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Abstract. The use of deep generative models for unsupervised anomaly
detection is an area of research that has gained interest in recent years in
the field of medical imaging. Among all the existing models, the variational
autoencoder (VAE) has proven to be efficient while remaining simple to
use. Much research to improve the original method has been achieved in
the computer vision literature, but rarely translated to medical imaging
applications. To fill this gap, we propose a benchmark of fifteen variants
of VAE that we compare with a vanilla autoencoder and VAE for a
neuroimaging use case relying on a simulation-based evaluation framework.
The use case is the detection of anomalies related to Alzheimer’s disease
and other dementias in 3D FDG PET.
We show that among the fifteen VAE variants tested, nine lead to a good
reconstruction accuracy and are able to generate healthy-looking images.
This indicates that many approaches developed for computer vision
applications can generalize to the unsupervised detection of anomalies
of various shapes, intensities and locations in 3D FDG PET. However,
these models do not outperform the vanilla autoencoder and VAE.

Keywords: Variational autoencoder · Deep generative models · Unsu-
pervised anomaly detection · PET · Alzheimer’s disease

1 Introduction

Recent advances in medical image analysis have allowed the emergence of algo-
rithms that can perform complex tasks such as computer-aided diagnosis [7,10]
with pseudo-healthy reconstruction for unsupervised anomaly detection (UAD).
Contrary to supervised approaches, UAD does not require human annotations
that are costly and time consuming, and enables the detection of any type of
anomalies, without having seen them before. Most approaches rely on generative
models to reconstruct healthy looking images, also called pseudo-healthy images
[1,7,10]. The assumption is that if a model is trained with images from subjects
diagnosed as healthy, the reconstruction of images with a pathology should not
contain pathology-specific features and look like a healthy image. Comparing the
pseudo-healthy reconstruction with the real image then allows the detection of
anomalies.

The application context of our work is the detection of metabolic changes
visible in brain 18F-fluorodeoxyglucose (FDG) positron emission tomography



(PET) caused by Alzheimer’s disease and other dementias [8]. These subtle
changes appear several years before the first symptoms and can be used for early
diagnosis [16]. In neuroimaging, deep learning methods for UAD have not been
much applied for the diagnosis of dementia [9]. It is a challenging task because
the metabolic abnormalities are diffuse and little intense, which makes them
difficult to detect [3].

The different pseudo-healthy reconstruction approaches that have been devel-
oped for medical imaging rely on variational autoencoders (VAEs) [19], generative
adversarial networks (GANs) [12] and more recently diffusion models [15]. We
aim to compare VAE-based models as they have shown their efficacy for UAD in
medical imaging [1,7], are easy to train, easily scalable, with good interpretation
capacity thanks to their regularized latent space, and are able to handle small
datasets. Much research to improve the original VAE has been achieved in the
computer vision literature [2,5,11,14,18,21,22,23,25,27,29,30,32,36], but only a
few have been translated to medical imaging applications [1,6,9,24,31].

We propose a benchmark of seventeen VAE-based models and show results in
the context of pseudo-healthy reconstruction for dementia from 3D FDG PET.
As far as we know, the only study that has compared VAEs for neuroimaging
data is that of Baur et al. [1]. However, it was restricted to models that had
already been used for medical imaging applications. Many other VAE extensions
have thus not been assessed. Also, it was dedicated to the detection of very sharp
and intense anomalies, such as brain tumors or multiple sclerosis lesions, which
is very different from the identification of subtle anomalies found in PET images
of patients with cognitive disorders. Finally, it was performed in 2D. Our work
aims to contribute to this effort by evaluating a much wider set of approaches,
including many that were never used in medical imaging, relying on the work
of Chadebec et al. [4]. This will provide an insight into the performance that
such models can achieve in detecting anomalies in 3D data when trained with a
relatively small dataset (few hundreds of images) compared to most datasets used
in the computer vision literature (several tens of thousands images). The models
will be evaluated and compared based on reconstruction quality and on their
ability to generate healthy looking images using a previously proposed simulation
framework [13].

2 Methods

2.1 Variational autoencoder framework for pseudo-healthy image
reconstruction

Let D be a set of medical images of the same modality acquired following a
similar protocol. D can contain healthy and pathological images and can be
divided in respectively two complementary subsets Dh and Dp. Let’s take as an
example a set of FDG PET images x ∈ Dh whose distribution is p(x). The goal of
pseudo-healthy image reconstruction is to generate an FDG PET image of healthy
appearance. The idea is to approximate the healthy image true distribution p(x)
with a chosen model pθ(x) such that pθ(x) ≈ p(x). Then, during reconstruction,



the images (of healthy subjects or patients) are projected into that “healthy
images” learned subspace by the generative model.

This can be modeled using the VAE framework [19] by assuming that a latent
variable z is involved in the generation process of x: pθ(x) =

∫
z
p(z)pθ(x | z)dz

where z ∼ pθ(z) is the prior distribution on the latent space and pθ(x | z) is
the generative model (or the decoder) that learns to generate healthy images
from z. To compute the appropriate z for each data input x of our dataset, we
need the posterior distribution pθ(z | x). Since it is untractable, we approximate
it using variational inference by introducing another model qϕ(z | x) such that
qϕ(z | x) ≈ pθ(z | x). qϕ(z | x) is the inference model (or encoder). Both the
decoder and encoder are parametric models whose parameters are given by a
neural network.

The objective is to maximize the likelihood of pθ(x), which is equivalent to
maximizing the evidence lower bound, which defines our loss function Lθ,Φ [20]

log (pθ(x)) ≥ Lθ,Φ(x) = EqΦ(z|x)

[
log

(
pθ(x | z)

)]
−DKL

(
qΦ(z | x)∥pθ(z)

)
(1)

with DKL the Kullback-Leibler divergence.
During the training process, we learn an approximation of the posterior

distribution qϕ(z | x) for x ∈ Dh as we train our model using only healthy
subjects. When using the model for inference, we use this approximate posterior
to estimate the latent variable z for x ∈ D (it can be from Dh or Dp).

2.2 Extensions to the variational autoencoder framework

As explained in detail in [4], several contributions have been proposed to improve
the VAE framework. They can be divided into four categories that correspond to
different objectives:
– improve the prior distribution p(z) by using a variational mixture of posteriors

as prior (VAMP) [30], by learning the prior on a discrete latent space with
vector quantized-VAE (VQVAE) [32], or by substituting the prior with
a density estimation method using regularization with a gradient penalty
(RAE-GP), or an ℓ2 penalty on the decoder (RAE-ℓ2) [11];

– better estimate the lower bound by using importance weighting (IWAE)
[2], and using a linear normalizing flow (VAE-lin-NF) [25] or an inverse
autoregressive flow (VAE-IAF) [21] to better estimate the posterior;

– encourage disentanglement of the features in the latent space by adding a
weight to balance the terms of the loss in Eq. 1 (β-VAE) [14], decomposing
the loss to show a total correlation term (β-TC VAE) [5], or by encouraging
the distribution of the latent variable q(z) to be factorial (FactorVAE) [18];

– and change the distance computed between the distributions by adding the
mutual information between x and z as regularization (InfoVAE) [36], using
another divergence term in the loss such as the maximum mean discrepancy
in the Wasserstein autoencoder (WAE) [29] or a discriminator to differentiate
a prior’s sample from a posterior’s sample in the adversarial autoencoder



(AAE) [23], or by changing the reconstruction metric for another similarity
metric such as the multi-scale structural similarity (MSSSIM-VAE) [27], or for
the prediction of a discriminator on the output of the VAE (VAEGAN) [22].

In our benchmark, these models will be compared to the autoencoder (AE) and
VAE [19], which makes a total of seventeen models. All of these methods have
shown great results in other fields of computer vision, and, since VAE-based
models can learn the data distribution on a small dataset, we keep the focus on
them and aim to assess their performance in the context of medical imaging.

2.3 Evaluation of the models

We can distinguish two main objectives when generating pseudo-healthy images:
preserving the subject’s identity in the reconstructed image and ensuring that
the reconstruction appears healthy [35].

For the subject identity preservation, we evaluate the models on real images
from healthy subjects only: the pseudo-healthy reconstruction of an image of
a healthy subject should be identical to the input. This is assessed using three
commonly used paired reconstruction metrics: the mean-squared error (MSE),
the peak signal-to-noise ratio (PSNR) and the structural similarity (SSIM) [33].

To evaluate the capability of each model to reconstruct healthy looking images,
since we do not have access to ground-truth lesions masks, we use the evaluation
framework that has been introduced in [13]. It consist in simulating the effect of
the disease by reducing the intensity of the PET uptake within regions associated
with different dementias, thus mimicking regional hypometabolism [3]. After
locally reducing the intensity of the image by a certain percentage, a Gaussian
smoothing is applied to have a realistic result and diffuse anomalies. That way
we can have pairs of diseased images with the original healthy scan that is used
as ground-truth for the pseudo-healthy reconstruction as we do not have ground
truths for images from real patients in our dataset. We simulate five different
dementias on images of healthy subjects: Alzheimer’s disease (AD), behavioral
variant frontotemporal dementia (bvFTD), logopenic variant primary progressive
aphasia (lvPPA), semantic variant PPA (svPPA) and posterior cortical atrophy
(PCA). This allows us to evaluate the capability of the model to generalize
to anomalies caused by different dementia subtypes. In addition, we simulate
different degrees of AD severity by varying the reduction in intensity from five to
seventy percents to study the sensitivity of the UAD approaches on subtle and
severe anomalies. We compute the reconstruction error in the whole image, in
the region associated with the simulated dementia and in the complementary of
this region in the brain.

2.4 Materials

FDG PET scans used in this study were obtained from the publicly available
ADNI database [17] (https://adni.loni.usc.edu). We selected FDG PET
images co-registered, averaged and uniformized to a resolution of 8 mm FWHM
to reduce the variability due to the use of different scanners. The images were

https://adni.loni.usc.edu


then linearly registered to the standard MNI space, normalized in intensity using
the average PET uptake in a region comprising cerebellum and pons, and cropped
using the Clinica [26] pet-linear pipeline. We finally down-sampled the images
to a voxel size of 80× 96× 80 to reduce their dimension and the memory usage.

ADNI includes a total of 733 FDG PET scans of cognitively normal (CN)
participants with a stable diagnosis over a three-year window (corresponding
to 301 subjects). We discarded 144 images that were not correctly registered
according to the quality check algorithms implemented in ClinicaDL [28].

2.5 Experimental setting

We split our dataset of 247 remaining CN subjects at the subject’s level to avoid
data leakage [34]: 50 CN subjects (50 images) compose the test set, 19 subjects
(19 images) belong to the validation set and 178 subjects (452 images) are used
to train our models. The split is stratified by sex and age to reduce biases. The
50 images of the CN subjects from the test set are also used to simulate the
hypometabolic images mimicking various dementias and AD severity degrees.

For the comparison to be as fair as possible, all the models share the same
encoder and decoder architecture. The encoder is composed of three blocks that
are the succession of a 3D convolutional layer and a batch normalization with a
ReLU activation. Then the tensor is flatten and passes through a dense layer to
output a one dimensional latent space. The decoder is almost symmetrical: it is
composed of a dense layer followed by three blocks that are composed of a 3D
deconvolutional layer and a batch normalization with a leaky ReLU activation.
We tested several sizes of latent space (16, 64, 128 and 256), but as we observed
similar performance, we report the results for a size of 128, consistent with the
choice made in [1].

We also use the same training parameters and environment to train all the
models. We trained each model on 300 epochs with a learning rate of 10−5 and
a batch size of 24 on a HPC with Nvidia Tesla V100 GPUs that have 32GB
of memory. We are aware that model performance can greatly vary depending
on these parameters, but for fair comparison we decided to choose the best
parameters on the VAE and use the same for all models. It takes on average
between 1’ and 1’30” to train one epoch with comparable performance for each
model on our computer cluster, meaning around 7 h per model for 300 epochs.

VAE-based model implementation relies on Pythae [4] and neuroimage pro-
cessing on ClinicaDL [28], two open source software tools. The code used for
this study is available on GitHub and can be used to reproduce the experiments:
https://github.com/ravih18/VAE-models-for-UAD.

3 Results

3.1 Pseudo-healthy reconstruction from images of control subjects

We first assessed whether the different models could preserve the subject’s identity
by computing the MSE, PSNR and SSIM between the input and reconstructed
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Table 1. Reconstruction metrics computed between the pseudo-healthy reconstructions
obtained with the various models evaluated and the original healthy PET image of CN
subjects from the test set. Light gray highlights the worst performing models.

Model MSE ↓ PSNR (dB) ↑ SSIM ↑
AE 0.02694 ± 0.00603 25.78 ± 0.84 0.725 ± 0.033
VAE [19] 0.02471 ± 0.00517 26.15 ± 0.79 0.771 ± 0.027
VAMP [30] 1.09029 ± 0.10416 9.64 ± 0.41 0.057 ± 0.015
RAE-GP [11] 0.02363 ± 0.00480 26.34 ± 0.79 0.750 ± 0.030
RAE-ℓ2 [11] 0.02385 ± 0.00532 26.31 ± 0.83 0.761 ± 0.029
VQVAE [32] 0.02645 ± 0.00608 25.87 ± 0.85 0.731 ± 0.032
IWAE [2] 0.03531 ± 0.00711 24.60 ± 0.80 0.692 ± 0.030
VAE-lin-NF [25] 0.12887 ± 0.02875 18.99 ± 0.89 0.483 ± 0.036
VAE-IAF [21] 0.02900 ± 0.00560 25.45 ± 0.77 0.706 ± 0.032
β-VAE [14] 0.03927 ± 0.00654 24.12 ± 0.71 0.708 ± 0.028
β-TC VAE [5] 0.02819 ± 0.00499 25.55 ± 0.67 0.729 ± 0.031
FactorVAE [18] 0.02869 ± 0.00550 25.49 ± 0.74 0.704 ± 0.032
InfoVAE [36] 0.03223 ± 0.00566 24.97 ± 0.69 0.706 ± 0.030
WAE [29] 0.02920 ± 0.00509 25.40 ± 0.66 0.690 ± 0.032
AAE [23] 0.02919 ± 0.00597 25.43 ± 0.81 0.709 ± 0.032
MSSSIM-VAE [27] 1.22541 ± 0.18918 9.17 ± 0.73 0.167 ± 0.027
VAEGAN [22] 0.86575 ± 0.03080 10.63 ± 0.15 0.073 ± 0.014

images of the CN subjects. Results are reported in Table 1. We observe that no
model clearly outperforms the others. On the other hand, VAMP [30], VAE-lin-
NF [25], MSSSIM-VAE [27] and VAEGAN [22] perform less well than the others
(MSE > 0.05, PSNR < 20 dB, SSIM < 0.5). A possible explanation is that the
dataset is too small for these models to learn the data distribution.

The other models obtain a similar performance with, on average, an MSE <
0.04, PSNR > 24 dB and SSIM comprised between 0.69 and 0.75. Not surprisingly,
the AE leads to a good performance for this reconstruction task according to the
MSE as it is the optimized metric. The vanilla VAE [19] seems to be one of the
best models but does not stand out from the other models. It is probable that
some models would benefit from hyper-parameter fine tuning to perform better,
but it is interesting to see that optimal parameters obtained on classic computer
vision datasets do generalize to this different application for many models.

3.2 Pseudo-healthy reconstruction from images simulating dementia

In the following, we discarded the four models that did not give acceptable recon-
structions. We first report, for the five dementia subtypes considered simulated
with a hypometabolism of 30%, the MSE and SSIM between the simulated image
and their reconstructions within the binary mask where hypometabolism was
applied (e.g. between X ′ and X̂ ′ within the binarized mask M in Fig. 1). All
the models reach a very similar performance with an MSE on average across
models of 0.0132 (min MSE of 0.0096 for the RAE GP [11] and max MSE of
0.0183 for the IWAE [2]) and an average SSIM of 0.710 (min SSIM of 0.684 for



Fig. 1. Example of FDG PET image of a CN subject (X) with the corresponding
pseudo-healthy reconstruction (X̂) and difference image (∆), followed by an image
simulating AD hypometabolism obtained from X (X ′) with the corresponding pseudo-
healthy reconstruction (X̂ ′) and difference image (∆′), and the mask used to generate
X ′ (M). The pseudo-healthy reconstructions were obtained from the vanilla VAE model.

the IWAE [2] and max SSIM of 0.733 for the RAE-ℓ2 [11]). This means that
the VAE-based models can generalize to various kinds of anomalies located in
different parts of the brain, and that none of the tested models can be selected
based on this criteria. The average MSE over all the models and all the dementia
subtypes (between X ′ and X̂ ′) is 0.0132 in the pathological masks M against
0.0072 outside the masks, which makes a 58.6% difference between both regions.
The average SSIM is 0.710 inside masks M against 0.772 outside the masks for
a 8.4% difference. This shows that the reconstruction error is much larger in
regions that have been used for hypometabolism simulation, as expected. For
comparison, the percentage difference is only 10.2% for the MSE and 0.2% for
the SSIM when computed between the pseudo-healthy reconstruction X̂ ′ and the
real pathology-free images X. This illustrates that the models are all capable of
reconstructing the pathological regions as healthy.

We then report in Fig.2 the MSE within the mask simulating AD when
generating hypometabolism of various degrees (5% to 70%) for each model. It is
interesting to observe that most of the models could be used to detect anomalies
of higher intensity as they have an increasing difference in terms of MSE for
hypometabolism of 20% and more. The same trend was observed with the SSIM.
The RAE-ℓ2 [11] does not scale as well as other models, probably because the
regularization is done on the decoder weights so nothing prevents the encoder
from learning a posterior that is less general. We also notice that the IWAE
[2] has a worse reconstruction on the pathological region compared to other
models, and this becomes more pronounced when the severity of the disease is
increased. However this does not mean that IWAE [2] better detects pathological
areas since the reconstruction is poor in the whole image as well, meaning that
IWAE [2] cannot perform well when the image is out of the training distribution.
Surprisingly, the simple autoencoder gives similar results as other methods.

4 Conclusion

The proposed benchmark aimed to introduce the use of recent VAE variants
with medical imaging data of high dimension and compare their performance on
the detection of dementia-related anomalies on 3D FDG PET brain images. We



Fig. 2. Bar plot of the evolution of the MSE when computed within the mask charac-
teristic of AD between the image simulated with different degrees of hypometabolism
and its reconstruction. We observe that most models can scale to large anomalies.

observed that most models have a comparable reconstruction ability when fed
with images of healthy subjects and that their outputs correspond to healthy
looking images when fed with images simulating anomalies. Exceptions are the
VAEGAN [22], VAMP [30], VAE-lin-NF [25], MSSSIM-VAE [27], RAE-ℓ2 [11]
and IWAE [2]. Thanks to the evaluation framework that consists in simulating
images with anomalies from pathology-free images, we showed that most models
can generalize pseudo-healthy reconstruction to different dementias and different
severity degrees. These results are interesting as it means that VAE-based models
developed for natural images can generalize well to other tasks (here 3D brain
imaging): they are easy to use and do not necessarily require a large training
set, which might not be the case for other types of generative models. We also
showed that in our scenario (small dataset of complex 3D images) the simplest
models (vanilla AE and VAE) lead to results comparable to that of the more
complex ones. Nevertheless, the results are for now limited to the detection of
simulated anomalies. An evaluation on real images would be necessary to confirm
these observations.

The proposed benchmark could be used in future work to assess whether the
posterior learned by the different models is the same for images from healthy
and diseased subjects using the simulation framework to compare the latent
representation of both the original and simulated images, thus explaining the
results of the models. It would also be interesting to compare some of the VAE-
based models to GANs or diffusion models, and assess whether it would be
possible to improve reconstruction quality while learning the distribution of
healthy subject images.
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Unsupervised anomaly detection in 3D brain FDG
PET: A benchmark of 17 VAE-based approaches

Fig. 1. Evolution of the MSE when computed within the brain but outside the mask char-
acteristic of AD between the image simulated with different degrees of hypometabolism
and its reconstruction. We observe that the MSE is not increasing as much as inside
the mask characteristic of AD when simulating more severe hypometabolism (Fig. 2).

Table 1. MSE and SSIM inside and outside the mask used for simulation, averaged across
all the simulated dementias (30%) for all the models giving acceptable reconstruction.

Within pathological mask M Within brain but outside mask M
Models MSE SSIM MSE SSIM
AE 0.01385 ± 0.00798 0.714 ± 0.043 0.00727 ± 0.00356 0.775 ± 0.024
VAE [19] 0.01281 ± 0.00724 0.725 ± 0.044 0.00679 ± 0.00307 0.786 ± 0.023
RAE-GP [11] 0.00963 ± 0.00642 0.729 ± 0.046 0.00662 ± 0.00346 0.784 ± 0.025
RAE-ℓ2 [11] 0.01203 ± 0.00727 0.733 ± 0.043 0.00665 ± 0.00332 0.793 ± 0.024
VQVAE [32] 0.01269 ± 0.00770 0.720 ± 0.047 0.00696 ± 0.00348 0.785 ± 0.025
IWAE [2] 0.01839 ± 0.00929 0.684 ± 0.048 0.00882 ± 0.00445 0.747 ± 0.026
VAE-IAF [21] 0.01294 ± 0.00756 0.705 ± 0.047 0.00725 ± 0.00333 0.768 ± 0.025
β-VAE [14] 0.01365 ± 0.00771 0.705 ± 0.047 0.00740 ± 0.00314 0.769 ± 0.025
β-TC VAE [5] 0.01326 ± 0.00771 0.708 ± 0.048 0.00723 ± 0.00354 0.774 ± 0.025
FactorVAE [18] 0.01420 ± 0.00754 0.689 ± 0.048 0.00751 ± 0.00316 0.750 ± 0.025
InfoVAE [36] 0.01295 ± 0.00751 0.713 ± 0.045 0.00711 ± 0.00322 0.777 ± 0.025
WAE [29] 0.01247 ± 0.00718 0.698 ± 0.045 0.00726 ± 0.00350 0.758 ± 0.025
AAE [23] 0.01369 ± 0.00805 0.703 ± 0.047 0.00743 ± 0.00370 0.765 ± 0.025



Fig. 2. Reconstruction obtained for each benchmarked model from the real image of a
CN subject in the test set (left) and from an image simulating a 30% hypometabolism
in the region associated with AD based on the same CN subject (right).
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