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Abstract. We deploy a neural network to predict the spectro-temporal evolution of simple sinusoidal 

temporal modulations upon propagation in a nonlinear dispersive fibre. Thanks to the speed of the neural 

network, we can efficiently scan the input parameter space for the generation of on-demand frequency combs 

or the occurrence of substantial spectral/temporal focusing. 

1 Introduction  

The application of machine learning approaches in 

photonics for characterising and controlling ultrafast 

propagation dynamics has attracted increasing interest in 

recent years [1]. Neural networks (NNs) have been 

successfully introduced as an effective tool for 

substituting the nonlinear Schrödinger equation (NLSE) 

in modelling the reshaping of ultrashort pulses that results 

from nonlinear propagation in a dispersive optical fibre 

[2,3] or for predicting the generation of optical 

supercontinua [4]. The fibre Kerr nonlinearity will also 

affect the propagation of a continuous wave modulated at 

a certain frequency, which will experience an energy 

exchange between the spectral lines that make up its 

spectrum as well as a change in the relative phase between 

the frequency components. The emergence of new, evenly 

spaced frequency components will give rise to a 

frequency comb, whereas significant temporal domain 

reshaping will occur, typically producing pulse trains with 

extremely high repetition rates [5]. In this contribution, 

we describe how we have developed and trained a NN [6] 

that enables us to predict the longitudinal spectro-

temporal evolution of periodic waveforms in a fibre. Both 

the normal and anomalous regimes of dispersion of the 

fibre are explored to synthesise on-demand frequency 

combs or detect the occurrence of significant spectral or 

temporal focusing, and the remarkable speed of the NN is 

exploited to scan the space of input parameters. 

2 Methods  

This work focuses on the nonlinear propagation of two 

types of periodic waveforms that have already been 

studied in the context of linear shaping [7]: a continuous 

wave modulated at a frequency fm which produces an 

optical spectrum with a central component and two 

symmetrically located sidebands, and a wave whose 

spectrum is made up of four spectral lines without any 

continuous background. The data from numerical 

simulations of the NLSE based on the standard split-step 

Fourier technique is used to train the NN and verify its 

predictions. We employ a feedforward NN including three 

hidden layers and applying the Bayesian regularisation 

back propagation method. The NN learns the NLSE 

model from an ensemble of hundreds of thousand 

simulation data (real and imaginary parts of the spectral 

field) for the anomalous or normal dispersion regime of 

the fibre, corresponding to randomly chosen 

combinations of the input parameters: amplitude ratio A 

of the central frequency component of the optical 

spectrum to the lateral sidebands, spectral phase offset φ 

of the sidebands relative to the central component, 

normalised propagation length ξ, and soliton-order 

number N. 

After training, the NN is tested on a distinct ensemble of 

tens of million data not used in the training stage. The 

speed of the trained NN is its greatest asset: in less than a 

minute, it can accurately predict the output properties of 

this large data set. Therefore, it can explore the whole 4D 

input parameter space for the best parameter sets that 

fulfil given targets without being trapped in local optima. 

3 Performance examples  

Some examples of the NN's performance are illustrated in 

Figure 1. In panels (a1) and (a2), the NN was tasked with 

determining the input parameters that enable the 

formation of optical spectra made of nine spectral lines of 

equal intensity and of six spectral lines of equal intensity 

but with the central component suppressed, respectively, 

when a three-frequency component initial condition is 

used at the input of an anomalously dispersive fibre. The 

NN predictions are in good agreement with the results of 

the NLSE model. The scatter plot in panel (a3) evidences 

the existence of two distinct regions in the input parameter 
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space that can support the formation of highly flat 

frequency combs. Moreover, we can see that flat combs 

can be achieved starting from lateral sidebands with either 

lower or higher intensity in comparison to the central 

component. 

 

 

Fig. 1. Generation of on-demand frequency combs in an 

anomalously dispersive fibre: (a1, a2) Combs consisting of 9 

spectral lines of equal amplitude and of 6 spectral lines of 

equal amplitude but with the central component cancelled, 

respectively. (b) Regions in the input parameter space that 

enable the formation of high-flatness combs. 

 

As our NN accounts for both the spectral intensity and 

phase of the generated comb, it is straightforward to 

reconstruct the temporal properties of the corresponding 

pulse train. For the pulse train in panel (a) of Fig. 2, the 

NN was prompted to probe the input parameter space for 

the pulse train with the largest ratio of the pulse peak 

power to the average power. Even when plotted on a 

logarithmic scale, the temporal profile of the compressed 

waveform predicted by the NN shows excellent 

agreement with that obtained from NLSE simulation. 

Additionally, we have verified that the NN is capable of 

accurately reconstructing the initial waveform's 

longitudinal temporal evolution. The findings depicted in 

panel (b) of Fig. 2 relate to the spectral focusing that 

typically occurs in a normally dispersive fibre. The NN 

was able to determine a combination of spectral phase and 

propagation parameters resulting in remarkable inverse 

four-wave mixing starting from three spectral lines of 

equal amplitude. At the output of the fibre, the main 

frequency component contains more than 80% of the total 

energy, whereas the neighbouring frequency components' 

intensities are more than 15 dB lower. Further results, 

including the synthesis of customised frequency combs 

and optical undular bores [8] in the normal dispersion 

propagation regime, will be discussed at the conference. 

 

 

Fig. 2. (a) Temporal focusing in an anomalously dispersive 

fibre: generation of a pulse train with the highest pulse peak 

power relative to the average power (plotted on linear and 

logarithmic scales in panels 1 and 2, respectively). (b) Spectral 

focusing in a normally dispersive fibre: generated optical 

spectrum. The predictions from the NN (red circles) are 

compared with the results of NLSE numerical simulations 

(black diamonds or lines). Also shown are the initial conditions 

at the fibre input (blue crosses or lines). 

4 Conclusions 

We have shown that, starting from periodic wave initial 

conditions with three or four frequency components, a 

trained NN can identify the input system parameters 

needed to produce on-demand target frequency combs in 

a nonlinear optical fibre. The accurate prediction of the 

longitudinal evolutions of the wave intensity profiles in 

the time and frequency domains by the NN for both the 

anomalous and normal dispersion regimes of the fibre has 

enabled the replication of the processes of ultrashort pulse 

formation, spectral compression and undular bores that 

are involved in the NLSE. 
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