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Abstract. A nonlinear interaction of waves in a dispersive medium manifests itself in a four-wave mixing 

process that can be described as an evolution of waves’ parameters on a phase plane in a form of closed orbits. 

Here we propose a method to control these trajectories and to switch from one state to another in an optimal 

manner by implementing an abrupt change of the average power. The method is confirmed experimentally by 

the reconstruction of a fundamental four-wave mixing dynamics in an idealized model using iterative 

propagation in a short segment of fiber.    

1 Introduction  

The nonlinear Schrodinger equation is a basis of nonlinear 

fiber optics. In the focusing regime of propagation, the  

four-wave mixing (FWM) process can explain a broad 

range of observations such as modulation instability, 

generation of ultrashort high-repetition pulse trains, 

parametric amplification… In its simplest configuration, 

FWM involves the interaction of three waves (a strong 

continuous wave pump and two other components located 

symmetrically on both sides of this pump) with exchange 

of energy and phase variation. The dynamics of this 

system is of recurrent nature and can be depicted as closed 

orbits in reduced coordinates on a phase plane. The 

trajectories follow unique paths depending on the initial 

energy distribution and dephasing between the three 

waves as well as the average power [1]. Hence, it is 

impossible to link two states unless they belong to the 

same orbit. Here we seek to remove this fundamental 

limitation by introducing an approach based on an abrupt 

change of the average power. If it is done at a relevant 

point on the phase plane the switching allows an efficient 

transition between the two desired states.  

2 Idealized four-wave mixing  

1.1 Theoretical background 

An ideal FWM assumes that nonlinear interaction occurs 

solely between the pump 0 and the two spectral lines ±1 

at ±m (with m = 2πfm being the modulation frequency). 

To describe the dynamics, one may use reduced 

parameters: the relative spectral amplitude  = |0|2/ 

|i|2 and the relative phase  = -1 + 1 - 20  with i  

being the phase of each spectral line. In this case the 

evolution of spectral lines with propagation distance can 

be described by the one-dimensional conservative 

Hamiltonian [1]: 
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Here the 2 = sign(2)(2πfm )2/(|2|/P0)  is a nonlinear 

mismatch parameter with P0 being the average power, 2 

and  - the second-order dispersion and the nonlinear 

coefficient of a fiber, respectively.  = z/(P0) is the 

normalized distance. 

 To characterize the dynamics, the evolution of  and 

 can be put on a phase plane: ( cos ,  sin). There 

exist two families of solutions following the recurrent 

orbits, that are divided by a separatrix [1, 2].  

1.2 Experimental setup 

In order to remain in the framework of the ideal FWM 

without any new cascaded spectral component, we 

developed a devoted experimental setup presented in 

Fig. 1 which relies on standard components of the 

telecommunication industry [3]. We generate a comb at 

40 GHz from a continuous wave (CW) laser modulated 

by a phase modulator, which is then shaped in the 

frequency domain to reach the desired ,. The signal is 

amplified by an erbium-doped fiber amplifier (EDFA) to 

reach P0 and then propagates in a single-mode fiber (2 = 

-8 ps2 km-1 ;   = 1.7 W-1 km-1). By using a limited length 

of optical fiber (500 m), we avoid cascaded interactions 

as well as spurious additional nonlinear effects. The level 

of dissipation is negligeable. The output relative 

amplitude is measured with an optical spectrum analyser 

(OSA), and the phase is obtained from relative sinusoidal 

beating of two filtered signals measured on a high-speed 

sampling oscilloscope. After the output , are measured, 

the input is updated, and the process is repeated 



 

continuously, so that a complete trajectory can be 

reconstructed. Note that an alternative design of this setup 

has been developed to benefit to machine-learning 

approaches [4]. 

 

Fig. 1 Experimental setup. PC – polarization controller, Att. – 

attenuator, OBPF – optical band pass filter, PD – photodiode, 

RF amp. – radiofrequency amplifier.  

3 Trajectory control 

3.1 Principle 

Early experiments in fiber optics or hydrodynamics have 

already explored the idea of an abrupt change of the 

medium properties to freeze the longitudinal evolution of 

a breathing wave [5,6]. Indeed, depending on the fiber 

characteristics the orbits would have different shapes and 

the normalized mismatch parameter  in Eq. (1) will 

change. Therefore,  represents a key control parameter 

[7] which change will enable a control of dynamics and 

states transitions. In our approach, instead of varying the 

fiber properties, we choose the average power as a the 

degree of freedom and we do not restrict ourself to 

targeting a stationary state. 

 If there are no limitations in reachable values of , 

any two points on the phase plane can be connected by a 

single abrupt change of this parameter. In practice, 

however, experimental conditions limit the control: we 

consider fixed fiber characteristics, and the input power is 

restricted in order not to damage the equipment. In our 

case, only values 2  [-2.51 : -0.95] can be reached.   

 To make a state transition, first, we select the input 

IN, IN and the output OUT, OUT points we want to 

connect. Then, using a Hamiltonian conservation, we find 

all reachable states for both points within the given limits 

of . Out of this range of reachable states we find an 

optimum, i.e. an intersection point that allows to connect 

input and output on the shortest propagation length. To 

change the  we adjust the input power accordingly in the 

intersection point. 

3.1 Experimental demonstration 

 Two examples of experimental demonstrations are 

presented in Fig. 2 (solid lines ; dashed lines represent 

ideal close orbits for the input and output powers). We 

confirm that with a single change in the average power, 

the trajectory can cross the separatrix and switch to 

another type of dynamics (panel (a)). The transition takes 

11 km with a switching taking place after 6.5 km.  

 It is also possible to control the orbits within the same 

family of solutions (panel (b)). Here a trajectory starting 

on the right side makes a transition to the inner orbit after 

power increase by 1 dB.  

 

 

Fig. 2 Experimental trajectories that connect (a) IN = 0.90, IN 

=  and OUT = 0.90, OUT = 0,  (b) IN = 0.90, IN = 0 and 

OUT = 0.80, OUT = 0, by an abrupt power change. The colour 

depicts value of input average power that is used for each part 

of the trajectory. 

Conclusion 

We have conceptually and experimentally demonstrated 

that an abrupt change of the average power allows tailored 

manipulation of the ideal FWM dynamics and can help to 

connect two states that are not part of the same orbit [8]. 

This switching technique is robust to small deviations 

from the ideal simulations. The results follow well the 

numerical predictions, and the theoretical estimation of 

the switching point is accurate. 
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