistant strains: the case of San Francisco[END_REF][START_REF] Brooke E Nichols | Averted HIV infections due to expanded antiretroviral treatment eligibility offsets risk of transmitted drug resistance: a modeling study[END_REF], for a glimpse into how the competition for emergence of drug-resistant HIV takes place. To the best of our knowledge, drug resistance dynamics have never been fully stratified by mutation strain in a mathematical model of the HIV epidemic. Rather, they have been stratified by drug-resistance class and a spectrum of effective reproduction numbers has been calculated as a function of the resistance class [START_REF] Robert | Evolutionary dynamics of complex networks of HIV drug-resistant strains: the case of San Francisco[END_REF]. However, the notion of strain representative for an entire drug class may be ill-defined and find no justification in the biology of pathogen emergence. The proper modeling exercise would need to stratify the epidemic dynamics over all relevant mutations. In the case of HIV, this yields a very large epidemic model, difficult to parameterize.

Discussion

Understanding the mechanisms by which pathogens emerge to establish widespread epidemics remains a fundamental question in epidemiology. Broadly speaking, we distinguish zoonotic emergence and emergence of drug resistance. EID can be initiated by poorly adapted pathogens, whose transmission takes places with R 0 (or R ) less than 1. However, the pathogens can break the evolutionary barrier and mutate to be transmitted with R 0 (or R) larger than 1, and eventually lead to endemic disease; e.g., SARS-CoV1 and HIV.

We called an individual infected by the poorly adapted pathogen, a patient minus one. We obtained analytic formulae for the probability that a patient minus one fails to initiate an epidemic of a directly-transmitted or vector-borne disease. Two configurations for the mutation landscape were explored, where the original pathogen is 1) one step-mutation away from the epidemic strain, and 2) undergoing a long chain of neutral mutations which do not change the epidemic-level parameters.

We obtained analytic results for the probabilities of emergence failure. Illustrations of these analytic results (i.e., figures 3 and 1) appear similar to the computational results by Antia et al. [START_REF] Antia | The role of evolution in the emergence of infectious diseases[END_REF] (i.e., figure 2a). Furthermore, we obtained two features which remain valid for both transmission mechanisms. First, as noted by Antia et al. [START_REF] Antia | The role of evolution in the emergence of infectious diseases[END_REF], the reproduction number of the original pathogen is determinant for the probability of pathogen emergence, more important than the mutation rate or the transmissibility of the emerged pathogen. Second, the probability of mutation within infected individuals must be sufficiently high for the pathogen undergoing neutral mutation to start an epidemic. The threshold depends on the basic reproduction number of the original pathogen; i.e., m or m h must be larger than (1 -R 0 ) for zoonotic emergence and (1 -R ) for the emergence of drug resistance. Each particular strain has reproduction number less than 1 and guaranteedly goes extinct. However, the strain mix can persist and be transmitted forwardly. The key dynamical features are transcritical bifurcations, illustrated in figures 2 and 4. Finally, we argued that parameterizing models of pathogen emergence to represent the epidemiology of SARS-CoV1 or HIV is a difficult endeavor.

A key assumption, inherited from previous work [START_REF] David | On the generalized "birth-and-death" process[END_REF][START_REF] Bartlett | The relevance of stochastic models for large-scale epidemiological phenomena[END_REF], was that of disease invasion, where infectious individuals undergo proportional mixing with an arbitrarily large number of susceptibles. The assumption holds well for the early stages of epidemics when depletion of susceptibles is negligible. The resulting mathematical simplification cannot be overstated. It makes the transmission chains independent and depletion of susceptibles no longer occurs, for all times. It also implies that competing epidemics at disease invasion are independent.

As criticism for this assumption, Kubiak et al. [START_REF] Ruben J Kubiak | Insights into the Evolution and Emergence of a Novel Infectious Disease[END_REF] noted that many zoonotic cases, originating from wild and/or domestic animals, occur in small communities, away from large population centers. Emergence through drug resistance may also occur within a similar community structure. A smaller community with less than perfect drug management can put at risk a larger community. Hence, EID often occur in heterogeneous communities. An interesting modeling account of EID in heterogeneous host populations, based on branching processes, is given by Chabas et al. [START_REF] Chabas | Evolutionary emergence of infectious diseases in heterogeneous host populations[END_REF].

Communities have finite populations and do not escape the phenomenon of depletion of susceptibles, except for a short while, at the very beginning of epidemics. Emergence failure in heterogeneous, small communities is more likely than in communities with very large number of susceptibles. Therefore, our formulae for the probability of emergence failure provide upper bounds for more realistic results describing heterogeneous communities of finite size. In fact, it is important to note that the Markov chain extinction problem is soluble numerically. Markov chains of arbitrary complexity can be integrated numerically for a computational surrogate for the probability of emergence failure. Furthermore, parameter hierarchies can also be established numerically through uncertainty and sensitivity analyses of the probability result. There is no need, at any point in the analysis, to invoke a branching process.

Conclusions

Markov chains were the modeling tools of choice to describe disease invasion analytically. It is only natural to attempt to generalize these models to include the principles of disease emergence. The required mathematics remains simple enough that analytic solutions for the extinction probability can still be obtained. If the assumption of disease invasion does not hold, then Markov chains can be integrated numerically to estimate the probability of emergence. Branching processes do not typically offer this convenience. The popular branching process model implicitly assumes the setup of disease invasion. However, the major hurdle in modeling disease emergence remains model parameterization based on current epidemiological data.

FIGURE CAPTIONS

Figure 1: The probability that an epidemic emerges starting from a patient minus one, 1 -p 1 , as a function of R 0 , the basic reproduction number of the infection associated to the patient minus one. We assume that the pathogen is directly transmitted and choose three values for the mutation parameter: m = 0.1 (black curve), m = 0.001 (blue curve) and m = 0.00001 (red curve). We also assume that the basic reproduction number of the emerged pathogen is R 0 = 2. Note that, with decreasing mutation rate, the probability curve develops a hyperbolic trend in the vicinity of R 0 = 1. ) = (1, 1). That is, with the variation of the second parameter, m , the red curve becomes the blue curve, where (1, 1) remains always a fixed point.

Figure 3: The emergence of vector-borne diseases. We illustrate the probability that an epidemic emerges starting from a patient minus one and no vector, 1 -p 10 . The horizontal axis represents R 0 , the basic reproduction number associated to the infection of the patient minus one. We chose three values for the mutation parameter, m h = 0.1 (black curve), m h = 0.001 (blue curve) and m h = 0.00001 (red curve). The remaining parameters are R 0h = R 0 and p 10 = 0.5. Note that, with decreasing mutation rate, the probability curve develops a hyperbolic trend in the vicinity of R 0 = 1. 

  only on the parameter set µ (k) ≡ (R (k) 0 , m (k) h ). The solution for the probability p (n) 1 is then formally obtained through n function compositions
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 2 Figure 2: Transcritical bifurcation of the neutral genetic dynamics for the pathogen with direct transmission mechanism. We illustrate p (k+1) 1 versus p (k) 1 or F µ (•). The parameter sets are (R 0 , m ) = (0.7, 0.17) for the red curve, and (R 0 , m ) = (0.7, 0.5) for the blue curve. The dotted line represents the first bisect line. It appears that p (k+1) 1 (•) undergoes a transcritical bifurcation at (p (k) 1 , p (k+1) 1
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 4 Figure 4: Transcritical bifurcation of the neutral genetic dynamics for the pathogen with vector-borne transmission mechanism. We illustrate p (k+1) 10 versus p (k) 10 or f µ (•). The parameter sets are (R 0h , R 0 , m h ) = (0.7, 0.7, 0.17) for the red curve, and (R 0h , R 0 , m h ) = (0.7, 0.7, 0.45) for the blue curve. The dotted line represents the first bisect line. It appears that p (k+1) 10 (•) undergoes a transcritical bifurcation at (p (k) 10 , p (k+1) 10) = (1, 1). That is, with the variation of the third parameter, the red curve becomes the blue curve, where (1, 1) remains always a fixed point.
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TABLES

Table 1: Markov chain for the model with direct transmission: stochastic processes and their corresponding rates.

Count j

Process Definition Rate R j 1

Infection with the wild-type strain

Recovery from infection with the wild-type strain

Recovery from infection with the mutant strain i → i -1 γi Table 2: Markov chain for the model with vector-borne transmission: stochastic processes and their corresponding rates.

Count j Process Definition Rate R j 1

Host infection with the wild-type strain

Host recovery from infection with the wild-type strain i h → i h -1 γ h i h 3

Mutation of the wild-type strain

Host infection with the mutant strain

Host recovery from infection with the mutant strain

Vector infection with the wild-type strain

Vector natural mortality or mortality caused by infection with the wild-type strain

Vector infection with the mutant strain

Vector natural mortality or mortality caused by infection with the mutant strain