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This paper investigates the propagation of a flame front in a periodic heterogeneous solid medium under the effect of temperature. The system of PDEs for the temperature and the interface form a free boundary system composed of a parabolic equation coupled with a Hamilton-Jacobi type equation. We propose a monotonous numerical scheme and verify numerically that the numerical solution converges to a traveling wave solution for large time.

Introduction

In this paper, we investigate the propagation of a flame front in a heterogeneous solid medium having a periodic structure. More precisely, we consider a plane with periodic horizontal striations. One may imagine for example a medium composed of a horizontal superposition of two materials. Let x = ξ(t, y) be the position of the flame front at time t. Then the propagation of the front is governed by the following free boundary problem:

           ξ t + rK(u) 1 + ξ 2 y = ϵ ξ yy 1 + ξ 2 y y ∈]0, 1[, t > 0 ξ(t, 1) = ξ(t, 0)
t > 0, ξ y (t, 1) = ξ y (t, 0) t > 0, ξ |t=0 = ξ 0 (y) y ∈ [0, 1].

(P 2D )                 
u t -div( d ∇u) = 0 (x, y) ∈ Ω t , t > 0 d ∂u ∂ν (t, ., y) = θβV n (x, y) ∈ Γ t , t > 0 u(t, x, y) = 0 x → -∞ u(t, x, 1) = u(t, x, 0) u y (t, x, 1) = u y (t, x, 0) u |t=0 = u 0 (x, y).

(C 2D )

The space domain at time t ≥ 0 is giving by:

           Ω t = {(x, y) /y ∈]0, 1[ with x < ξ(t, y)} , Γ ξ = ∂Ω t ∩ {x = ξ(t, y)} , Γ ∞ = ∂Ω t ∩ {x → -∞} , Γ 0 = ∂Ω t ∩ {y = 0} , Γ 1 = ∂Ω t ∩ {y = 1} . (Dom) 
Here u = u(t, x, y) represents the temperature, ν =

1 √ 1+ξ 2 y
(1, -ξ y ) is the outward unit normal and V n is the normal velocity of the front. The first equation of (P 2D ) just states that the front propagates with a normal velocity

V n = -rK(u) -ϵ ξ yy 1 + ξ 2 y (1.1)
where K is the kinetic rate (for example K(u) = exp -E u in the case of an Arrhenius kinetic). The second term of the right hand side in (1.1) is the mean curvature (ϵ being a curvature coefficient). The inhomogeneity of the medium is characterized by the physical parameter d (the thermal diffusivity) together with the chemical parameter r (the combustion rate). These two parameters, which depend only on the y variable, will have as much periodicity as is allowed by the medium. This is what seems to be the most realistic case. The parameters β is a fraction of the total heat release and which serves to heat the solid thus making the combustion self-sustained and θ the heat capacity. In the following, we normalize these parameters, assuming β = θ = 1. An analogous problem corresponding to a propagation through vertical striations has been investigated in [START_REF] Chen | Wave propagation under curvature effets in a heterogeneous medium Applicable Analysis[END_REF] in the context of combustion of solid materials in certain rocket motors. The striations are due to casting processes during fabrication. In that case, the front is a straight line and the problem reduces to an ODE. The case of horizontal striations has been essentially investigated in the case where the fluctuations of the temperature at the front are neglected (see for example [START_REF] Chen | Wave propagation under curvature effets in a heterogeneous medium Applicable Analysis[END_REF][START_REF] Namah | Propagation d'un front dans un milieu hétérogène:Comportement en temps long et homogénéisation. Application à la combustion du propergols solides[END_REF][START_REF] Namah | Asymptotic solution of a Hamilton-Jacobi equation[END_REF]), so that the problem (P 2D ) reduces to the single equation

ξ t + r 1 + ξ 2 y = ϵ ξ yy 1 + ξ 2 y y ∈ R, t > 0 (1.2)
which is of Hamilton-Jacobi type with curvature. A quite complete study has been done for this equation: well-posedness, large time asymptotics, existence of traveling wave solutions (TWS), curvature effects and limit when ϵ goes to zero, homogenization etc (see [START_REF] Crandall | Some properties of viscosity solutions of Hamilton-Jacobi Equations Trans[END_REF][START_REF] Brauner | Propagation of a combustion front in a striated solid medium : A Homogenization Analysis[END_REF][START_REF] Gazibo Karimou | Etudes mathématiques et numériques des problèmes paraboliques avec des conditions aux limites[END_REF][START_REF] Osher | Front propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulation[END_REF]). As concerning the complete system (P 2D )-(C 2D ) in a recent work Alibaud and al, (cf. [START_REF] Namah | On the propagation of periodic flame front by Arrhenius kinetic[END_REF]) focused their study on the existence of traveling wave solutions and on the homogenization process when the period goes to zero. Let us recall that the definition of periodic traveling waves for the free boundary problem (P 2D )-(C 2D ). The triple (c, u, v) is a travelling wave solution if:

ξ(t, x) = -ct + v(y) and u(t, x, y) = u(x + ct, y) (1.3)
where c > 0 will be the (constant) speed of the front and v its (steady) profile.

It is convenient to proceed by fixing the front through the transformation z = x + ct: In this front-fixed frame and redenoting z by x, problem read:

Find a triplet (c, v, u); c > 0; v = v(y); u = u(x, y); v and u 1-periodic in y such      cu x -div( d ∇u) = 0 x ≤ v(y) d ∂u ∂ν (t, ., y) = θβV n x = v(y) u(t, x, y) → 0 x → -∞ (S 2D )
and

-c + rK(u) 1 + v 2 y = ϵ v yy 1 + v 2 y x = v(y).
(1.4)

In [START_REF] Namah | On the propagation of periodic flame front by Arrhenius kinetic[END_REF], the authors notably show the existence of a triplet (c, v, u) solution of (S 2D )-(1.4) and where v remains bounded even for degenerate kinetics i.e. when K is allowed to go to zero. We suppose K bounded positive function and the following assumption:

0 < d min ≤ d ≤ d max ; 0 < r min ≤ r ≤ r max . (1.5) 
As, we are interested in the numerical study of (P 2D )-(C 2D ), we assume :

0 ≤ ξ y ≤ 1. (1.6) -ξ t ≥ 0. (1.7)
The hypotheses (1.6) and (1.7) allow to obtain an invertible matrix in order to have implicitly a numerical solution. In [START_REF] Namah | On the propagation of periodic flame front by Arrhenius kinetic[END_REF], N. Alibaud and G. Namah prove an existence of traveling wave solution : under the assumption (1.5), (P 2D )-(C 2D ) admit a wave solution (c, v, u). Moreover, we have the following estimates:

w min < c < w max ||v|| W 1,∞ ≤ w 2 max w 2 min -1.
with w = rK(u). In a recent work, (see [START_REF] Gazibo | Comportement asymptotique d'un Modèle de propagation de front : Cas d'un problème à frontière libre en une dimension[END_REF]), the author is interested in the simple 1D case with an initial front propagating in a medium. It proves the existence of traveling wave solution and propose a numerical scheme with aims to illustrate that numerical scheme converge to traveling wave solution for large time.

In this paper, we propose to solve numerically the complete free boundary problem (P 2D )-(C 2D ) and to verify that the numerical solution converges to a traveling wave solution for large time. The rest of the paper is organized as follows. We first visit the simple 1D case where we recall that the asymptotic limit of the solution of the Cauchy problem is indeed a traveling wave solution (see also [START_REF] Gazibo | Comportement asymptotique d'un Modèle de propagation de front : Cas d'un problème à frontière libre en une dimension[END_REF]). In the next section 3, we deal with a front fixed frame. In section 4, we set the functional framework. In section 5 we propose our numerical scheme. In section 6, we investigated about stability and monotony. The section 7 is devoted to numerical simulations and the last section to forthcoming work and conclusion.

Convergence towards a TWS in the 1 D case

Let's start our analysis with the simple one-dimensional model, i.e. where ξ(t, y) = ξ(t) and u(t, x, y) = u(t, x). This corresponds to consider a propagation in a homogeneous medium (therefore d and r are positive constants) from an initial front whose position does not depend on the variable y, (ξ 0 = 0 for example ). The problem (P 2D )-(C 2D ) can be reduced to:

ξ t = r, t > 0 ξ(0) = 0. (P)        u t -du xx = 0 in x < ξ(t), t > 0 du x = r on x = ξ(t), t > 0 u(t, x) → 0 for x → -∞, t > 0 u(0, x) = u 0 (x) dans x ≤ ξ(0). (C)
and an initial condition u(0, x) = u 0 for x ≤ ξ 0 : In this section we will recall the most important result contain in [START_REF] Gazibo | Comportement asymptotique d'un Modèle de propagation de front : Cas d'un problème à frontière libre en une dimension[END_REF]. In [START_REF] Gazibo | Comportement asymptotique d'un Modèle de propagation de front : Cas d'un problème à frontière libre en une dimension[END_REF], the author propose to proceed by fixing the front with the change of variable z = x -ξ(t). This leads to the following equations for the temperature

       u t + ru z -du zz = 0 z < 0, t > 0 du z = r z = 0, t > 0 u(t, z) → 0 z → -∞ , t > 0 u(0, z) = u 0 (z). -∞ < z ≤ 0. (T)
The couple (r, ū(z) = exp( r d z)) is called traveling wave solution. Then, we prove in [START_REF] Gazibo | Comportement asymptotique d'un Modèle de propagation de front : Cas d'un problème à frontière libre en une dimension[END_REF] that for large t, the solution converge toward a unique traveling wave solution (TWS).

Front fixed frame

As we are dealing with a free boundary problem, the first question which arises is whether to front fix the frame or not. We can indeed do the computation in a moving domain in Ω t or we can fix the domain by some change in variables. In the first case, one must reconstruct the mesh at each time step while for a fixed domain we have a constant mesh but then due to the change in variables one has to deal with additional terms which appear in the equations to be solved. As for the 1D case (see [START_REF] Gazibo | Comportement asymptotique d'un Modèle de propagation de front : Cas d'un problème à frontière libre en une dimension[END_REF]), we have opted to work in a fixed domain but having in mind that here the additional terms will be more complicated to handle. We note y ∈ [0, 1]; t ∈ [0, +∞[ and Ω t an open of R -×]0, 1[, with boundary ∂Ω t . We assume that Γ 0 and Γ 1 are identical up to a translation. The front ξ(t, y) is a regular function. We seek to approximate u solution of the problem (C 2D ). The initial temperature u 0 is a bounded positive function. Moreover, it is assumed that it satisfies the infinite compatibility condition

u 0 (x) → 0 as x → -∞. (3.1)
Consider the following bijection:

G : R + × Ω t → R + × R -× [0, 1] (t, x, y) → ( t, x, ŷ) =    x = x -ξ(y, t) ŷ = y t = t. (3.2) 
Then, we can calculate the partial derivative with respect to the news variables by chain rule ( [START_REF] Alt | Quasilinear elliptic-parabolic differential equations[END_REF]):

       ∂ ∂x d ∂ ∂x = ∂ ∂ x d ∂ ∂ x ∂ ∂y d ∂ ∂y = ∂ ∂ x d ξ 2 ŷ ∂ ∂ x -ξ ŷ ∂ ∂ ŷ + ∂ ∂ ŷ d -ξ ŷ ∂ ∂ x + ∂ ∂ ŷ ∂ ∂t = -ξ t ∂ ∂ x + ∂ ∂ t .
The change of variables leads to a modification of the spatial domain. The new domain is defined as follows:

             Ω = G(Ω t ) =] -∞, 0[×]0, 1[, ∂Ω N = G(Γ ξ ) = ∂Ω ∩ {x = 0} , ∂Ω D = G(Γ ∞ ) = ∂Ω ∩ {x → -∞} , Γ 1 = G(Γ 1 ) = ∂Ω ∩ {ŷ = 1} = Γ 1 , Γ 0 = G(Γ 0 ) = ∂Ω ∩ {ŷ = 0} = Γ 0 . (Dom)
Then, we obtain a front fixed frame. The new unknown is û(G(t, x, y)) = u(t, x, y). The front ξ( t, ŷ) = ξ(t, y) and parameters d(ŷ) = d(y), r(ŷ) = r(y) remained unchanging. The infinite compatibility condition:

   u(t, x, y) → 0 as x -→ -∞ ⇕ û( t, x, ŷ) → 0 as x -→ -∞. (3.3)
The Neumann condition:

d∇u.η = d 1 + ξ 2 ŷ 1 + ξ 2 ŷ ∂ û ∂ x -ξ ŷ ∂ û ∂ ŷ = - ξ t 1 + ξ 2 ŷ .
Then, we have:

d 1 + ξ 2 ŷ ∂ û ∂ x -ξ ŷ ∂ û ∂ ŷ = -ξ t. (3.4)
Finally, the change of variables leads to:

                 ∂ û ∂ t -ξ t ∂ û ∂ x -div(dM ∇û) = 0 in ]0, +∞[× Ω dM ∇û. ⃗ i = -ξ t on ]0, +∞[× ∂Ω N û( t, x, ŷ) → 0 on ]0, +∞[× ∂Ω D û(0, x, ŷ) = û0 in Ω û is ŷ-periodic on Γ i with i = 1, 2 dM ∇û. ⃗ j is ŷ-periodic on Γ i with i = 1, 2. ( C 2D )
where

M =   1 + ξ 2 ŷ -ξ ŷ -ξ ŷ 1   and û0 (x, ŷ) = u 0 (x -ξ(0, y), y), ⃗ i = 1 0, ⃗ j = 0 1 .
To simplify the writings, we will omit the "hats". Finally, we come down to the following problem: . Because of these latter terms we cannot afford to proceed by finite difference methods as we did in the 1-D case (see [START_REF] Gazibo | Comportement asymptotique d'un Modèle de propagation de front : Cas d'un problème à frontière libre en une dimension[END_REF]). Indeed, we are unable to construct monotonous schemes by a classical discretization of these terms. So in the next section we propose to construct a monotonous scheme using the finite element method.

               ∂u ∂t -ξ t ∂u ∂x -div(dM ∇u) = 0 in ]0, +∞[×Ω. dM ∇u. ⃗ i = -ξ t on ]0, +∞[×∂Ω N u(t, x, y) → 0 on ]0, +∞[×∂Ω D u(0, x, y) = u 0 in Ω u is y-periodic on Γ i with i=1,2 dM ∇u. ⃗ j is y-periodic on Γ i with i = 1, 2.

Variational framework

Let us introduce the following space:

V = {v ∈ H 1 (Ω), v = 0 on ∂Ω D and v Γ1 = v Γ2 .} We suppose that u 0 ∈ V. Recall that V is a closed subset of Sobolev H 1 ∂Ω H 1 ∂Ω = {v ∈ H 1 (Ω), v = 0 on ∂Ω D .} Definition 4.1. Suppose that (3.1), (1.5) holds. We said that u(t) ∈ V is called variational solution of (CDP 2D ) if it satisfy    d dt b(u, v) + a(u, v) = f (v) ∀v ∈ V, t > 0 u(0) = u 0 . (4.1)
where:

b(u, v) = Ω uvdxdy, a(u, v) = Ω dM ∇u.∇vdxdy + Ω (-ξ t )u x vdxdy f (v) = ∂Ω N (-ξ t )vdy.
Theorem 4.2. The problem (CDP 2D ) admits a variational solution.

Proof. By Faedo-Galerkin method (see e.g., [START_REF] Lions | Quelques méthodes de résolution des problémes aux limites non linéaires[END_REF]), we construct a sequence of approximate solutions. We choose V m = ⟨ϕ 1 (x), ϕ 2 (x), ..., ϕ m (x)⟩ with (ϕ i ) ∞ i=0 a regular Hilbert basis of H 1 (Ω). The associated approximate problem con-

sists in finding w(t) = m j=0 w j (t)ϕ j (x) ∈ V such that:    d dt b(w, ϕ i ) + a(w, ϕ i ) = f (ϕ i ) ∀i = 1, ...m, t > 0 w(0) = w 0 . (4.2)
where w 0 ∈ V m an approximation of u 0 ∈ V. This problem boils down to finding the vector

⃗ w =       w 1 . . . w m       : t ∈ (0, +∞) → R m
solution of the ordinary differential system.

B d ⃗ w dt + A ⃗ w = ⃗ f , such that ⃗ w(0) = ⃗ w 0 (4.3)
where

B ∈ R m×m , A(t) ∈ R m×m and ⃗ f (t) ∈ R m with components B i,j = b(ϕ j , ϕ i ), A i,j = a(ϕ j , ϕ i ) and f i = f (ϕ i ), (i, j) ∈ {1, ..., m} 2 . Approaching ⃗ w at time t k = k × τ , k = 1, 2, ..., τ > 0 by w k B w k -w k-1 τ + A(t k )w k = F (t k ) i.e. B + τ A(t k ) w k = w k-1 + τ F (t k )
implicitly we find w since B + τ A(t k ) is invertible. □

The proposed scheme

The aim here is to propose a monotonous scheme and to verify that the numerical solution converges towards a traveling wave solution. We will proceed by a splitting method. For a given temperature at the front, we will first discretize the front's equation in (P 2D ) by an appropriate method through one time step. The approximate solution of ξ thus obtained is then plugged in the problem (CDP 2D ) which is in turn approximated to get an approximate solution of u. This procedure is repeated at each time step. So let us start by the approximation of the problem (P 2D ):

5.1. Approximate solution of problem (P 2D ) Denote by h y the space step in the direction of y and by y j = (j -1) × h y , j = 1, ..., n y , the nodes in the interval (0, 1) and such that y 1 = 0 and y ny = 1. Thus if we take τ > 0 as the time step then ξ n j will be an approximation of ξ(nτ, y j ) for n > 0. Consider the following notations:

∆ n ξ -= ξ n j -ξ n j-1 h y , ∆ n ξ + = ξ n j+1 -ξ n j h y , ∆ n ξ = ξ n j+1 -ξ n j-1
2h y .

Proposition 5.1. Let ξ n j will be an approximation of ξ(nτ, y j ) . Then we propose the following scheme:

ξ 0 j = ξ 0 (y j ); j = 1, .., ny (5.1) 
ξ n+1 j = ξ n j -r j τ K(u n+1 nx,j )g(∆ n ξ -, ∆ n ξ + ) + ϵτ h y ∆ n ξ + -∆ n ξ - 1 + 0.25(∆ n ξ + + ∆ n ξ -) 2 for j = 2, ..., ny -1.
(5.2)

ξ n+1 ny = ξ n+1 1 = ξ n+1 ny-1 + ξ n+1 2 2 .
(5.3)

Here, u n+1 nx,j is an approximation of the temperature at the interface at times t = (n + 1)τ and point y j and g is a numerical Godunov flux:

g(a, b) =        min v∈[a,b] ( 1 + v 2 ) if a ≤ b max v∈[b,a] ( 1 + v 2 ) else.
Proof. Of course we will initialize by (5.1). In absence of the second order diffusion term, the equation of the front is a first order nonlinear equation of Hamilton-Jacobi type. We propose to use an upwind scheme for example the Godunov's flux to discretize the first order term and a finite centered scheme for the diffusion part (see for example Osher and Sethian [START_REF] Osher | Front propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulation[END_REF]) and obtain (5.2). According to the periodicity condition on ξ and ξ y , the approximation of the front at time (n + 1)τ at the points y = 0 and y = 1 (i.e. j = 1 and j = ny), gives (5.3) □ Lemma 5.2. The scheme (5.1)-(5.2)-(5.3) are monotonous and stable if the following condition is verified:

τ ≤ min h y 2 max y (r.K(u)) , h 2 
y 2ϵ .
(5.4)

Proof. If the viscosity coefficient ϵ is zero (propagation without curvature effect), we end up with a Hamilton-Jacobi equation. We propose a Godunov scheme for the discretization. This is inspired by hyperbolic schemes. Indeed, if we derive the following Hamilton-Jacobi equation (with r constant to simplify)

∂v ∂t + rH ∂v ∂y = 0, (5.5) 
with respect to y and take w = ∂v ∂y , we obtain an hyperbolic equation:

∂w ∂t + r ∂H ∂y (w) = 0. (5.6)
Godunov's scheme for solving (5.6) is then given by:

w n+1 j = w n j -r τ h y H GOD (w n j , w n j+1 ) -H GOD (w n j-1 , w n j ) (5.7)
where H GOD is the Godunov numerical flux defined as follows:

H GOD (a, b) =        min v∈[a,b] H(v) if a ≤ b max v∈[b,a] H(v) else.
As it is the same function H which appears in the two equations (5.5) and (5.6), we will use the same numerical flux to approximate (5.5). We will therefore discretize the equation (5.5) as follows:

v n+1 j = v n j -r j τ H GOD v n j -v n j-1 h y , v n j+1 -v n j h y .
(5.8)

The scheme (5.7) is a three-point scheme and can be written in the form w n+1 j = W (w n j , w n j-1 , w n j+1 ). This scheme will be said to be monotone if W is an increasing function with respect to each of these three variables. It is known that the Godunov scheme is monotonous under the following CFL condition:

τ h y ≤ 1 2 max y∈[0,1] (r)
.

(5.9)

In our case, this correspond to

τ ≤ h y 2 max y∈[0,1] (r.K(u))
.

(5.10)

In the case where the combustion rate rK(u) is not taken into account in the front equation, the problem degenerates into a nonlinear parabolic problem. A discretization by the centered finite difference method of the diffusion term makes it possible to have a numerical approximation of the solution. Thus, we deduce the following scheme:

ξ n+1 j = ξ n j + ϵτ ξ n j+1 -ξ n j -ξ n j -ξ n j-1 h 2 y + 0.25 ξ n j+1 -ξ n j + ξ n j -ξ n j-1 2 .
(5.11)

The equation (5.11) can be written in the form:

ξ n+1 j = αξ n j+1 + (1 -2α)ξ n j + αξ n j-1
(5.12)

with α = ϵδt δy 2 + 0.25 ξ n j+1 -ξ j + ξ n j -ξ n j-1 2 ≥ 0.
For ξ n+1 j to be a convex combination of ξ n j-1 , ξ n j and ξ n j+1 , it is necessary that: 1 + 2α ≥ 0 i.e. (5.16)

Approximate solution of problem (CDP 2D )

The principal equation of the problem (CDP 2D ) is a nonlinear convection diffusion equation. We remark that the presence of the cross term ∂ 2 ∂x∂y in the diffusion operator cannot permit to exploit the finite difference method.

In fact, we are not able to prove monotonous result using this method. We adopt here the finite element method. We consider a regular triangular conformal mesh (a triangulation of Ω) T hx,hy , where h x (respectively h y ) is a space step in the direction of x (respectively y). For reason of simplicity, we pose h x = h y = h. Then T hx,hy = (T h ) h>0 is a partition of right triangles e with diameter h and area equal to |e| = 1 2 h 2 . We assume that the trace of the mesh on Γ 0 is the same as on Γ 1 . Proposition 5.4. There exists ⃗ u n ∈ R m an approximation of solution of problem (CDP 2D ) at time τ n, n > 0 on mesh T h . Lemma 5.5. Under (1.7) and (1.6) there exists matrix B ∈ R 3×3 , A ∈ R 3×3 , and vector F ∈ R 2 such that

⃗ u n = B + τ A -1 ( B⃗ u n-1 + τ F ).
(5.17)

Proof. We denote by:

V h = {v ∈ V such that v |e ∈ P 1 , ∀e ∈ T h }
where P 1 is the space of polynomials generated by 1, x, y. We note S h = {s j } j=1,...,m the total set of vertices of the mesh and {ψ j } j=1,..,m the associated basis of interpolation. For example, if we subdivide the segment [-L, 0] in n x points (L big enough) and [0, 1] in n y , we have in this case m = n x × n y vertices. So any u ∈ V h can be decomposed in the form:

u = m j=1
u(s j )ψ j .

(5.18)

But given the Dirichlet condition, i.e. u(s j ) = 0 for s j ∈ ∂Ω D , we have

u = m-ny j=1 u(s j )ψ j . (5.19) 
Moreover, u being y-periodic, we have:

u(s j0 ) = u(s j ) ∀s j ∈ Γ 0 .
(5.20)

where j 0 designates the unique index associated with j, such that s j0 is the vertex opposite to s j on the segment Γ 1 (for example, see Table 1 

I = {j = 1, ..., m : s j ∈ S h and s j / ∈ ∂Ω D ∪ Γ 1 } I P = {j = 1, ..., m : s j ∈ S h ∩ Γ 0 } and I c P = I\I P , then u ∈ V h ⇐⇒ u = j∈I c P v(s j )ψ j + j∈I P u(s j )(ψ j + ψ j0 ).
(5.22)

Hence, the family {ϕ j } j∈I defined by

ϕ j = ψ j + ψ j0 if j ∈ I P ψ j if j ∈ I c P form a basis of V h such that u ∈ V h ⇐⇒ u = j∈I u(s j )ϕ j . Let us denote by supp(g) the support in Ω of a function g of H 1 (Ω) supp(ϕ j ) = supp(ψ j ) ∪ supp(ψ j0 ) if j ∈ I P supp(ψ j ) else.
Here evidently supp(ψ j ) ∩ supp(ψ j0 ) = ∅. The matrices B, A(t) and F (t) as a function of the ψ i have as expressions:

B i,j =        b(ψ j , ψ i ) + b(ψ j0 , ψ i0 ) if (i, j) ∈ I 2 P b(ψ j , ψ i ) + b(ψ j , ψ i0 ) if i ∈ I P , j ∈ I c P b(ψ j , ψ i ) + b(ψ j0 , ψ i ) if i ∈ I c P , j ∈ I P b(ψ j , ψ i ) if (i, j) ∈ I c P × I c P A i,j =        a(ψ j , ψ i ) + a(ψ j0 , ψ i0 ) if (i, j) ∈ I 2 P a(ψ j , ψ i ) + a(ψ j , ψ i0 ) if i ∈ I P , j ∈ I c P a(ψ j , ψ i ) + a(ψ j , ψ i0 ) if i ∈ I c P , j ∈ I P a(ψ j , ψ i ) if (i, j) ∈ I c P × I c P F i = f (ψ i ) + f (ψ i0 ) if i ∈ I P f (ψ i ) if i ∈ I c P
The calculation of the quantities b(ψ j , ψ i ), a(ψ j , ψ i ) and f (ψ i ) is performed using the elementary matrices B e , D e (t) ∈ R 3×3 and ⃗ f a (t) ∈ R 2 with B e ie,je = e ψ je ψ ie de, D e ie,je = e dM ∇ψ je .∇ψ ie de, F a ia =a ξ t ψ ia dy.

where ψ ie = ψ i|e and ψ ia = ψ i|a . We use trapezium formula for g ∈ P 1 e gde ≈ |e| 3

3 i=1 g(s e i ). (5.23) 
Hence

B e ≈ B e = |e| 3   1 0 0 0 1 0 0 0 1   = h 2 6   1 0 0 0 1 0 0 0 1   (5.24)
This formula has the advantage of providing a global B diagonal matrix. The exact calculation of the diffusion term D e is given by: D e ie,je = e dM ∇ψ je .∇ψ je de = e (∇ψ ie ) T dM ∇ψ je de (5.25) on a triangle with consecutive vertices s e 3 , s e 1 = s e 3 + (h, 0) and s e 2 = s e 3 + (0, h) we get

(∇ψ ie ) T dM ∇ψ je =   1 h 0 0 1 h -1 h -1 h   d(1 + ξ 2 y ) -dξ y -dξ y d   1 h 0 -1 h 0 1 h -1 h   = d h 2   1 + ξ 2 y -ξ y -1 + ξ y -ξ 2 y -ξ y 1 ξ y -1 -1 + ξ y -ξ 2 y ξ y -1 ξ 2 y -2ξ y + 2  
Under the condition -ξ y ≤ 0 and ξ y ≤ 1, on a ∀i e , j e ∈ {1, 2, 3}, D e ie,je ≥ 0 and D e ie,je ≤ 0 for i e ̸ = j e with j D e ie,je = 0.

Then

D e ≈ D e == d 6   1 + ξ 2 y -ξ y -1 + ξ y -ξ 2 y -ξ y 1 ξ y -1 -1 + ξ y -ξ 2 y ξ y -1 ξ 2 y -2ξ y + 2   (5.26)
For the term F a , we apply Simpson's formula on the segment a = [a 1 , a 2 ] we easily find:

F a ≈ F a = - |a 2 a 1 | 6 2ξ t (a 1 ) + ξ t (a 2 ) ξ t (a 1 ) + 2ξ t (a 2 ) (5.27) 
the equality F a = F a holds for a ξ t ∈ P 2 .

For the convection term

C(u, ψ i ) = Ω (-ξ t )u x ψ i dxdy = e⊂supp(ψi) e (-ξ t )u x ψ i
We apply the trapezium formula:

C(u, ψ i ) ≈ e⊂supp(ψi) (-ξ t )(s i ) |e| 3 u x (s i )
then the formula upwind according to the sign of -ξ t (s i )

u x (s i ) ≈ 1 | --→ s i s î| u(s î) -u(s i ) if -ξ t < 0, s î = s i + | --→ s i s î| ⃗ i u(s i ) -u(s î) if -ξ t > 0, s î = s i -| --→ s i s î| ⃗ i u x (s i ) ≈ 1 h u(s î) -u(s i ) if -ξ t < 0, s î = s i + | --→ s i s î| ⃗ i u(s i ) -u(s î) if -ξ t > 0, s î = s i -| --→ s i s î| ⃗ i
We obtain

C(u, ψ i ) ≈ C(u, ψ i ) = λ i, î(u(s i ) -u(s î)) (5.28) where λ i, î = | -ξ t (s i )| |supp(ψ i )| 3| --→ s i s î| = | -ξ t (s i )| |supp(ψ i )| 3h
. Obviously the formula only makes sense for s i ∈ ∂Ω N but under conditions -ξ t ≥ 0 on ∂Ω N we have

C(u, ψ i ) = C(u, ψ i ) + C(u, ψ i0 ) if i ∈ I P C(u, ψ i ) if i ∈ I c P i.e. C(u, ψ i ) =        λ i, î + λ i0, î0 u(s i ) -λ i, îu(s î) -λ i0, î0 u(s î0 ) if i ∈ I P λ i, î u(s i ) -u(s î) if i ∈ I c P Then ( B + τ A)⃗ u n = B⃗ u n-1 + τ F (5.29)
where B is a diagonal matrix such that:

B i,i = 1 3 |supp(ψ i )| + |supp(ψ i0 )| if i ∈ I P |supp(ψ i )| if i ∈ I c P (5.30) 
The matrix A = D + C is triangular, then invertible it is such that 

D i,j = e∈△ j i D e ie,je +                        e∈△ j 0 i 0 D e i0 e ,
C i,j =                              if i ∈ I P            λ i, î + λ i0, î0 if j = i λ i, î if j = i -λ i, î if j = î -λ i0, î0 if j = î 0 else if i ∈ I c P    λ i, î if j = i -λ i, î if j = î 0 else (5.32)

□

The proof of Proposition 5.4 is a direct consequence of Lemma 5.5.

Remark 6.3. Note that the case where max y (ξ 0 ) yy = 0 then ξ t ≤ 0.

The following theorem is a consequence of Proposition 6.1 and Proposition 6.2 Theorem 6.4. Assume 6.4 and for all sufficiently regular r, ξ 0 , the numerical scheme (5.1),(5.2), (5.3), (5.17) is monotonous under:

τ ≤ min h 2r max , h 2 2ϵ ; 0 ≤ ∆ n ξ + , ∆ n ξ -≤ 1; ϵ max y ξ yy (0, y) ≤ r min K 0 .

Numerical simulation and convergence towards a TWS

We first present an example of a triangular mesh. From a grid of n x = 6 points along x ∈ [-10, 0] and n y = 5 point along y ∈ [0, 1], we realize the mesh (Figure 1). With this triangular mesh, we have: We provide an illustration of the asymptotic behavior of temperature and front. We propose four numerical illustrations. 7.0.1. Test 1. Initially, we are interested in a homogeneous material with r = 5 and d = 1 with a decoupled system which amounts to taking K(u) ≡ 1. In this case, consider as initial data u 0 (x, y) = exp(10x) -exp(-100) and ξ(0, y) = 0. The exact temperature solution is u(t, x, y) = u 0 (x, y). Figure6 represents the temperature in the plane Ω. Figure 2 represents the propagation of the front which is done in a uniform way since the material is homogeneous. Figure 3 seems to indicate that the front propagates at a constant speed. Figure 4 illustrates the time behavior of the temperature and Figure 5 is obtained for a fixed y. Through this illustration we can hypothesize that (r, u 0 ) is a wave solution as analogous to the 1D case. We take the same data as test 2 by coupling now the system. We take K(u) = exp(-1 u ). We refer to Figures 11,12, 13, 14 and 15. here also the profile of the front seems fixed and the velocity tends towards a constant for large t. We take the same data as test 3 by always coupling the system. We take K(u) = exp(-u). We refer to Figures 16, 17, 18 and 19. We make the same observation. Everything seems to indicate that over time we have a convergence towards a wave solution. 

S h =

Forthcoming work

We have proposed a stable scheme for the coupled system. It would be interesting in the future to be able to describe the wave solution and answer the question of whether it is unique.

(

  CDP 2D ) Remark 3.1. As we said earlier, additional terms appear in the heat equation and notably those with crossed derivatives ∂ 2 ∂x∂y

2 ϵδt δy 2

 22 + 0.25 ξ n j+1 -ξ j + ξ n j -(5.1)-(5.2)-(5.3) are monotonous and stable under (5.10) or (5.15) i.e. (5.4). □ Remark 5.3. If 0 < K(u) ≤ 1, then (5.4) is reduce to:

2 ( 5
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Table 1 .

 1 {s 1 , ..., s 30 }, {s 1 , s 2 , s 3 , s 4 , s 5 } ∈ ∂Ω D ; I P = {6, 11, 16, 21, 26} et I c P = {7, 8, 9, 12, 13, 14, 17, 18, 19, 22, 23, 24, 27, 28, 29}. The correspondence between j 0 and j ∈ I P is shown in the table 1: Correspondence of the index of opposites vertices

	j ∈ I P	6 11 16 21 26
	j 0	10 15 20 25 30
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Stability and Monotonicity of the scheme

In this section, we are interested in the monotony of the scheme proposed for the system (P 2D )-(CDP 2D ). We give the conditions under which the proposed scheme is monotonous. Proposition 6.1. The global numerical scheme (5.1),(5.2), (5.3),(5.17) is monotonous under the conditions:

3)

The proof of this theorem uses the monotonicity results already studied in the previous sections, the existence condition of the approximate temperature and the front is given by (6.1) and (6.2). Now let's take a closer look at the (6.1) relation. The flame front is assumed to propagate to the left. In [START_REF] Gazibo | Comportement asymptotique d'un Modèle de propagation de front : Cas d'un problème à frontière libre en une dimension[END_REF], we found a relation between ϵ, r and ξ 0 (y) so that ξ t is negative (which we call monotonous propagation) in the case where the Arrhenius function is equal to 1. Here we will generalize this result Proposition 6.2. Suppose that the function K satisfy the assumption: there exists a real K 0 > 0 such that u ∈ R, K(u) ≥ K 0 .

(6.4)

Then, for all r, ξ 0 and ξ sufficiently regular, we have ξ t ≤ 0 for all y ∈ [0, 1] if:

ϵ max y ξ yy (0, y) ≤ r min K 0 . (6.5)

Proof. In the case where the combustion rate is given by rK(u) with K satisfying 6.4, we have:

If we place ourselves under the assumptions of Proposition 6.3 ([6]), then

≤ 0 under the relation (6.5). For any function K satisfying 6.4 we have 1 -K(u) K0 ≤ 0. Thus ξ t is negative if the inequality (6.5) holds. □ 7.0.2. Test 2. We take the same data as for test 1 but considering a heterogeneous medium and always a decoupled system i.e. K ≡ 1 . The heterogeneity of the material is characterized by:

Here material 1 (y ∈ [0, 0.2] ∪ [0.4, 1]) is more conductive than material 2 located in the region y ∈ [0.2, 0.4] as shown in Figure refCAS01. Moreover, the profile of the front seems fixed and the constant propagation speed r = max(r 1 , r 2 ).
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