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Growing uncertainty from renewable energy integration and distributed energy resources motivate the need for advanced tools to quantify the effect of uncertainty and assess the risks it poses to secure system operation. Polynomial chaos expansion (PCE) has been recently proposed as a tool for uncertainty quantification in power systems. The method produces results that are highly accurate, but has proved to be computationally challenging to scale to large systems. We propose a modified algorithm based on PCE with significantly improved computational efficiency that retains the desired high level of accuracy of the standard PCE. Our method uses computational enhancements by exploiting the sparsity structure and algebraic properties of the power flow equations. We show the scalability of the method on the 1354 pegase test system, assess the quality of the uncertainty quantification in terms of accuracy and robustness, and demonstrate an example application to solving the chance constrained optimal power flow problem.

I. INTRODUCTION

Traditional power systems operational planning and management is being challenged by the increased penetration of renewable energy and distributed energy resources. The variability of power consumption and generation inherent to these additions calls for new control and optimization tools capable of accurately handling the impact of uncertainty on a faithful, nonlinear description of the power grid. However, the non-linearity introduces significant computational challenges in quantifying the effect of uncertainty on the system, spurring a long line of research on the topic.

The most commonly used approach is based on the linear DC approximation approximation to the AC power flow equations (AC-PFE) [START_REF] Bienstock | Chance-constrained optimal power flow: Risk-aware network control under uncertainty[END_REF], [START_REF] Roald | Corrective control to handle forecast uncertainty: A chance constrained optimal power flow[END_REF]. The algebraic simplicity facilitates fast computations at the cost of accuracy, which can be significant when the uncertainties are large. More accurate approaches [START_REF] Roald | Chance-constrained AC optimal power flow: Reformulations and efficient algorithms[END_REF] use a hybrid representation, where the full non-linear equations are used for the nominal power flows and the effect of uncertainty is linearized, and are appropriate for moderate uncertainty magnitudes. In contrast, methods based on Monte Carlo are accurate and capture the nonlinear implicit nature of the AC power flow equations in a faithful way. But attaining a sufficient precision using Monte Carlo involves solving the system of equations for a large Submitted to the 21st Power Systems Computation Conference (PSCC 2020). number of random uncertainty realizations which can result in unacceptably large computation times.

A recent line of work [START_REF] Mühlpfordt | Solving stochastic AC power flow via polynomial chaos expansion[END_REF], [START_REF]A generalized framework for chance-constrained optimal power flow[END_REF], [START_REF] Mühlpfordt | Solving optimal power flow with non-gaussian uncertainties via polynomial chaos expansion[END_REF], [START_REF] Mühlpfordt | Chance-constrained AC optimal power flow -A polynomial chaos approach[END_REF] proposes the use of polynomial chaos expansion (PCE) to handle the non-linear AC-PFE. Using PCE, all uncertain quantities in the system are expressed as polynomials of the uncertain variables. The coefficients of the polynomial are tailored to the uncertainty distribution by performing an orthogonal projection step. Uncertainty quantification with PCE reduces to solving an extended system of power flow like equations, which we call the PCE overloaded power flow, and the method lends itself to easy integration into uncertainty-aware economic dispatch problems such as the chance constrained optimal power flow. However in its current form, PCE lacks sufficient scalability that precludes its use for large power systems.

In this work, we develop a PCE-based method coined SPICE for Sparse Polynomial Iterative Chaos Expansion. The iterative procedure in SPICE identifies and exploits the sparsity structure inherent to the topology of the grid and reflected in the PCE overloaded power flow equations. Approximations based on the algebraic properties of the power flow equations are used to further simplify the problem. By a careful employment of the simplifications, SPICE is able to significantly reduce the computational complexity of standard PCE, while still retaining its accuracy.

We demonstrate the improvements in scalability with a detailed numerical study on the 1354 bus pegase test system. We show that the polynomials produced by SPICE can be used to perform highly accurate uncertainty quantification, and therefore Monte Carlo simulations can be carried out without the need to repeatedly solve the power flow equations. As an application, we use the iterative procedure developed in [START_REF] Roald | Chance-constrained AC optimal power flow: Reformulations and efficient algorithms[END_REF] to solve the chance constraint optimal power flow problem.

II. POWER FLOW EQUATIONS

The power network is modeled using a graph with N buses and L transmission lines. We use (p i , q i ) to denote the net active and reactive power injection at bus i. The power flow physics is described by a system of quadratic equations known as the Kirchoff's laws and are given by

p i = j∈N G ij (v re i v re j + v im i v im j ) + B ij (v im i v im j -v re i v im j ), (1a) 
q i = j∈N G ij (v im i v im j -v re i v im j ) -B ij (v re i v re j + v im i v im j ), (1b) 
where G ij + jB ij denotes the (ij) th entry of the complex bus impedance matrix, and v re i and v im i denote the real and imaginary part of the complex voltage phasor at bus i. The equations in (1) are known as the AC power flow equations (AC-PFE) in rectangular coordinates. In a more abstract form, the power flow equations are a system of 2N quadratic equations that map the voltage phasors to the bus injections. We denote these by

p i = p i (v re , v im ), q i = q i (v re , v im ), (2a) 
where p i (), q i () are the quadratic functions described in [START_REF] Bienstock | Chance-constrained optimal power flow: Risk-aware network control under uncertainty[END_REF].

The non-linear nature of the AC-PFE are a significant mathematical challenge in many problems important to power systems planning and operations. These include (i) the AC optimal power flow problem (AC-OPF) used for economic generation dispatch where they appear as non-convex constraints, and (ii) uncertainty quantification (UQ) used to analyze the effect of uncertainty in the net power injection at buses p i , q i caused by load and renewable generation. The latter is particularly challenging, especially since the uncertainty quantification methods are often required to be incorporated within an optimization framework such as stochastic and robust variants of the AC-OPF. In this paper, we aim at developing an uncertainty quantification method that is both scalable and accurate. We adopt the recently proposed approach based on the so-called polynomial chaos expansion. While PCE has been shown to enable compact and accurate UQ, it suffers from the curse of dimensionality described in the next section.

III. POLYNOMAL CHAOS EXPANSION

In this section, we provide a brief overview of the polynomial chaos expansion approach. For a detailed exposition, the reader is refered to [START_REF] Mühlpfordt | Solving stochastic AC power flow via polynomial chaos expansion[END_REF].

When the power system is subject to uncertain power injections, i.e., when the quantities p i , q i in (1) are random variables, this randomness propagates through the system of equations resulting in every other variables (voltages, line power flows, etc.) behaving as random variables. The state of the system is therefore a function of the uncertainty realization making it inherently difficult to obtain a compact representation of the system behavior. Polynomial chaos deals with this problem by using using a polynomial representation for each of these functions. Further, instead of using the standard monomial basis, PCE uses a special set of basis functions for the polynomial expansion that are orthogonal with respect to the uncertainty distribution.

A. Uncertainty Quantification Using PCE

Let ξ = (ξ 1 , • • • , ξ n ) denote the vector of random variables, where n is the dimension of the uncertainty. These variables may be used to directly represent the random variables corresponding to the power injections, or more generally the drivers of uncertainty in the system. A (finite dimensional) PCE basis corresponds to a set of K polynomial basis functions

Ψ k , k ∈ K = {0, . . . , K -1} such that Ψ l , Ψ k = [Ψ l (ξ)Ψ k (ξ)] = 0, for l = k. (3) 
Each random variable x ∈ {p i , q i , v re i , v im i } in the system is expanded with respect to the basis functions

x = k∈K x k Ψ k (ξ), (4) 
where the scalars x k are the coefficients of the PCE for x.

Uncertainty quantification then reduces to solving an extended system of power flow equations of the following form:

AC-PF equations, (5a) PCE 1 st order PF equations (5b) PCE 2 nd order PF equations (5c) . . . The details of these equations can be found in [START_REF] Mühlpfordt | Chance-constrained AC optimal power flow -A polynomial chaos approach[END_REF] and are given in Table I for completeness.

B. Computational Complexity & the Curse of Dimensionality

A major advantage of PCE is that it reduces the infinite dimensional problem of uncertainty quantification into a finite dimensional problem. The accuracy of the resulting UQ depends on the number K which denotes the number of basis functions used in the PCE expansion. This number depends on the degree deg used in the expansion. Here deg denotes the maximum degree of the polynomial basis functions. As noted in [START_REF] Mühlpfordt | Chance-constrained AC optimal power flow -A polynomial chaos approach[END_REF], the number of basis functions grows exponentially in the chosen degree deg and is given by

|K| = K = (n + deg)! n! deg! ∼ n deg deg! when n ≫ deg . ( 6 
)
This phenomenon is a special case of the well-known curse of dimensionality. Fortunately, it was show in [START_REF] Mühlpfordt | Chance-constrained AC optimal power flow -A polynomial chaos approach[END_REF] through several numerical studies that PCE with degree 2 captures the non-linear nature of the PFE to a level of accuracy that is sufficient for all practical purposes. However, even for degree 2, scaling the PCE method to large power system cases is computationally challenging. A closer inspection of the PCE-overloaded system of equations in Table I and the scaling of K in [START_REF] Mühlpfordt | Solving optimal power flow with non-gaussian uncertainties via polynomial chaos expansion[END_REF] shows that the computational complexity of the system of equations grows quite significantly with K. First, the number of equations and variables in the PCE overloaded system is 2N K compared to the 2N original PFEs in [START_REF] Bienstock | Chance-constrained optimal power flow: Risk-aware network control under uncertainty[END_REF]. Further, within each equation, expanding each of the quadratic terms and collecting the coefficients leads to a total of O(K 2 ) terms. This level of scaling becomes quickly intractable for a large power system. As an example, consider a system with N = 1000 buses and n = 10 sources of uncertainty. To solve the PCE problem exactly with deg = 2, we can compute K = 66 (using ( 6)) leading to 132, 000 equations with each equation having K 2 ∼ 18, 000 terms! The deg = 1 problem however, remains numerically tractable with K 1 = 16 and K 2 1 = 256. However, [START_REF] Muhlpfordt | Chance-constrained ac optimal power flow-a polynomial chaos approach[END_REF].

Rectangular power flow in terms of PCE coefficients with

i ∈ N , k ∈ K Ψ k ,Ψ k (p i,k ) = j∈N k 1 ,k 2 ∈K Ψ k 1 Ψ k 2 , Ψ k (G ij (v re i,k 1 v re j,k 2 + v im i,k 1 v im j,k 2 ) + B ij (v im i,k 1 v re j,k 2 -v re i,k 1 v im j,k 2 )) Ψ k ,Ψ k (q i,k ) = j∈N k 1 ,k 2 ∈K Ψ k 1 Ψ k 2 , Ψ k (G ij (v im i,k 1 v re j,k 2 -v re i,k 1 v im j,k 2 ) -B ij (v re i,k 1 v re j,k 2 + v im i,k 1 v im j,k 2 )) Moments of squared line current magnitudes with ij ∈ L, v re ij,k = v re i,k -v re j,k , v im ij,k = v im i,k -v im j,k i 2 i→j = |y br ij | 2 k∈K Ψ k ,Ψ k ((v re ij,k ) 2 + (v im ij,k ) 2 ) σ[i 2 i→j ] 2 = |y br ij | 4 k 1 ,k 2 ,k 3 ,k 4 ∈K Ψ k 1 Ψ k 2 Ψ k 3 ,Ψ k 4 (v re i,k 1 v re ij,k 2 v re i,k 3 v re ij,k 4 + 2v re ij,k 1 v re ij,k 2 v im ij,k 3 v im ij,k 4 + v im ij,k 1 v im ij,k 2 v im ij,k 3 v im ij,k 4 ) - i 2 i→j 2
Moments of squared voltage magnitudes with i ∈ N

V 2 i = k∈K Ψ k ,Ψ k ((v re i,k ) 2 + (v im i,k ) 2 ) σ[V 2 i ] 2 = k 1 ,k 2 ,k 3 ,k 4 ∈K Ψ k 1 Ψ k 2 Ψ k 3 ,Ψ k 4 (v re i,k 1 v re i,k 2 v re i,k 3 v re i,k 4 + 2v re i,k 1 v re i,k 2 v im i,k 3 v im i,k 4 + v im i,k 1 v im i,k 2 v im i,k 3 v im i,k 4 ) - V 2 i 2
as shown later deg = 2 is needed to capture non trivial correlations effects between uncertainty sources that deg = 1 does not capture. In this paper we develop approximation methods to reduce the computational complexity of deg = 2-PCE while still maintaining its high level of accuracy.

IV. SPICE In this section we describe our approximations strategy that can significantly reduce the computational burden of solving the degree 2 PCE-overloaded PFEs. Our approximations are based on two observations inherent to the system, (a) sparsity of the PCE coefficients, and (b) negligible contributions of higher order terms. These are described in detail in the subsections below.

A. Sparsity of PCE Coefficients

The first key observation is that the PCE coefficients for all variables in the system are sparse, i.e, there are a large fraction of zero or near-zero coefficients. Among several explanations for why sparsity as a structural property might exist, a natural explanation -re-inforced by our experimental observations, is that the value of a given quantity in the system (such as a given bus voltage) has strong dependence on only a few input power injections and essentially independent of the rest. Such structure can arise from factors such as geographical distance, where variables which are sufficiently far away from each other can be nearly independent. While there are several ways of discovering such independence properties, we use the PCE-overloaded PFE of degree 1 for this purpose. This is descbribed in detail below.

In what follows, it will be useful to reformulate the PCEoverloaded PFE using a convenient matrix notation. For a generic random variable x, we can rewrite its PCE representation given in (4) as x = X (0) + X (1) , Ψ (1) + X (2) , Ψ (2) , [START_REF] Mühlpfordt | Chance-constrained AC optimal power flow -A polynomial chaos approach[END_REF] where X (0) are the constant terms, the coefficient matrices X (1) , X (2) are defined as

X (1) =      x 1 x 2 . . . x n      , X (2) =      x 11 x 12 • • • x 1n x 21 x 22 • • • x 1n . . . x n1 x n2 • • • x nn      . (8) 
The matrix of basis functions Ψ (1) contains all basis functions that are degree 1 polynomials, and and Ψ (2) contains all degree 2 basis functions re-arranged into a convenient matrix form such that Ψ

(2) ij (ξ) only depends on ξ i and ξ j . We first solve the PCE-PFE with deg = 1 which amounts to setting X (2) = 0, to obtain the coefficients X (0) deg=1 and X

(1) deg=1 . Whenever a coefficient X (1) j,deg=1 is sufficiently small, we conclude that the random variable x is essentially independent of uncertainty source ξ i . Further, since in the PCE expansion with deg = 2 the coefficient X ij,deg=2 corresponds to the basis function

Ψ (2)
ij which is a function of only ξ i and ξ j , we expect the near-independence of x on ξ i to be reflected in the degree 2 coefficients via X

(2) ij ≈ 0. Based on this reasoning, we set a degree 2 coefficient to 0 apriori if and only if

|X (1) i,deg=1 X (1) j,deg=1 | < C off max k |X (1) k,deg=1 |. ( 9 
)
Forcing a fraction of the coefficients to zero will invariably lead to a reduction in accuracy. However, as we will show in Section V through numerical experiments, using a well chosen cut-off C off one can reach a sparsity level of 15% -50% with almost no loss of accuracy.

B. Contribution of Higher Order Terms

Next, we seek to alleviate the large number of terms O(K 2 ) in the quadratic expansion. Recall that this number was ∼ 18, 000 for N = 1000 and n = 10. This is achieved by observing that the contribution from large number of these terms that correspond to 4th-order terms is negligible. These 4th order terms are generated by multiplying two degree 2 basis functions in (4). This reduces the number of terms drasitically from O(K 2 ) to O(K 1 K). In the previous example this reduces the number of terms from ∼ 18, 000 to ∼ 2, 000. As with the sparsification strategy in Section IV-A, we show through experiments that while using this approximation there is negligible loss of accuracy.

C. Error Minimization and Warm Starting

Finally, instead of solving a system of non-linear equations using e.g. Newton's method, we formulate an optimization problem that minimizes the error in the system of PCE-PFE. This step is necessary since, after setting a large fraction of coefficients to zero to enforce sparsity as described in Section IV-A, there are too few degrees of freedom, i.e., more constraints than variables. The cost function of the errorminimizing optimization problem can be chosen in several ways -here we choose to use the ℓ 2 loss function. Let C(PCE coefficients) = 0 denote the set of constraints in Table I. In the final step we solve the following unconstrained optimization problem:

min PCE coefficients C(PCE coefficients) 2 2 . (10) 
Additionally, we choose a warm starting method to accelerate the optimization. We warm-start the PCE for deg = 1 with the solution to the deterministic PF, and the optimization problem in [START_REF] Karypis | A fast and high quality multilevel scheme for partitioning irregular graphs[END_REF], with the coefficients obtained from the deg = 1 PCE. The steps of the algorithm are given in the pseudo-code. 

deg=1 , the order 0 and order 1 coefficients for PCE deg = 1. (For N ∼ 1, 000 is fast ∼ 10 s) ;

3 Using X (1)
deg=1 and the thresholding procedure in [START_REF] Babaeinejadsarookolaee | The power grid library for benchmarking ac optimal power flow algorithms[END_REF], determine a set C of degree 2 coefficients that are expected to be small; 4 Set up the optimization problem in [START_REF] Karypis | A fast and high quality multilevel scheme for partitioning irregular graphs[END_REF] and remove the variables X i for i ∈ C from the problem. Solve [START_REF] Karypis | A fast and high quality multilevel scheme for partitioning irregular graphs[END_REF] to

obtain the deg = 2 PCE solution X (0) deg=2 , X (1) 
deg=2 , X

deg=2 . 5 return

X (0) deg=2 , X (1) deg=2 , X (2) deg=2 ; 
V. NUMERICAL SIMULATIONS In this Section, we compare on a large network of 1354 buses the performances of SPICE, our proposed UQ method, with respect to the standard PCE method and the Monte-Carlo method. We examine the computational time and the UQ accuracy of these techniques under two cases of load fluctuations: extreme and moderate fluctuations.

Computation are performed using computers with the same Intel Broadwell architecture and possessing 125GB of memory.

A. Test-Cases Description

The network that we consider is the test-case pglib_opf_case1354_pegase.m contained in the IEEE PES Power Grid Library [START_REF] Babaeinejadsarookolaee | The power grid library for benchmarking ac optimal power flow algorithms[END_REF]. This network features 1354 buses and 673 loads. The nominal values (without uncertainty) of our test-cases are set to be the default parameters of this network. Uncertainty is produced by load fluctuations that depend on a particular geographical area. Loads in the network are partitioned in n geographical areas based on their network proximity using the recursive graph partitioning method of the METIS package [START_REF] Karypis | A fast and high quality multilevel scheme for partitioning irregular graphs[END_REF]. Each area is associated with an independent centered and normalized random variables ξ a that represents the type of uncertainty in the area a, see Figure 1. The load fluctuations within each zone are fully correlated, and between two different zones are independent, i.e., for two different zones a and a ′ E(ξ a ξ a ′ ) = 0. Lastly the intensity of fluctuations of loads is controlled by a parameter ǫ such that the active and reactive power of a single load in an area a reads as follows,

p load = p nominal load (1 + ξ a ǫ), q load = q nominal load (1 + ξ a ǫ). (11)
Note that Eq. (11) implies that the nominal power factor of each load is kept constant while its total power consumption varies by an amount proportional to ǫ. Generators are assumed to respond to active power fluctuations uniformly i.e.

p gen = p nom gen + P load -P nom load N gen , V gen = V nom gen , (12) 
where P nom load and P load are the total nominal and realized load consumption respectively and N gen is the total number of generators. The recourse policy in (12) corresponds to automatic generation control (AGC) with uniform participation factors. Other policies can be incorporated in a similar way.

The two different cases of load fluctuations that we consider are obtain through varying ǫ. The extreme case corresponds to power fluctuations of 3% at each of the 673 loads in the network. This is implemented by setting ǫ = 3 × 10 -2 . The moderate case corresponds to power fluctuations of 1% at each load in the entire network by setting ǫ = 10 -2 . For these two cases, the random variable ξ a modelling the uncertainty per area are chosen to be normalized uniform distributions.

B. Choice of Hyperparameter C off

As mentioned in Subsection IV-A, SPICE depends on a tunable hyperparameter C off that promotes sparsity of degree 2 coefficients based on the computation of degree 1 coefficients, see Eq. ( 9). Computational time and degree 2 coefficient sparsity for two different values of the cutoff C off = 0 and C off = 10 -10 are displayed in Table II. These results are obtained on the 1354 buses test-case with 10 areas and extreme fluctuations.

We see that a very small cutoff of 10 -10 is already sufficient to remove around 40% of the PCE degree 2 coefficients which leads to an overall speed-up of 20%. Moreover with a cutoff of only 10 -10 , the impacts on the UQ quality remains unnoticeable. For all numerical simulations, we chose the cutoff of SPICE to be C off = 10 -10 which in practice leads to a good trade-off between sparsity and accuracy.

C. Accuracy of Uncertainty Quantification

The output of an UQ method, whether it runs with Monte-Carlo or PCE, is a probability distribution for each variable in the system given in the form of a histogram. These histograms are produced by first drawing M = 10 4 realizations of the random variables ξ a and then for each of them, either solve a Power-Flow problem if one uses Monte-Carlo or evaluate a polynomial if one uses a PCE based approach. Finally, the output of the PF problems or polynomial evaluations are aggregated into discrete histograms using bins of size 5×10 -3 times the typical variable scale computed from the system bounds and chosen to be V max -V min for voltages and S max i→j for line power flows. Note that a bin size much smaller than ≈ M -1/2 goes beyond the precision that one would expect to achieve using M samples. Typical histograms obtained with this procedure are displayed in Figure 2.

The distance between two histograms h 1 and h 2 is measured using the Total Variation (TV) distance,

TV(h 1 , h 2 ) = 1 2M b∈Bins |h 1 (b) -h 2 (b)|, ( 13 
)
which accounts for the average difference in counts for each histogram. The reason for choosing this metric is that is translates directly into guarantees for computing probabilities:

The difference in the probability of events computed from two histograms with TV distance of δ is no larger than δ.

Average and maximum TV distance between histograms of voltage magnitude and power line flows are presented in Table III. The results are obtained on the 1354 test-case with 10 areas and extreme fluctuations. The four methods are the full PCE of degree 1 and degree 2, SPICE and Monte-Carlo.

The TV distance of each method is measured with respect to a reference histogram produced by Monte-Carlo using an independent draw of 10 4 samples. Note that the TV distance between two independent Monte-Carlo runs is not zero but is about 0.5% to 1.0% on average and between 3% to 5% in the worse case. These discrepancies are caused by unavoidable statistical fluctuations that arose in our finite sample set. Therefore, the results for Monte-Carlo should be seen as a reference for the minimum TV distance we can expect to achieve with M = 10 4 samples. The quality of UQ for PCE of degree 2 and SPICE are similar and indistinguishable from Monte-Carlo, while SPICE being much less computationally intensive. PCE of degree 1 had the advantage to be extremely fast to run, but it performs poorly on this test-case with extreme load fluctuations of 3%. We obtained for voltage magnitude a TV distance of 10% on average and it goes up to 80% in the worst case. These results show that PCE of degree 2 is a well-suited method for uncertainty quantification for PF equations. Moreover, the sparsity promoting techniques implemented in SPICE does not come at a noticeable cost in terms of accuracy.

D. Uncertainty Quantification Robustness with SPICE

We test how robust is the UQ accuracy of the PCE method to a change in the distribution of load fluctuations. The PCE coefficients are computed with SPICE using the 1354 buses test-case with extreme fluctuations. This setting is identical to what is described in the previous Subsection V-C, for which the random variables ξ a are normalized and centered uniform distributions. However, unlike in Subsection V-C, the histograms are produced from the PCE polynomial evaluations using M = 10 4 samples generated by variables ξ a that are chosen to be normalized and centered Gaussian distributions. We compare SPICE with two Monte-Carlo runs, one for which the M = 10 4 samples arose from a Gaussian distributions and one for which the samples come from the uniform distribution.

Results of average and maximum TV distance between histograms of voltage magnitude and power line flows are presented in Table IV for SPICE and Monte-Carlo. The TV distance is measured with respect to a reference Monte-Carlo histogram produced from an independent draws of 10 4 samples from Gaussian distributions. We see that the Gaussian fluctuations produce very different histograms than in the uniform case. The TV difference between the uniform and Gaussian Monte-Carlo for voltage magnitude is about 50% on average and 100% in the worse case, which means that there is no overlap at all between the two histograms. The results also show that even though the PCE coefficients found by SPICE are suited for a uniform distribution, it remains accurate when the uncertainty arises from a very different distribution. This highlights an important feature of PCE that, unlike Monte-Carlo, it computes a deterministic mapping between load fluctuations and the power flow variables of the system. This mapping can latter be reused with a different uncertainty source such as historical data or uncertainty scenarios at no extra cost and with little impact on the UQ quality.

E. Computational Speed

The computational speed of Monte-Carlo, Full PCE of degree 2 and SPICE are compared on the 1354 buses testcase for different number of areas ranging from n = 2 to n = 13 under both extreme and moderate fluctuations. The computational times of the different method are displayed in Figure 3. We would like to stress that the times reported on that figure consists solely on computations necessary to produce the histograms (solving PF equations and PCE equations). In particular it does not account for the overhead time spent on saving and handling the datasets produced for each method. We will see in Subsection V-F that this overhead is not negligible for Monte-Carlo methods and ends up multiplying the whole run-time by a factor 2 to 4.

As expected the Monte-Carlo methods are not sensitive to the number of sources of uncertainty present in the system and depends only on the time required to solve 10 4 PF equations. For PCE techniques, the curse of dimensionality is apparent as the computational time increases exponentially with the number of zones. The benefits of the computational enhancements of SPICE translates in average into a 3.5 time speed-up with respect to the standard full PCE of degree 2. This makes SPICE more competitive than Monte-Carlo even for large systems when the number of uncertainty sources is around 10. Note also that the computational time for the standard PCE is similar for extreme and moderate load fluctuactions while there is a 40% time difference for SPICE. This reason it that SPICE takes advantage of the sparsity in the PCE coefficients. When the fluctuactions are moderate, loads have a lesser impact on variables located further away which leads to sparser PCE coefficients.

F. Overhead Time and Memory Storage

As mentioned previously, the computational time and memory capacity required to handle and store the datasets produced by the UQ methods differs significantly between Monte-Carlo and SPICE.

Concerning Monte-Carlo, one can only store the final histograms that are composed of M = 10 4 points for every variable (voltage, active power, reactive power, line flows) that are at each of the 1354 buses. This ends up constituting a file of 0.6GB and multiplies the whole run-time of the algorithm by a factor 2 to 4 owing to data loading latencies. While typical computational times reported in Figure 3 are around 1000 seconds for Monte-Carlo, the whole run-time including storage and data handling reaches in practice 1 hour.

The story is different for PCE methods like SPICE as it offers the capability to store only the non-zero PCE coefficients and generate the histograms later on the fly. The number of non-zero coefficients required for SPICE is not more than a hundred per variable and per bus and can be stored using only a dozen of MB. Histograms are generated from evaluations of PCE polynomial with independent draws of the random variables ξ a . Moreover, the evaluation of the PCE polynomials can be done efficiently using sparse matrix multiplication. For the 1354 buses system using 13 areas, the whole operation only takes 5 seconds.

VI. APPLICATION TO AC-OPF WITH CHANCE CONSTRAINS

In this section we apply our proposed UQ method SPICE for solving stochastic AC-OPF with chance-constraints (CC-AC-OPF). In this setting the power flow equations described in Section II are supplemented with the traditional constraints on voltage, line power and generation limits enforced probabilistically (the so-called chance constraints),

P V min i ≤ V i ≤ V max i ≥ 1 -δ, Voltage Limit P S 2 i→j ≤ (S max i→j ) 2 ≥ 1 -δ, Power Line Limit P p min i ≤ p i ≤ p max i ≥ 1 -δ, Active Generation Limit P q min i ≤ q i ≤ q max i ≥ 1 -δ, Reactive Generation Limit
where the confidence level at which each constraint are satisfied is 1δ. The procedure that we implement for solving the CC-AC-OPF problem is described by Algorithm 2. It is an iterative scheme that goes back and forth between solving a deterministic AC-OPF problem with effective voltage, power line and generation limits and a UQ evaluation of the chance constraints with SPICE to update the effective bounds, see [START_REF] Roald | Chance-constrained AC optimal power flow: Reformulations and efficient algorithms[END_REF] for more details.

Algorithm 2: Iterative CC-AC-OPF with SPICE

1 Initialization of effective voltage, power and generation limits:

V min eff , V max eff , S max eff , . . . ←-V min , V max , S max , . . . ; 2 repeat 3 Run deterministic AC-OPF with effective limits to determine operating point;

4

At the current operating point, evaluate with SPICE the δ quantiles Q V min , Q V max , Q S max , . . . of each chance constraints (e.g. P (V ≤ Q V max ) = 1δ);

5 Compute excess differences between limits and quantiles: ∆V min ←-min(Q V min -V min , 0), ∆V max ←-max(Q V max -V max , 0), . . . ;

6 Update effective limits with excess differences: V min eff ←-V min eff + ∆V min , V max eff ←-V max eff + ∆V max , . . . ; 7 until all excess differences vanishes ∆V min = ∆V max = ∆S max = . . . = 0;

Our test-case for CC-AC-OPF is the 1354 buses system described in Section V with moderate fluctuations and n = 10 areas. Bounds on the reactive power at generator 46 located at bus label 1754 have been removed as they were too restrictive for admitting a feasible solution to the stochastic CC-AC-OPF with 1% load fluctuations.

Results on convergence time and number of iterations necessary to solve CC-AC-OPF with SPICE are shown in Table V. Once the optimal solution is returned by Algorithm 2, the probability of bound violation are verified using 3 independent Monte-Carlo validations. We have also tested Algorithm 2 using PCE of degree 1 instead of SPICE. However for a confidence level of 99%, the solution provided by PCE of degree 1 underestimates the reactive power fluctuations arising at generator 16 (label 757) which ends up violating its limit for more than 1%.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have proposed an efficient and accurate UQ method, SPICE, for characterizing uncertainty in AC power flow equations which is a computationally enhanced PCE method of order 2. The main advantages of SPICE are that a) it scales to large systems and is computationally superior compared to Monte-Carlo b) it takes advantage of the inherent sparsity pattern of the fluctuation responses c) it is robust with respect to changes in the uncertainty distribution and d) it requires a low amount of memory for data storage.

In the future, we will focus our effort on developing a tractable single optimization formulation that incorporates SPICE within the AC-OPF problem directly. This will overcome the need for going through the iterative Algorithm 2 for solving the CC-AC-OPF problem and potentially increase the speed by another factor 4-5.

Algorithm 1 :

 1 SPICE 1 Solve the deg = 0 PCE by solving the set of deterministic PFE ignoring the uncertainty (For N ∼ 1, 000 is very fast ∼ 0.1 s) Obtain X (0) deg=0 -the deterministic power flow solution ; 2 Solve the deg = 1 AC-PF problem using the degree 0 result x 0 to warm start the k = 0 coefficients. All degree 1 coefficients are initialized to 0. Obtain X

9 Figure 1 .

 91 Figure 1. Illustration of the area decomposition of loads and fluctuations on a network with 30 buses and n = 9 independent zones. Buses with down arrows are the (uncertain) loads.

Figure 3 .

 3 Figure 3. Computational time taken by three different UQ methods on the 1354 buses test-case for different number n zones. Computational times are shown in blue, yellow and green for Monte-Carlo, Full PCE of degree 2 and SPICE respectively. Solid lines are associated with extreme load fluctuations of 3% and dashed lines are associated with moderate load fluctuations of 1%. On average SPICE is 3.5 faster than the full PCE of degree 2

Table I REFORMULATIONS

 I OF POWER FLOW EQUATIONS AND MOMENTS IN TERMS OF PCE COEFFICIENTS

COMPUTATIONAL

  TIME AND SPARSITY OF SPICE FOR TWO DIFFERENT VALUE OF THE CUTOFF HYPERPARAMETER.

	Computational Time (s)	647	522
	Degree 2 Coefficients Sparsity %	0	39
	Table II		

  Figure2. Voltage distribution at bus label 8316 computed on the 1354 buses test-case with 10 areas and extreme fluctuations using 10 4 samples. Histograms obtained using Monte-Carlo is in orange, full PCE of degree 1 in blue and SPICE in green. The voltage limit for this bus is displayed in red.

	200		V max	PCE deg=1
				MC	
	150			Spice
	100				
	50				
	0				
	1.095	1.100	V 8316	1.105	1.110
	Method		deg = 1	deg = 2	SPICE	MC
	Computational Time (s)		6	1714	522	1060
	Ave. TV, Voltage Magnitude	0.10	0.006	0.005	0.005
	Max. TV, Voltage Magnitude	0.80	0.031	0.029	0.033
	Ave. TV, Power Line Flow	0.015	0.012	0.012	0.012
	Max. TV, Power Line Flow	0.19	0.047	0.043	0.050
			Table III		
	AVERAGE AND MAXIMUM TV DISTANCE BETWEEN UQ METHODS WITH
	RESPECT TO A REFERENCE MONTE-CARLO HISTOGRAM.

  NUMBER OF ITERATIONS AND COMPUTATIONAL TIME FOR SOLVING CC-AC-OPF WITH ALGORITHM 2.

	CC-AC-OPF confidence level (1 -δ)	95%	99%
	Number of Iterations	4	5
	Computational Time (s)	1463	1793
	Post-Validation with MC		
	Table V