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Bifurcations in the time-delayed Kuramoto model of coupled oscillators: Exact results
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In the context of the Kuramoto model of coupled oscillators with distributed natural frequencies interacting through a time-delayed mean-field, we derive as a function of the delay exact results for the stability boundary between the incoherent and the synchronized state and the nature in which the latter bifurcates from the former at the critical point. Our results are based on an unstable manifold expansion in the vicinity of the bifurcation, which we apply to both the kinetic equation for the single-oscillator distribution function in the case of a generic frequency distribution and the corresponding Ott-Antonsen(OA)-reduced dynamics in the special case of a Lorentzian distribution. Besides elucidating the effects of delay on the nature of bifurcation, we show that the approach due to Ott and Antonsen, although an ansatz, gives an amplitude dynamics of the unstable modes close to the bifurcation that remarkably coincides with the one derived from the kinetic equation. Further more, quite interestingly and remarkably, we show that close to the bifurcation, the unstable manifold derived from the kinetic equation has the same form as the OA manifold, implying thereby that the OA-ansatz form follows also as a result of the unstable manifold expansion. We illustrate our results by showing how delay can affect dramatically the bifurcation of a bimodal distribution.

Introduction

The Kuramoto model enjoys a unique status in the field of nonlinear dynamics [START_REF] Kuramoto | Chemical oscillations, waves, and turbulence[END_REF][START_REF] Strogatz | From Kuramoto to Crawford: Exploring the onset of synchronization in populations of coupled oscillators[END_REF][START_REF] Acebrón | The Kuramoto model: A simple paradigm for synchronization phenomena[END_REF][START_REF] Gupta | Kuramoto model of synchronization: Equilibrium and non-equilibrium aspects[END_REF][START_REF] Rodrigues | The Kuramoto model in complex networks[END_REF][START_REF] Gherardini | Spontaneous synchronization and nonequilibrium statistical mechanics of coupled phase oscillators[END_REF][START_REF] Gupta | Statistical physics of synchronization[END_REF]. It provides arguably the minimal framework to model the phenomenon of spontaneous synchronization commonly observed in nature [START_REF] Pikovsky | Synchronization: a Universal concept in nonlinear sciences[END_REF][START_REF] Strogatz | Sync: the emerging science of spontaneous order[END_REF], for example, among groups of fireflies flashing on and off in unison [START_REF] Buck | Synchronous rhythmic flashing of fireflies. II[END_REF], in cardiac pacemaker cells [START_REF] Peskin | Mathematical aspects of heart physiology[END_REF], in electrochemical [START_REF] Kiss | Emerging coherence in a population of chemical oscillators[END_REF] and electronic [START_REF] Temirbayev | Experiments on oscillator ensembles with global nonlinear coupling[END_REF] oscillators, in Josephson junction arrays [START_REF] Benz | Coherent emission from twodimensional Josephson junction arrays[END_REF] and in electrical power-grid networks [START_REF] Rohden | Self-Organized synchronization in decentralized power grids[END_REF], to name a few. Modeling the individual units in a synchronizing system as nearly-identical limit-cycle oscillators, the Kuramoto model arises on considering the individual limit-cycles to be interacting weakly with one another, with the strength of coupling being the same for every pair of oscillators [START_REF] Pikovsky | Synchronization: a Universal concept in nonlinear sciences[END_REF][START_REF] Gupta | Statistical physics of synchronization[END_REF]. Specifically, the model comprises a set of N oscillators with distributed natural frequencies ω j ∈ [-∞, ∞]; j = 1, 2, . . . , N . Denoting by θ j ∈ [0, 2π) the phase of the j-th oscillator, the dynamics of the model is given by a set of N coupled equations of the form [START_REF] Kuramoto | Chemical oscillations, waves, and turbulence[END_REF] dθ j (t)

dt = ω j + K N N k=1 sin(θ k (t) -θ j (t)), (1) 
where K ≥ 0 is the coupling constant. The scaling of K by N ensures that the associated term is well behaved in the thermodynamic limit N → ∞, which is indeed the limit of interest to us in this paper and which also models the fact that in this limit, the coupling between any pair of oscillators is weak, scaling as 1/N. The frequencies {ω j } 1≤j≤N denote a set of quenched disordered random variables distributed according to a common distribution G(ω), with the latter obeying the normalization ∞ -∞ dω G(ω) = 1. The coherence among the phases of the oscillators in the Kuramoto model is conveniently measured by the complex order parameter r(t), defined as

r(t) ≡ 1 N N j=1
e iθj (t) , [START_REF] Strogatz | From Kuramoto to Crawford: Exploring the onset of synchronization in populations of coupled oscillators[END_REF] where the quantity |r| measures the amount of coherence. A perfectly synchronized state corresponds to |r| = 1, while in an incoherent state, when the phases θ j are uniformly distributed in [0, 2π), one has |r| = 0. In terms of the order parameter, one may rewrite the equation of motion (1) as dθ j (t) dt = ω j + K Im r(t)e -i(θj(t)) ,

which makes it evident that the phase of an oscillator at a given time evolves due to the effect of the instantaneous mean field r built up in the system from the interaction of the oscillator with all the other oscillators.

The setting of the Kuramoto model is really the simplest one can conceive. It has indeed been very successful in addressing theoretically the emergence of synchrony in diverse dynamical settings involving coupled oscillators, showing in particular in the limit N → ∞ and for a given distribution of natural frequencies of the oscillators that the system exhibits a spontaneous transition from incoherence to synchrony as the coupling strength K is increased beyond a certain critical value [START_REF] Kuramoto | Chemical oscillations, waves, and turbulence[END_REF][START_REF] Strogatz | From Kuramoto to Crawford: Exploring the onset of synchronization in populations of coupled oscillators[END_REF]. Nevertheless, one does encounter situations where due to time delay in propagation of signals between the interacting units, the evolution of the dynamical variables is determined not entirely by their instantaneous values but has an essential dependence also on the values of the dynamical variables at an earlier time instant. Time delay is known to have important consequences, for example, for synchronization of biological clocks [START_REF] Herrgen | Intercellular coupling regulates the period of the segmentation clock[END_REF], in networks of digital phase-locked loops [START_REF] Wetzel | Self-organized synchronization of digital phase-locked loops with delayed coupling in theory and experiment[END_REF], and in the case of information propagation through a neural network in which delay is known to influence the temporal characteristics of oscillatory behavior of neural circuits [START_REF] Blondeau | Stable, oscillatory, and chaotic regimes in the dynamics of small neural networks with delay[END_REF]. It has been argued that presence of even a small time delay may affect in general the global dynamics of ensembles of limit-cycle oscillators [START_REF] Niebur | Collective frequencies and metastability in networks of limit-cycle oscillators with time delay[END_REF].

To assess the effects of time delay, a pioneering work within the ambit of the Kuramoto model was pursued by Yeung and Strogatz in Ref. [START_REF] Yeung | Time delay in the Kuramoto Model of coupled oscillators[END_REF], in which they considered a generalization that allows for a time-delayed mean-field interaction between the oscillating units. Specifically, in terms of a time delay τ > 0, the phases evolve in time according to the dynamics

dθ j (t) dt = ω j + K N N k=1 sin [θ k (t -τ ) -θ j (t) -α] . (4) 
In terms of r(t), the dynamics (4) takes the form

dθ j (t) dt = ω j + K Im r(t -τ )e -i(θj (t)+α) , (5) 
which puts in evidence the presence of a delayed mean-field: the time evolution of oscillator phases at time t is affected by the value of the mean-field r(t -τ ) measuring the macroscopic state of the system at a previous instant t -τ . Here, α ∈ (-π/2, π/2) is the so-called phase frustration parameter [START_REF] Sakaguchi | A soluble active rotator model showing phase transitions via mutual entrainment[END_REF]. Note that setting the phase frustration parameter and the time delay to zero, α = 0, τ = 0, reduces the dynamics (4) to that of the Kuramoto model (1). We may anticipate that introducing delay in the Kuramoto model may lead to a richer and more complex dynamical scenario, which would at the same time be theoretically more challenging to analyze. Indeed, Ref. [START_REF] Yeung | Time delay in the Kuramoto Model of coupled oscillators[END_REF] unraveled a range of new phenomena including bistability between synchronized and incoherent states and unsteady solutions with time-dependent order parameters that do not occur in the original Kuramoto model (1). In the particular case of oscillators with identical natural frequencies and with α = 0, Yeung and Strogatz were able to derive exact formulas for the stability boundaries between the incoherent and synchronized states. For the general case of oscillators with distributed natural frequencies, still with α = 0, they adduced numerical results for the case of a Lorentzian frequency distribution to suggest the occurrence of bifurcation of the incoherent state as a function of K, which could be either sub-or supercritical depending on the precise value of the delay parameter τ . A relevant work that followed the work of Yeung and Strogatz is Ref. [START_REF] Montbrió | Time delay in the Kuramoto model with bimodal frequency distribution[END_REF], which obtained the regions of parameter space corresponding to synchronized and incoherent solutions, but for particular frequency distributions. The complex dynamical scenario did not allow a straightforward analytical treatment to answer the following obvious questions that may be raised for generic frequency distributions: Can one predict analytically as a function of the time delay the nature of bifurcation of the incoherent state that one would observe on changing the value of the coupling constant from low to high values? What is the critical value of the coupling constant at which the incoherent state loses its stability? What are the effects of the phase frustration parameter α? Starting from the aforementioned developments and with an aim to answer the questions just raised, in this work, we embark on a detailed analytical characterization of bifurcation in model [START_REF] Gupta | Kuramoto model of synchronization: Equilibrium and non-equilibrium aspects[END_REF].

In this work, we will consider G(ω) to be a distribution symmetric about its center given by ω = ω 0 . The quantity ω 0 coincides with the mean of G(ω) for cases in which the latter exists. Note that unlike (1), the dynamics (4) is not invariant under the transformation θ j (t) → θ j (t)-ω 0 t, ω j → ω j -ω 0 ∀ j that tantamounts to viewing the dynamics in a frame rotating uniformly at frequency ω 0 with respect to an inertial frame. From Eq. ( 4), it is evident that viewing the dynamics in such a frame is equivalent to replacing α with α ′ ≡ α -ω 0 τ . From now on, we will consider such a choice of the reference frame and consequently the dynamics

dθ j (t) dt = ω j + K N N k=1 sin [θ k (t -τ ) -θ j (t) -α + ω 0 τ ] = ω j + K Im r(t -τ )e -i(θj(t)+α-ω0τ ) , (6) 
where the ω j 's are to be regarded as distributed according to a distribution g(ω)

that is centered at zero: g(ω) ≡ G(ω -ω 0 ). The dynamics (6) in the limit N → ∞ is described by a kinetic equation for the time evolution of the single-oscillator distribution function F (θ, ω, t) that counts the fraction of oscillators with natural frequency ω that have their phase equal to θ at time t. The kinetic equation turns out to be an infinite-dimensional delay differential equation (DDE), which has the incoherent state as its stationary solution existing for all values of K. In order to answer our queries raised above, namely, the bifurcation from the incoherent state that occurs as K is increased to high values, as a first step, we specialize to a Lorentzian distribution for the frequencies, and employ the celebrated Ott-Antonsen (OA) ansatz to deduce from the kinetic equation a simpler DDE satisfied by the order parameter r(t).

The Ott-Antonsen (OA) approach offers a powerful exact method to study the dynamics of coupled oscillator ensembles [START_REF] Ott | Low dimensional behavior of large systems of globally coupled oscillators[END_REF][START_REF] Ott | Long time evolution of phase oscillator systems[END_REF]. The approach allows to rewrite in the thermodynamic limit the dynamics of coupled networks of phase oscillators in terms of a few collective variables. In the context of the Kuramoto model (1) with a Lorentzian distribution of the oscillator frequencies, the ansatz studies the evolution in phase space by considering in the space D of all possible single-oscillator distribution functions F (θ, ω, t) a particular class defined on and remaining confined to a manifold M in D under the time evolution of the phases. The OA ansatz obtains for this particular class of F (θ, ω, t) a single first-order ordinary differential equation for the evolution of the synchronization order parameter r(t). The most remarkable result of the approach, which explains its power and its widespread applicability in studying oscillator ensembles, is its ability to capture precisely and quantitatively through this single equation all, and not just some, of the order parameter attractors and bifurcations of the Kuramoto dynamics (which may be obtained either by performing numerical integration of the N coupled non-linear equations (1) for N ≫ 1 and evaluating r(t) in numerics, or, by simulating the kinetic system [START_REF] Acebrón | The Kuramoto model: A simple paradigm for synchronization phenomena[END_REF][START_REF] Balmforth | A shocking display of synchrony[END_REF][START_REF] Carrillo | Structure preserving schemes for the continuum Kuramoto model: phase transitions[END_REF]), for a Lorentzian g(ω). The ansatz has since its proposi-tion been successfully applied to a variety of setups involving coupled oscillators. A few recent contributions are Refs. [START_REF] Wolfrum | Turbulence in the Ott-Antonsen equation for arrays of coupled phase oscillators[END_REF][START_REF] Pazó | From quasiperiodic partial synchronization to collective chaos in populations of inhibitory neurons with delay[END_REF][START_REF] Martens | Chimera states in two populations with heterogeneous phase-lag[END_REF][START_REF] Laing | Traveling waves in arrays of delay-coupled phase oscillators[END_REF][START_REF] Ott | Frequency and phase synchronization in large groups: Low dimensional description of synchronized clapping, firefly flashing, and cricket chirping[END_REF][START_REF] Goldobin | Competing influence of common noise and desynchronizing coupling on synchronization in the Kuramoto-Sakaguchi ensemble[END_REF][START_REF] Zhang | Dynamics of oscillators globally coupled via two mean fields[END_REF].

Starting with the derived OA-ansatz-reduced dynamics for the order parameter, we perform both a linear and a nonlinear stability analysis of the incoherent state, based on a general formalism to treat DDE [START_REF] Hale | Linear functional differential equations with constant coefficients[END_REF][START_REF] Hale | Introduction to functional differential equations[END_REF]. The linear analysis locates the critical threshold Kc above which a synchronized state bifurcates from the linearly-unstable incoherent state. On the other hand, the nonlinear analysis, developed in the spirit of Refs. [START_REF] Crawford | Amplitude expansions for instabilities in populations of globally-coupled oscillators[END_REF][START_REF] Crawford | Universal trapping scaling on the unstable manifold for a collisionless electrostatic mode[END_REF][START_REF] Crawford | Scaling and singularities in the entrainment of globally coupled oscillators[END_REF][START_REF] Crawford | Amplitude equations for electrostatic waves: universal singular behavior in the limit of weak instability[END_REF][START_REF] Crawford | Synchronization of globally coupled phase oscillators: singularities and scaling for general couplings[END_REF][START_REF] Barré | Bifurcations and singularities for coupled oscillators with inertia and frustration[END_REF], treats the dynamical flow on the unstable manifold passing through Kc, thereby obtaining the amplitude dynamics of the linearly unstable modes for K > Kc. The form of amplitude dynamics describing the flow in the regime of weak linear instability, namely, as

K → K + c
, allows to directly obtain the nature of bifurcation from the incoherent state occurring as soon as K is increased beyond Kc. In the second part of our analysis, we relax the choice of a Lorentzian g(ω) and perform the linear and nonlinear stability analysis directly on the kinetic equation for F (θ, ω, t) to derive the amplitude dynamics of the linearly unstable modes close to the bifurcation of the incoherent state, that is, as K → K + c . Remarkably, we find that the amplitude equation derived in the general case has the same form as that obtained from the OA-ansatz-reduced dynamics derived for Lorentzian g(ω), thus confirming the power and general applicability of the OA ansatz. Viewing the analysis of the OAansatz-reduced dynamics vis-à-vis that of the kinetic equation, we may comment that the former is after all based on an ansatz that works only for Lorentzian g(ω), but allows to derive an amplitude dynamics that works for any K > Kc. On the other hand, the analysis based on the kinetic equation is more general in the sense that there is no ansatz and no specific choice of g(ω) involved, but a disadvantage is that the derived amplitude dynamics is valid only close to the bifurcation, namely, for K → K + c . Quite interestingly and remarkably, we find that close to the bifurcation, the unstable manifold derived from the kinetic equation has the same form as the OA manifold, so we may say that the OA-ansatz form may be obtained also as a result of the unstable manifold expansion.

Furthermore, we demonstrate with our exact results a remarkable effect of time delay: Considering a sum of two Lorentzians as a representative example of a bimodal distribution, it is known that in the absence of delay, the bifurcation of the synchronized from the incoherent state is subcritical [START_REF] Martens | Exact results for the Kuramoto model with a bimodal frequency distribution[END_REF]. We show here that presence of even a small amount of delay suffices to completely change the nature of the bifurcation and make it supercritical ! The paper is organized as follows. In Section 2, we discuss the characterization of the dynamics (6) in the thermodynamic limit in terms of a kinetic equation for the single-oscillator distribution function F (θ, ω, t). In Section 3, we apply for the special case of a Lorentzian distribution for the natural frequencies the Ott-Antonsen ansatz to replace the kinetic equation with an equation for the order parameter. The linear and nonlinear stability analysis of the incoherent state is then pursued in detail in Section 5, based on a formalism for treating DDE summarized in Section 4. A similar analysis for the case of general frequency distributions and applied directly to the kinetic equation is taken up in Section 6, obtaining results similar to those in Section 5 for Lorentzian g(ω). The paper ends with conclusions and perspectives.

2 Description of the dynamics in terms of kinetic equation

In the limit N → ∞, the state of the oscillator system (6) at time t may be characterized by the time-dependent single-oscillator distribution function F (θ, ω, t), defined such that F (θ, ω, t)dθ gives the fraction of oscillators with frequency ω that have their phase in [θ, θ + dθ] at time t. The function F (θ, ω, t) is 2π-periodic in θ, i.e., F (θ + 2π, ω, t) = F (θ, ω, t), and is normalized as

2π 0 dθ F (θ, ω, t) = g(ω) ∀ t. (7) 
Since the dynamics ( 6) conserves in time the number of oscillators with a given natural frequency, the function F (θ, ω, t) evolves in time according to a kinetic equation given by the continuity equation ∂F/∂t + (∂/∂θ)(F dθ/dt) = 0, which on using Eq. ( 6) yields (for a rigorous derivation, see Ref. [START_REF] Frank | Kramers-Moyal expansion for stochastic differential equations with single and multiple delays: Applications to financial physics and neurophysics[END_REF])

∂F (θ, ω, t) ∂t + ω ∂F (θ, ω, t) ∂θ + K 2i ∂ ∂θ r[F ](t -τ )e -i(θ+α-ω0τ ) -r * [F ](t -τ )e i(θ+α-ω0τ ) F (θ, ω, t) = 0. ( 8 
)
Here and in the following, * stands for complex conjugation, and we have defined as functionals of F the quantity

r[F ](t) ≡ dθdω e iθ F (θ, ω, t) (9) 
as the thermodynamic limit of Eq. ( 2). Equation ( 8) is an infinite dimensional DDE. In the following section, we employ the so-called Ott-Antonsen ansatz [START_REF] Ott | Low dimensional behavior of large systems of globally coupled oscillators[END_REF][START_REF] Ott | Long time evolution of phase oscillator systems[END_REF] that allows to derive from Eq. ( 8) a DDE for the order parameter.

The Ott-Antonsen-ansatz-reduced dynamics

The implementation of the Ott-Antonsen ansatz for the dynamics (6) has been discussed in Ref. [START_REF] Ott | Low dimensional behavior of large systems of globally coupled oscillators[END_REF], which we briefly recall here for use in later parts of the paper. As is usual with OA ansatz implementation, we will make the specific choice of a Lorentzian distribution for g(ω):

g(ω) = ∆ π 1 ω 2 + ∆ 2 , (10) 
where ∆ > 0 denotes the half-width-at-half-maximum of g(ω). Consider the function F (θ, ω, t), which being 2π-periodic in θ may be expanded in a Fourier series in θ:

F (θ, ω, t) = g(ω) 2π 1 + ∞ n=1 Fn(ω, t)e inθ + [ Fn(ω, t)] * e -inθ , (11) 
where Fn(ω, t) is the n-th Fourier coefficient. Using 2π 0 dθ e inθ = 2πδ n,0 , we check that the above expansion is consistent with Eq. ( 7).

The OA ansatz considers in the expansion [START_REF] Peskin | Mathematical aspects of heart physiology[END_REF] a restricted class of Fourier coefficients given by [START_REF] Ott | Low dimensional behavior of large systems of globally coupled oscillators[END_REF][START_REF] Ott | Long time evolution of phase oscillator systems[END_REF] Fn(ω, t) = [z(ω, t)] n , [START_REF] Kiss | Emerging coherence in a population of chemical oscillators[END_REF] with z(ω, t) an arbitrary function with the restriction |z(ω, t)| < 1 that makes the infinite series in Eq. ( 11) a convergent one. In implementing the OA ansatz, it is also assumed that z(ω, t) may be analytically continued to the whole of the complex-ω plane, that it has no singularities in the lower-half complex-ω plane, and that |z(ω, t)| → 0 as Im(ω) → -∞ [START_REF] Ott | Low dimensional behavior of large systems of globally coupled oscillators[END_REF][START_REF] Ott | Long time evolution of phase oscillator systems[END_REF]. Using Eqs. ( 11) and [START_REF] Kiss | Emerging coherence in a population of chemical oscillators[END_REF] in Eq. ( 9), one gets

r(t) ≡ r[F ](t) = ∞ -∞ dω g(ω)z * (ω, t). (13) 
On substituting Eqs. ( 11), [START_REF] Kiss | Emerging coherence in a population of chemical oscillators[END_REF], and (13) in Eq. ( 8) and on collecting and equating the coefficient of e inθ to zero, we get ∂z(ω, t) ∂t

+ iωz(ω, t) + K 2 e -i(α-ω0τ ) r(t -τ )z 2 (ω, t) -e i(α-ω0τ ) r * (t -τ ) = 0. ( 14 
)
Note that even if the initial condition does not respect the OA ansatz, it has been shown that the OA manifold is attractive for the dynamics ( 8) with τ = 0, (see, for example, Ref. [START_REF] Dietert | The mathematics of asymptotic stability in the Kuramoto model[END_REF]).

For the Lorentzian g(ω), Eq. ( 10), one may evaluate r(t) by using Eq. ( 13) to get

r(t) = 1 2iπ C dω z * (ω, t) 1 ω -i∆ - 1 ω + i∆ = z * (-i∆, t), (15) 
where the contour C consists of the real-ω axis closed by a large semicircle in the lower-half complex-ω plane on which the integral in Eq. ( 15) gives zero contribution in view of |z(ω, t)| → 0 as Im(ω) → -∞. The second equality in Eq. ( 15) is obtained by applying the residue theorem to evaluate the complex integral over the contour C. Using Eqs. ( 14) and ( 15), we finally obtain the OA equation for the time evolution of the synchronization order parameter as the DDE [START_REF] Ott | Low dimensional behavior of large systems of globally coupled oscillators[END_REF] dr(t) dt + ∆r(t)

+ K 2 e -i(α-ω0τ ) r * (t -τ )r 2 (t) -e i(α-ω0τ ) r(t -τ ) = 0, (16) 
whose solution requires as an initial condition the value of r(t) over an entire interval of time t, namely, t ∈ [-τ, 0]. Note that for τ = 0, Eq. ( 16) is a finitedimensional ODE for r(t) that requires for its solution only the value of r(t) at t = 0 as an initial condition. In this case, it has been demonstrated that this single equation contains all the bifurcations and attractors of the order parameter (2) as obtained through the evolution of the set of coupled differential equations (1) for a Lorentzian g(ω) and in the limit N → ∞. In order to effectively describe the bifurcation of the dynamics ( 16) between an incoherent and a synchronized state in the case τ = 0, we need to put the system ( 16) into the so-called normal form, by reducing the dimensionality of the evolution ( 16) to get a simple ODE. We take up this program in Section 5 based on a general formalism for DDE that we summarize in the next section.

Theory of delay differential equation

It is evident from the form of equations ( 8) and ( 16) that both may be cast in the general form

∂ ∂t H(t) = M [H(t), H t (-τ )], (17) 
where the function H(t) is either the function F (θ, ω, t) or the function r(t) depending on the case of interest. Here, we have introduced the notation H t (ϕ) ≡ H(t+ϕ) for -τ ≤ ϕ ≤ 0. To solve for H(t); t > 0 using Eq. ( 17), one must specify as an initial condition the function H t (ϕ); -τ ≤ ϕ ≤ 0. The time evolution of

H t (ϕ) for -τ ≤ ϕ < 0 is obtained as ∂H t (ϕ)/∂t = lim δ→0 (H t+δ (ϕ) -H t (ϕ))/δ = lim δ→0 (H(t + ϕ + δ) -H(t + ϕ))/δ = dH(t + ϕ)/dϕ = dH t (ϕ)/dϕ.
We may then quite generally write

∂ ∂t H t (ϕ) = (A H t )(ϕ); -τ ≤ ϕ ≤ 0, ( 18 
)
where we have

(A H t )(ϕ) =    d dϕ H t (ϕ); -τ ≤ ϕ < 0, M [H t (ϕ), H t-τ (ϕ)]; ϕ = 0. ( 19 
)
Around a stationary state Hst of Eq. ( 18), we define the perturbation h t (ϕ) as H t (ϕ) ≡ Hst + h t (ϕ). The time evolution of h t (ϕ) has the same form as Eq. ( 18), in which we now split the operator A into a part D that is linear in h and a part F that is nonlinear, to write

(A h t )(ϕ) = (Dh t + F [h t ])(ϕ) =    d dϕ h t (ϕ) L h t (ϕ) + 0; -τ ≤ ϕ < 0, N [h t ]; ϕ = 0. (20) 
We will find it convenient to decompose the linear operator L into a part L that does not contain any term involving the delay and a part R containing the delay terms:

L h t (ϕ) = L h t (0) + R h t (-τ ).
The adjoint of the linear operator D may be defined through the definition of the scalar product [START_REF] Hale | Linear functional differential equations with constant coefficients[END_REF] 

(h 1t , h 2t )τ ≡ (h 1t (0), h 2t (0)) + 0 -τ dξ (h 1t (ξ + τ ), R h 2t (ξ)) , (21) 
where the scalar product in the absence of any delay (•,

•) is either (s, r) = s * r, with h 1 (0) = s, h 2 (0) = r (22) 
for the finite dimensional case, or, the standard

L 2 (T × R) scalar product (h, f ) = T×R h * (θ, ω)f (θ, ω) dω dθ, with h 1 (0) = h(θ, ω), h 2 (0) = f (θ, ω), ( 23 
)
for the kinetic case (infinite dimensional). The adjoint operator D † , which satisfies

(h 1t (ϕ), Dh 2t (ϕ))τ = (D † h 1t (ϕ), h 2t (ϕ))τ , (24) 
is obtained as

(D † h t )(ϑ) =    - d dϑ h t (ϑ); 0 < ϑ ≤ τ, L † h t (ϑ) = L † h t (0) + R † h t (τ ); ϑ = 0. ( 25 
)
Note that h 2 (ϕ) and h 1 (ϑ) belong to different functional spaces, for example, ϕ ∈ [-τ, 0] and ϑ ∈ [0, τ ].

5 Application to the Ott-Antonsen-reduced dynamics

We now apply the formalism of the DDE discussed in the preceding section to analyze Eq. ( 16), with the aim to reduce this infinite-dimensional equation to a finite-dimensional equation. The incoherent stationary state rst = 0 is always a solution of Eq. ( 16). It is of interest to study its stability as K is varied, which may be done by studying the behavior of perturbations about rst = 0, where the perturbations r t (ϕ) satisfy

d dt r t (ϕ) = (Dr t + F [r t ])(ϕ); -τ ≤ ϕ ≤ 0, (26) 
with

(Dr t )(ϕ) =    d dϕ r t (ϕ); -τ ≤ ϕ < 0, L r t (ϕ) = L r t (0) + R r t (-τ ); ϕ = 0, (27) and ( 
F [r t ])(ϕ) = 0; -τ ≤ ϕ < 0, N [r t ]; ϕ = 0. ( 28 
)
The adjoint of the linear operator D is given by

(D † s t )(ϑ) =    - d dϑ s t (ϑ); 0 < ϑ ≤ τ, L † s t (ϑ) = L † s t (0) + R † s t (τ ); ϑ = 0. ( 29 
)
In these equations, we have

L r = -∆r, (30) 
R r = K 2 e i(α-ω0τ ) r, (31) 
L † r = -∆r, (32) 
R † r = K 2 e -i(α-ω0τ ) r, (33) 
N [r t ] = - K 2 e -i(α-ω0τ ) r * t (-τ )r 2 t (0). ( 34 
)
Small perturbations r t (ϕ) may be expressed as a linear combination of the eigenfunctions of the linear operator D. To this end, let us then solve the eigenfunction equation

(Dp)(ϕ) = λp(ϕ) (35) 
for -τ ≤ ϕ < 0; we get p(ϕ) = p(0)e λϕ . The equation (Dp)(ϕ) = λp(ϕ) for ϕ = 0 gives λp(0) = -∆p(0) + (K/2)e i(α-ω0τ ) p(0)e -λτ . With p(0) = 0, we thus get the dispersion relation

Λ(λ) = λ + ∆ - K 2 e -λτ +i(α-ω0τ ) = 0. ( 36 
)
The solution of the above equation gives the discrete eigenvalues λ l (with l ∈ Z) in terms of the Lambert-W function W l , as

λ l = -∆τ + W l Kτ 2 e iα+∆τ -iω0τ
τ .

(

) 37 
Without loss of generality, we may take p(0) = 1. We thus conclude that p(ϕ) = e λϕ is an eigenfunction of the linear operator D for -τ ≤ ϕ ≤ 0 with eigenvalue λ provided that λ satisfies Λ(λ) = 0. In other words, a discrete set of eigenvalues correspond to D for all values of ϕ. Perturbations r t (ϕ) may be expressed as a linear combination of the corresponding eigenfunctions. It then follows that the stationary solution rst = 0 will be linearly stable under the dynamics (26) so long as all the eigenvalues λ have a real part that is negative. Vanishing of the real part of the eigenvalue with the smallest real part then signals criticality above which rst = 0 is no longer a linearly-stable stationary solution of Eq. [START_REF] Carrillo | Structure preserving schemes for the continuum Kuramoto model: phase transitions[END_REF]. Denoting by λ i ; λ i ∈ R the imaginary part of the eigenvalue with the smallest real part, we thus have at criticality the following equations obtained from Eq. ( 36):

Kc 2 cos(α -(ω 0 + λ i )τ ) = ∆, (38) 
Kc 2 sin(α -(ω 0 + λ i )τ ) = λ i .
We want to study the behavior of r t (ϕ) as K → K + c , the goal being to uncover the weakly nonlinear dynamics occurring beyond the exponential growth taking place due to the instability as K → K + c . To this end, we want to study the behavior of r t (ϕ) on the unstable manifold, which by definition is tangential to the unstable eigenspace spanned by the eigenfunctions p(ϕ) at the equilibrium point (K = Kc, λ = iλ i ). This manifold may be shown to be an attractor of the dynamics for the type of DDE under consideration [START_REF] Hale | Introduction to functional differential equations[END_REF][START_REF] Murdock | Normal forms and unfoldings for local dynamical systems[END_REF][START_REF] Guo | Bifurcation theory of functional differential equations[END_REF] and is therefore of interest to study. To proceed, we need the eigenfunctions of the adjoint operator D † , which will be useful in discussing the unstable manifold expansion. It is easily checked that D † has the eigenfunction q(ϑ) = q(0)e -λ * ϑ associated with the eigenvalue λ * satisfying Λ * (λ * ) = 0, that is, we get the same dispersion relation as for D. We may choose q(0) such that (q(ϕ), p(ϕ))τ = 1. Using Eq. ( 21), and noting that in the present case, (q(0), p(0)) = q * (0)p(0), we get

q * (0) + 0 -τ dξ q * (0)e -λ(ξ+τ ) K 2 e i(α-ω0)τ e λξ = 1, (39) 
yielding

q * (0) = 1 1 + τ K 2 e -(λ+iω0)τ +iα = 1 Λ ′ (λ) (40) 
where we chose without loss of generality p(0) = 1.

The unstable manifold expansion of r t (ϕ) for K > Kc reads

r t (ϕ) = A(t)p(ϕ) + w[A](ϕ), (41) 
where w[A](ϕ), which is at least quadratic in A (in fact, one can prove that it is cubic in A in the present case), denotes the component of r t (ϕ) transverse to the unstable eigenspace, so that (q(ϕ), w(ϕ))τ = 0. On using the latter equation, together with (q(ϕ), p(ϕ))τ = 1 in Eq. ( 41), we get A(t) = (q(ϕ), r t (ϕ))τ . The time evolution of A(t) is then obtained as Ȧ = (q(ϕ), ṙt (ϕ))τ = (q(ϕ), (Dr

t + F [r t ])(ϕ))τ = (q(ϕ), A(t)λp(ϕ) + Dw(ϕ) + F [r t ](ϕ))τ = λA + q * (0)N [r t ], (42) 
where the dot denotes derivative with respect to time. Here, in arriving at the second and the third equality, we have used Eqs. ( 26) and ( 41), while in obtaining the last equality, we have used in the third step (q(ϕ), Dw(ϕ))τ = (D † q(ϕ), w(ϕ))τ = λ * (q(ϕ), w(ϕ))τ = 0. Since we can prove that w is O(|A| 2 A), while we see that N [r t ] is of order three in r t , the leading-order contribution to the nonlinear term on the right hand side of Eq. ( 42) is obtained as

N [r t ] = N [A(t)p(ϕ)] + O(|A| 2 A) = -(K/2)e -i(α-ω0τ ) p * (-τ )p 2 (0)|A(t)| 2 A(t)] + O(|A| 2 A).
Using this result and Eq. ( 40) in Eq. ( 42), we get eventually the so-called normal form for the time evolution of A as

Ȧ = λA - K 2 e (iω0-λ * )τ -iα 1 + τ K 2 e -(λ+iω0)τ +iα |A| 2 A + O(|A| 2 A). ( 43 
)
The above is the desired finite-dimensional ordinary differential equation corresponding to the infinite-dimensional equation [START_REF] Carrillo | Structure preserving schemes for the continuum Kuramoto model: phase transitions[END_REF], which allows to decide the bifurcation behavior of r t (ϕ) as K → K + c . The relevant parameter to study the type of bifurcation is given by the sign of the second term on the right hand side. Denoting this term by c 3 , we then need to study the sign of the real part of c 3 as the real part of λ approaches zero, so that λ = iλ i is purely imaginary:

Re(c 3 ) = - Kc 2 Re    e i(ω0+λi)τ -iα 1 + τ Kc 2 e -i(ω0+λi)τ +iα    . (44) 
Note that a similar approach was pursued in [START_REF] Niu | Bifurcation analysis on the globally coupled Kuramoto oscillators with distributed time delays[END_REF].

Application to the kinetic equation

It is of interest to consider the formalism of the DDE and the unstable manifold expansion applied in the previous section to the OA-ansatz-reduced dynamics [START_REF] Herrgen | Intercellular coupling regulates the period of the segmentation clock[END_REF], and to apply it directly to the kinetic system, Eq. ( 8), so as to reduce this infinite-dimensional equation to a finite-dimensional one. The advantage of such an application stems from the fact that while the OA-ansatz-reduced-dynamics is obtained for a Lorentzian g(ω), the kinetic system is valid for any generic g(ω). A disadvantage is that the computations for the kinetic system are only formal in the sense that standard theorems proving the attracting property of the unstable manifold do not apply straightforwardly for the type of kinetic equation under consideration because of the existence of the continuous spectrum (see below). y attractiveness of a manifold is meant that almost all trajectories during the course of the dynamical evolution come at long times arbitrarily close to the manifold so that their eventual evolution coincides with evolution of trajectories lying on the manifold itself. The reader is referred to Refs. [START_REF] Chiba | A proof of the Kuramoto conjecture for a bifurcation structure of the infinitedimensional Kuramoto model[END_REF][START_REF] Dietert | Stability and bifurcation for the Kuramoto model[END_REF] for a mathematical proof of the statement in the non-delayed model, that, is, for τ = 0.

Let us give at the outset an outline of the current rather technical section. We start off with rewriting of the kinetic equation ( 8), of which the incoherent state Fst represents a stationary solution, in the form of a DDE for perturbations f t (ϕ) around Fst. The DDE involves a linear evolution operator D and a nonlinear one. In the next step, we obtain the eigenvalues and the eigenvectors of D and of the corresponding adjoint operator D † . As is usual with linear stability analysis [START_REF] Strogatz | Nonlinear Dynamics and Chaos: with Applications to Physics[END_REF], the knowledge of the eigenvalues allows to locate the critical value Kc of the coupling K above which the incoherent state Fst becomes linearly unstable and a synchronized stationary state bifurcates from it. Following this, we perform for K > Kc an unstable manifold expansion of Fst along the two unstable eigenvectors (representing respectively the eigenvectors of D and D † ) and the unstable manifold passing through Kc. By invoking a convenient Fourier expansion of the relevant quantities and working at K slightly greater than Kc, we obtain the amplitude dynamics describing the evolution of perturbations f t (ϕ) in the regime of weak linear instability, K → K + c . The form of the amplitude dynamics allows to directly obtain the nature of bifurcation occurring as soon as K is increased beyond Kc:

The amplitude dynamics has a leading linear term, followed by a nonlinear (cubic) term, and according to elements of bifurcation theory well known in the literature [START_REF] Strogatz | Nonlinear Dynamics and Chaos: with Applications to Physics[END_REF], it is the sign of this cubic term that dictates the precise nature of the bifurcation (positive and negative leading respectively to subcritical and supercritical bifurcation). We show explicitly how the sign of the cubic term varies as a function of the delay τ , for two separate cases, namely, that of a unimodal and a bimodal Lorentzian frequency distribution. A remarkable result of this section is that close to the bifurcation, the unstable manifold that we derive in this section based on the kinetic equation ( 8) has the same form as the Ott-Antonsen manifold discussed in Section 3. We now proceed to a detailed derivation of our results.

Similar to the preceding section, we rewrite Eq. ( 8) in the form of Eq. ( 18). We consider perturbations f t (ϕ) around the incoherent stationary state of (8), namely, Fst = g(ω)/(2π), so that F t (ϕ) = Fst(ϕ) + f t (ϕ). From Eq. ( 7), it follows that 2π 0 dθ f t (ϕ) = 0. Perturbations f t will evolve according to

d dt f t (ϕ) = (Df t + F [f t ])(ϕ); -τ ≤ ϕ ≤ 0, (45) 
with

(Df t )(ϕ) =    d dϕ f t (ϕ); -τ ≤ ϕ < 0, L f t (ϕ) = L f t (0) + R f t (-τ ); ϕ = 0, (46) 
and

(F [f t ])(ϕ) = 0; -τ ≤ ϕ < 0, N [f t ]; ϕ = 0. ( 47 
)
The adjoint of the linear operator D is given by

(D † h t )(ϑ) =    - d dϑ h t (ϑ); 0 < ϑ ≤ τ, L † h t (ϑ) = L † h t (0) + R † h t (τ ); ϑ = 0. ( 48 
)
Here, we have

L f = -ω ∂ ∂θ f, (49) 
R f = K 2 g(ω) 2π r[f ]e -i(θ+α-ω0τ ) + r * [f]e i(θ+α-ω0τ ) , (50) 
L † h = ω ∂ ∂θ h, (51) 
R † h = K 4π r [g(ω)h] e -i(θ-α+ω0τ ) + r * [g(ω)h]e i(θ-α+ω0τ ) , (52) 
N [f t ] = - K 2i ∂ ∂θ r[f t ](-τ )e -i(θ+α-ω0τ ) -r * [f t ](-τ )e i(θ+α-ω0τ ) f t (0) . ( 53 
)
To study the linear stability of Fst, similar to what was done in the preceding section, we first solve the eigenfunction equation

(DP )(ϕ) = λP (ϕ) (54) 
for -τ ≤ ϕ < 0; we get P (ϕ) = Ψ e λϕ for arbitrary Ψ . Since we will in the following expand f t (ϕ) in terms of P (ϕ), we would need to choose Ψ as Ψ (θ, ω), where 2πperiodicity of f t implies that so should be Ψ (θ, ω). Consequently, we may expand Ψ (θ, ω) in a Fourier series in θ, as Ψ (θ, ω) = (2π) -1 ∞ k=-∞ ψ k (ω)e ikθ , so that

P (ϕ) = (2π) -1 ∞
k=-∞ ψ k (ω)e ikθ e λϕ . Using the equation (DP )(ϕ) = λP (ϕ) for ϕ = 0 and k = ±1 in the Fourier expansion of P (ϕ), it may be easily seen with the condition r[Ψ ] = r * [Ψ] = 1 that p(ϕ) = ψ 1 (ω)e iθ+λϕ and p * (ϕ) give two independent eigenfunctions of D with eigenvalues λ and λ * , respectively, where the latter satisfy Λ(λ) = Λ * (λ * ) = 0, and

ψ 1 (ω) = K 2 e -λτ +i(α-ω0τ ) g(ω) λ + iω , (55) 
Λ(λ) = 1 - K 2 e -λτ +i(α-ω0τ ) dω g(ω) λ + iω . (56) 
For k = ±1, one has a continuous spectrum sitting on the imaginary axis; this feature is characteristic of kinetic equations of the type of Eq. ( 8) [START_REF] Crawford | Application of the method of spectral deformation to the Vlasov-poisson system[END_REF][START_REF] Crawford | Amplitude expansions for instabilities in populations of globally-coupled oscillators[END_REF][START_REF] Strogatz | Stability of incoherence in a population of coupled oscillators[END_REF]. For K > Kc, when the incoherent stationary state is linearly unstable, the unstable eigenspace is spanned by the eigenfunctions p(ϕ) and p * (ϕ). The stationary solution Fst = g(ω)/(2π) will be neutrally stable, thanks to the continuous spectrum sitting on the imaginary axis that generates a dynamics similar to that of Landau damping [START_REF] Strogatz | Coupled nonlinear oscillators below the synchronization threshold: relaxation by generalized Landau damping[END_REF][START_REF] Yeung | Time delay in the Kuramoto Model of coupled oscillators[END_REF], when there are no eigenvalues λ with a positive real part. Vanishing of the real part of the eigenvalue with the smallest real part then signals criticality above which Fst becomes a linearly unstable stationary solution of Eq. [START_REF] Carrillo | Structure preserving schemes for the continuum Kuramoto model: phase transitions[END_REF]. Denoting by λ i ; λ i ∈ R the imaginary part of the eigenvalue with the smallest real part, we thus have at criticality the following equations obtained from Eq. ( 56):

cos (α -(ω 0 + λ i )τ ) = g(-λ i )πKc 2 , (57) tan (α 
-(ω 0 + λ i )τ ) = PV g(ω) ω + λ i πg(-λ i ) ,
where PV stands for principal value. One then has to have cos (α -(ω 0 + λ i )τ ) > 0 in order to have a solution of the first equation. For the particular choice of the Lorentzian distribution, Eq. ( 10), Eq. (57) reduces to Eq. ( 36), as it should.

The eigenfunctions of the adjoint operator D † are given by q(ϑ) = ψ 1 (ω)e iθ-λ * ϑ and q * (ϑ) with eigenvalues λ * and λ, respectively, where we fix ψ 1 (ω) by requiring that (q(ϕ), p(ϕ))τ = 1 = dθdω q * (0)p(0)+ 0 -τ dξ dθdω q * (ξ +τ ) R p(ξ). We thus get ψ 1 (ω) = ((Λ ′ (λ)) * (λ * -iω)2π) -1 , and hence,

q(ϑ) = 1 (Λ ′ (λ)) * 1 λ * -iω e iθ-λ * ϑ . (58) 
Similar to Eq. ( 41), we now decompose perturbations f t (ϕ) along the two unstable eigenvectors and the unstable manifold, as

f t (ϕ) = A(t)p(ϕ) + A * (t)p * (ϕ) + w[A, A * ](ϕ), (59) 
with the relations (q(ϕ), p(ϕ))τ = 1, (q(ϕ), p * (ϕ))τ = 0, (q(ϕ), w(ϕ))τ = 0 yielding A(t) = (q(ϕ), f t (ϕ))τ . We require w(ϕ) to be at least quadratic in A.

Let us define the following Fourier expansion needed for further analysis:

f t = 1 2π ∞ k=-∞ (f t ) k e ikθ , (60) 
N [f t ] = 1 2π ∞ k=-∞ N k [f t ]e ikθ , (61) w 
= 1 2π ∞ k=-∞ w k e ikθ . (62) 
Using Eq. ( 53), we then get

N k [f t ] = - kK 2 r[f t ](-τ )e -i(α-ω0τ ) (f t ) k+1 (0) -r * [f t ](-τ )e i(α-ω0τ ) (f t ) k-1 (0) . (63) 
Note that we have (f t ) 0 = 0, so that Eq. ( 59) gives w 0 = 0; this feature is a major difference with respect to a similar kinetic equation, the Vlasov equation [START_REF] Crawford | Amplitude equations for electrostatic waves: universal singular behavior in the limit of weak instability[END_REF]. By symmetry on the unstable manifold, we have [START_REF] Crawford | Amplitude equations for electrostatic waves: universal singular behavior in the limit of weak instability[END_REF][START_REF] Guo | Bifurcation theory of functional differential equations[END_REF] 

w 1 = O(|A| 2 A) and for k > 1, w k = O(A k ). From Eq. (59), we get (f t ) 1 = Ap + w 1 and for k = ±1, (f t ) k = w k .
The amplitude A may be related to the order parameter close to the bifurcation by r = A * + O(|A| 2 A * ). Using Eq. ( 59), we obtain via the projection (q, (45))τ and ( 45) -((q, (45))τ p + c.c.) the time evolution of A(t) and w as

Ȧ = λA + (q, F [f t ])τ = λA + dω ψ * 1 N 1 [f t ], (64) ẇ 
= Dw + F [f t ] -p dω ψ * 1 N 1 [f t ] + c.c. , (65) 
where c.c. stands for complex conjugate. Here, in arriving at the last equation, we have used (q,

F [f t ])τ = dωdθ q(0) * N [f t ] = dωdθ ψ * 1 (ω)e -iθ N [f t ].
From (63), we get at first order

N 1 [f t ] = -A|A| 2 K 2 r[p * ](-τ )e -i(α-ω0τ ) w 2,0 (0) + O(A|A| 4 ), (66) 
where we have denoted the leading order of the second harmonic

w 2 = A 2 w 2,0 + O(A 2 |A|).
Using the second harmonic of Eq. ( 65) and

(A 2 ) = 2A Ȧ = 2A 2 λ + O(|A| 2 A 2 )
gives for ϕ = 0, w 2,0 = w 2,0 (0)e 2ϕτ . The equation for ϕ = 0 with Eq. ( 63) for k = 2 gives 2A 2 λw 2,0 (0) = A 2 -2iωw 2,0 (0) + Kr * [p](-τ )e i(α-ω0τ ) p(0) + O(|A| 2 A 2 ). (67)

We thus get

w 2,0 = K 2 2 g(ω) (λ + iω) 2 e 2i(α-ω0τ ) e -2λτ e 2ϕτ . (68) 
Plugging Eqs. ( 68), (66), and (64) in Eq. ( 64), we obtain the desired normal form for the time evolution of A(t):

Ȧ = λA + c 3 |A| 2 A + O(|A| 4 A), (69) 
where the cubic coefficient c 3 is given by

c 3 = - K 3 8 e -2λτ -λ * τ +i(α-ω0τ ) Λ ′ (λ) dω g(ω) (λ + iω) 3 = - K 2 4 e -2λrτ dω g(ω) (λ + iω) 3 dω g(ω) (λ + iω) 2 + τ dω g(ω) (λ + iω) = - K 2 4 e -2λrτ dω g(ω) (λ + iω) 3 dω g(ω) (λ + iω) 2 + τ 2 K e λτ -i(α-ω0τ ) (70) K→K + c -→ - K 2 c 8 πg ′′ (λ i ) -i PV dω g ′′ (ω) λ i + ω × PV dω g ′ (ω) λ i + ω - 2τ Kc cos(α -(ω 0 + λ i )τ ) -i πg ′ (λ i ) - 2τ Kc sin(α -(ω 0 + λ i )τ ) -1 . (71) 
Here, we have used Eq. ( 56), together with the property that g(ω) = g(-ω), to obtain the last equality. The sign of Re(c 3 ) given by the last equation gives the nature of the bifurcation as K → K + c . Note that contrary to similar unstable manifold analysis [START_REF] Crawford | Scaling and singularities in the entrainment of globally coupled oscillators[END_REF][START_REF] Crawford | Amplitude equations for electrostatic waves: universal singular behavior in the limit of weak instability[END_REF][START_REF] Barré | Bifurcations and singularities for coupled oscillators with inertia and frustration[END_REF] c 3 is not diverging as λ → 0 + + λ i , which validates formally the asymptotic analysis. Equations ( 57) and ( 71) suggest that at bifurcation, the effects of changing τ at a fixed α are the same as those from changing τ at a fixed α keeping α -ω 0 τ constant. Interestingly, the sign of Re(c 3 ) predicted by our analysis, which determines the nature of bifurcation, shows oscillations with delay (see Fig. 1) that agree qualitatively with what is observed in many oscillator systems with delayed coupling or control [START_REF] Leung | Periodic bifurcation of Duffing-van der Pol oscillators having fractional derivatives and time delay[END_REF][START_REF] Xu | Stability, bifurcation and chaos of a delayed oscillator with negative damping and delayed feedback control[END_REF][START_REF] Choe | Delayed-feedback control: arbitrary and distributed delay-time and noninvasive control of synchrony in networks with heterogeneous delays[END_REF].

For a fixed ω 0 and by varying τ , one may plot the sign of c 3 by computing at criticality K = Kc(τ ) and λc(τ ) = 0 + + iλ i (τ ). The result for α = 0 is shown in Fig. 1 for the case of the Lorentzian frequency distribution, Eq. [START_REF] Buck | Synchronous rhythmic flashing of fireflies. II[END_REF], and also for the case of a sum of two Lorentzians given by

g(ω) = ∆ π 1 (ω -ωc) 2 + ∆ 2 + 1 (ω + ωc) 2 + ∆ 2 , ( 72 
)
where ∆ is the width parameter of each Lorentzian and ±ωc their center frequencies (g has two separated maxima for ωc > ∆/ √ 3). We show in Fig. 2 that as predicted in Fig. 1 (inset) via the sign of Re(c 3 )(τ ), a very small delay (here τ = 0.1) can suppress the subcritical bifurcation present with a bimodal distribution in the absence of delay and turn it into a supercritical bifurcation. In effect, a subcritical bifurcation means that in the bifurcation regime, a small change in the value of the coupling K leads to a large change in the value of the order parameter, that is, an incoherent state becomes with a small change of K a synchronized state, and vice versa. On the contrary, a supercritical bifurcation implies that a small change in K leads to only a small change in the order parameter, so that tuning Fig. 1 The figure shows for α = 0 the stability region of the incoherent state for the Lorentzian frequency distribution (10) (Unimodal) with ∆ = 0.1, ω 0 = 3 and also for the case of sum of two Lorentzians (Bimodal), Eq. ( 72) with ∆ = 0.1, ω 0 = 3 and ωc = 0.09. For K > Kc, the incoherent state is unstable. The sign of 4 Re(c 3 ) determines the super/sub-critical nature of the bifurcation from the incoherent state as K → K + c : a positive (respectively, a negative) sign implies a subcritical (respectively, a supercritical) bifurcation. The vertical dotted lines at τ = 1 and τ = 2 are where the bifurcation simulations were performed in Fig. 4 of Ref. [START_REF] Yeung | Time delay in the Kuramoto Model of coupled oscillators[END_REF] for the case of the Lorentzian g(ω), Eq. ( 10), with the same parameters as us; the positive/negative sign of Re(c 3 ) is fully consistent with the observed sub/super-critical bifurcations. It is known that for τ = 0 and for the distribution (72) with ∆/ √ 3 < ωc < ∆, one has subcritical bifurcation [START_REF] Crawford | Amplitude expansions for instabilities in populations of globally-coupled oscillators[END_REF][START_REF] Martens | Exact results for the Kuramoto model with a bimodal frequency distribution[END_REF]; we here see (the inset is a zoom for small delay for the bimodal case) that on introducing even a small amount of delay (here τ 0.01), the bifurcation becomes supercritical. This last prediction is explicitly verified in Fig. 2.

of K leads to a continuous change of the incoherent into a synchronized state, and vice versa. In the former case of a subcritical bifurcation, it is well known that an adiabatic tuning of K, in which K is tuned in time at a rate slow enough that the system is very close to the stationary state at every instant, and concomitant monitoring of r leads to a hysteresis behavior of r as a function of K [START_REF] Strogatz | Nonlinear Dynamics and Chaos: with Applications to Physics[END_REF].

While Fig. 1 represents the results for Lorentzians, it is evident from the nature of the expression (71) that it would be quite a daunting task to make just on the basis of this expression general remarks on the nature of bifurcation for general frequency distributions, and every distribution has to be investigated on a caseby-case basis.

It may be noted that for some special values of delay τ = τn satisfying ω 0 τn = 2nπ for n ∈ Z, presence of delay in the cosine term of Eq. ( 6) has no effect. In this case, if the eigenvalue triggering the instability of the incoherent state is real (for the distribution (72), it corresponds to |ωc| < ∆), it will be of multiplicity two, so that our derived two-dimensional unstable manifold is still valid. However, if there is a pair of complex eigenvalues (for the distribution (72), it corresponds to |ωc| > ∆), each one will have a multiplicity of two, and consequently, one should consider instead a four-dimensional unstable manifold, as done for τ 0 = τ = 0 in Ref. [START_REF] Crawford | Universal trapping scaling on the unstable manifold for a collisionless electrostatic mode[END_REF]. For τ = τn, there is a pair of complex eigenvalue of multiplicity one, so that our two-dimensional unstable manifold expansion holds good. Fig. 2 The figure shows the variation of the order parameter r as a function of the coupling constant K, showing in particular the bifurcation behavior implied by Fig. 1 for the bimodal Lorentzian distribution, Eq. ( 72), with ∆ = 0.1, ω 0 = 3, ωc = 0.09, and for two values of τ : τ = 0 and τ = 0.1. The data are obtained via numerical integration of the dynamics (4) for number of oscillators N = 64384 and with timestep δt = 10 -2 . For each value K, we run a simulation for a total time t = 2600 and compute r∞ as the averaged of |r|(t) for t > 1000. We make the end state of a simulation for a given value of K as the initial state of the run for the next value of K. We first increase K, as in K → K + δK, with δK = 0.1 (or 0.05/0.5 close/far from the bifurcation), from low to high values, and then decreases it according to K → K -δK. By this procedure, we clearly differentiate the subcritical bifurcation expected for τ = 0 (hysteresis behavior) from the supercritical one expected at τ = 0.1 (no hysteresis). We also show the position of critical coupling Kc(τ ) predicted in Fig. 1.

For the Lorentzian distribution, [START_REF] Buck | Synchronous rhythmic flashing of fireflies. II[END_REF], one may check that the normal form obtained from the OA-reduced-dynamics, Eq. ( 43), and the kinetic equation, Eq. ( 69), are the same.

For generic g(ω), we may decompose F t = Fst + f t as in Eq. ( 11), with Fourier coefficients (F t )n/(2π) = g(ω)/(2π)(α t )n, where the (α)n's are the Fourier coefficients on the unstable manifold. Using Eq. ( 7), we get (α t ) 0 = 1. From Eqs. ( 55) and (59), we get

(α t ) 1 = A K 2 e -λτ +i(α-ω0τ )+λϕ λ + iω + O(A|A| 2 ). ( 73 
)
Notice that expression (73) explicitly satisfies the assumption made by the OA ansatz that α(ω, t) → 0 as Im(ω) → -∞. We cannot prove within the current framework the validity of the OA assumption that |α(ω, t)| < 1. Similarly, Eqs.

(68) and (59) give

(α t ) 2 = A K 2 e -λτ +i(α-ω0τ )+λϕ λ + iω 2 + O(A 2 |A| 2 ). (74) 
As in Eq. (67), we may write equations for the k > 1 Fourier modes with 

w k,0 = A k w k,0 + O(A k |A|), obtaining w k,0 = w k,0 (0)e kϕτ , (75) 
where we have used (A) k = kλA k + O(A k |A| 2 ), and the fact that the dominant contribution in Eq. (63) always involves for k > 1 the f k-1 term and not f k+1 . By induction, we deduce for k ≥ 0 that

(α t ) k = (α t ) k 1 + O(A k |A| 2 ), (77) 
and by taking the complex conjugate of the last equation, we obtain the corresponding equation for k < 0. These equations clearly show that the unstable manifold has exactly the same form as the OA manifold close to the bifurcation. Note that this feature is valid both in the absence and presence of delay. It is worthwhile to mention that the OA ansatz fails on adding a second harmonic (that is, with the form of interaction ∼ K sin θ + J sin(2θ)) to Eq. ( 1), and even the relation (77) obtained with Eq. ( 76) is also not valid in this case. In fact in this case (without delay) the unstable manifold has been shown to be singular [START_REF] Crawford | Scaling and singularities in the entrainment of globally coupled oscillators[END_REF][START_REF] Crawford | Synchronization of globally coupled phase oscillators: singularities and scaling for general couplings[END_REF]. Nonetheless, the unstable manifold reduction still provided precious informations on the bifurcation. The singularities denote a profound change in the nature of the problem. Studying how Eq. ( 76) is modified by the addition of a second harmonic or noise could be a starting point for investigations into generalizations of the OA ansatz.

Conclusions and perspectives

In this work, we analyzed in detail the consequences of a time delay in the interaction in the case of the Kuramoto model of globally-coupled oscillators with distributed natural frequencies, for generic choice of the frequency distribution g(ω). We derived as a function of the delay exact results for the stability boundary between the incoherent and the synchronized state and the nature in which the latter bifurcates from the former at the critical point. Our results are obtained in two independent ways: one, by considering the kinetic equation for the time evolution of the single-oscillator distribution, and two, by considering for the specific choice of a Lorentzian distribution a reduced equation for the order parameter derived from the kinetic equation by invoking the celebrated Ott-Antonsen ansatz.

In either case, the incoherent state, in which the oscillators are completely unsynchronized, is a stationary solution for all values of the coupling constant K between the oscillators, but which is linearly stable only below a critical value Kc of the coupling. To examine how a stable synchronized state bifurcates from the incoherent state as the coupling crosses the value Kc, we employed an unstable manifold expansion of perturbations about the incoherent state in the vicinity of the bifurcation, which we applied both to the kinetic equation and to the corresponding Ott-Antonsen-reduced dynamics. We found that the nature of the bifurcation is determined by the sign of the coefficient of the cubic term in the equation describing the amplitude dynamics of the unstable modes in the regime of weak linear instability, namely, as K → K + c . Remarkably, we found that the amplitude equation derived from the kinetic equation has the same form as that obtained from the OA-ansatz-reduced dynamics for the particular case of a Lorentzian g(ω), thus confirming the power and general applicability of the OA ansatz. Moreover, quite interestingly, we found that close to the bifurcation, the unstable manifold has the same form as that of the OA manifold. This may have important bearings on their inter-relationship to be unravelled in future. As an explicit physical effect of the presence of delay, we demonstrated with our exact results that for a sum of two Lorentzians as a representative example of a bimodal frequency distribution, while absence of delay leads to a bifurcation of the synchronized from the incoherent state that is subcritical, even a small amount of delay changes completely the nature of the bifurcation and makes it supercritical.

k

  (λ + iω)w k,0 (0) = kK 2 r * [p](-τ )e i(α-ω0τ ) w k-1,0 (0) + O(|A| 2 ),
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