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In this note, we investigated existence and uniqueness of entropy solution for triply nonlinear degenerate parabolic problem with zero-flux boundary condition. Accordingly to the case of doubly nonlinear degenerate parabolic hyperbolic equation, we propose a generalization of entropy formulation and prove existence and uniqueness result without any structure condition.

Introduction

Let Ω be a bounded open set of   with a Lipschitz boundary ∂Ω and η the unit normal to ∂Ω outward to Ω. We consider the triply nonlinear degenerate parabolic-elliptic-hyperbolic problem with zero-flux boundary condition:

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) 0 div 0 in 0, 0, 0 on 0 , in t b u f u u u Q T b u t x b x f u u T + -∆ + = = × Ω = = -∇ ⋅ = Σ = × ∂    Ω  Ω    φ ψ φ η (P)
The particularity of this problem is its strong degeneracy. For practical reason and physical consideration, we suppose that [0, 1] will be the invariant domain of solution of (P) and that there exist two particular values of the unknown u. We denote by s u and c u (with 0 1 ) otherwise it has a flat region (see Figure 1). Then, problem (P) is of mixed elliptic parabolic hyperbolic type with absorption term, and thus combines the difficulties related to nonlinear conservation laws with those related to nonlinear degenerate diffusion equations. We refer to Kruzkov [START_REF] Kruzhkov | First Order Quasilinear Equations with Several Independent Variables[END_REF] for the case of hyperbolic problem ( 0 φ ≡ )

and Carrillo [START_REF] Carrillo | Entropy Solutions for Nonlinear Degenerate Problems[END_REF] for degenerate parabolic problem to inspiration. We need a notion of solution which is sufficient to deal with existence and uniqueness. One consequence is that the notion of weak solution generally leads to non-uniqueness, unless φ is strictly increasing. It is necessary to adopt an entropy formulation.

The notion of entropy solution we use is adapted from the founding paper of [START_REF] Andreianov | Entropy Formulation of Degenerate Parabolic Equation with Zero-Flux Boundary Condition[END_REF] in the case where s c u u = and 0 φ = . Several authors have studied the degene- rate equation type we consider. Some of these authors ([3] [START_REF] Bürger | On the Well-Posedness of Entropy Solution to Conservation Laws with a Zero Fux Boundary Condition[END_REF]) proved existence and uniqueness under the hypothesis that the convection flux f is a Lipschitz-continuous function and required that ( ) ( )

0 0, 1 0. f f = = (H)
This hypothesis is necessary to obtain the solution in [0, 1] if the initial datum 0 u belongs in [0, 1] in the sense that ( ) ( )

0 0 b u x b x = 
and the hypothesis (H) is below. The main idea in the paper is to keep this hypothesis but we impose that initial datum 0 u belongs to [0, 1]. We suppose that the function b satisfies:

( ) ( ) [ ] 2 , such that , . b u α α α α + ∃ ∈ ∈  (1.1) 
A simple choice is to take ( ) Well-posedness results are obtained in dimension 1 =  , under very general coercivity conditions; see also the works of Bénilan and Touré ([7] and the references therein). Andreianov and Wittbold investigate in [8] about the continuous dependence of the solution of a degenerate elliptic-parabolic equation without structure condition related to b and f. They prove existence by passing to bi-monotonicity and penalization method as in [START_REF] Ammar | Existence of Renormalized Solutions of Degenerate Elliptic Parabolic Problems[END_REF]. Otherwise, in [START_REF] Andreianov | Well-Posedness Results for Triply Nonlinear Degenerate Parabolic Equations[END_REF], Andreianov et al. obtain a general continuous dependence result on data for our kind of triply nonlinear problem with help of structure condition. They showed similar result for the degenerate elliptic problem, which corresponds to the case of 0 b ≡ and general non-decreasing surjective ψ . In our case the function ψ is bounded continuous and strictly increasing. If (S.C) fails, the convergence of approximate solutions to (P) is known for a particular monotone approximation method developed by Ammar and Wittbold [START_REF] Ammar | Existence of Renormalized Solutions of Degenerate Elliptic Parabolic Problems[END_REF]. This approach leads to an existence result which bypasses (S.C). Notice that some essential arguments of uniqueness result in this works are specific to the case

0
1 = 
. For Neumann boundary condition also called zero-flux boundary condition, it is easy to prove uniqueness of solutions such that the boundary condition is satisfied in the sense of strong boundary trace of the normal component of the flux

( ) ( ) ( ) f u u φ -∇
. Unfortunately, we are able to establish this additional solution regularity only for the stationary problem (S) associated to (P) and only in the case of one space dimension.

The paper is divided in three parts, in Section 2 we generalized the notion of entropy solution of paper [START_REF] Andreianov | Entropy Formulation of Degenerate Parabolic Equation with Zero-Flux Boundary Condition[END_REF] where c s u u < and [START_REF] Bürger | On the Well-Posedness of Entropy Solution to Conservation Laws with a Zero Fux Boundary Condition[END_REF] in the pure hyperbolic case. In Section 3, we first prove existence and after uniqueness of entropy solution.

Formulation of Entropy Solution

Definition of Entropy Solution

We need the notion of weak solution for (P) with additional "entropy" conditions. Definition 2.1. A measurable function u taking values on [0, 1] is called an entropy solution of the initial-boundary value problem (P) if satisfying the following conditions:

( ) ( ) ( ) 2 1 0, ; u L T H φ ∈ Ω and [ ) ( ) 0,T ξ ∞ ∀ ∈ ×    , with 0 ξ ≥ ( ) ( ) ( ) ( ) ( ) 0 0 0 , d d d d d 0. T T T t b u t f u u x t u x t ξ φ ξ ψ ξ Ω Ω - -∇ ⋅∇ + = ∫ ∫ ∫ ∫ ∫ (2.1) ( ) ( ) ( ) 2 1 0, ; u L T H φ ∈ Ω and [ ] [ ] 0, , 1 
c s k u u ∀ ∈ ∪ , [ ) ( ) 0,T ξ ∞ ∀ ∈ ×    , with 0 ξ ≥ , ( ) ( ) ( ) ( ) ( ) ( ) ( ) { } ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0 1 0 0 0 d d , d d d d 0, d 0. T t T T b u b k sign u k f u f k u x t f k x t x x t sign u k u x t b b k x x ξ φ ξ η ξ ψ ξ ξ Ω - ∂Ω Ω Ω - + - - -∇ ⋅∇ + ⋅ - - + - ≥ ∫ ∫ ∫ ∫ ∫ ∫ ∫   (2.2)
Here  represents the ( ) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) 2 1 0, , L T H L Q ∞ Ω ∩
It is well known that the distributional derivative ( ) t b u of ( ) b u can be identified with an element of the space

( ) ( ) ( ) ( ) 2 1 1 0, , L T H L Q Ω +  . More ex- actly, we have ( ) ( ) ( ) 0 0 , d 0, d T t t Q b u t b u b x x ξ ξ ξ Ω = - ∫ ∫ ∫ (2.3) for all ( ) ( ) 2 1 0, ; L T H ξ ∈ Ω with ( ) t L Q ξ ∞ ∈
and ( )

, 0 T x ξ = .
We obtain notions of entropy sub-solution and entropy super-solution respectively if we replace (2.2) by one of the following inequalities

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) { } ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0 1 0 0 0 d d , d d d d 0, d 0 T t T T b u b k sign u k f u f k u x t f k x t x x t sign u k u x t b b k x x ξ φ ξ η ξ ψ ξ ξ + Ω + - + Ω + + Ω Ω - + - - -∇ ⋅∇ + ⋅ - - + - ≥ ∫ ∫ ∫ ∫ ∫ ∫ ∫   (2.4) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) { } ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 
0 1 0 0 0 d d , d d d d 0, d 0. T t T T b u b k sign u k f u f k u x t f k x t x x t sign u k u x t b b k x x ξ φ ξ η ξ ψ ξ ξ - - Ω - - - Ω Ω - Ω - + - - -∇ ⋅∇ + ⋅ - - + - ≥ ∫ ∫ ∫ ∫ ∫ ∫ ∫   (2.5) Remark 2.2.
Obviously, a function u is an entropy solution if and only if u is entropy sub-solution and entropy super-solution simultaneously.

Our notion of entropy solution coincide with the Definition of [START_REF] Andreianov | Entropy Formulation of Degenerate Parabolic Equation with Zero-Flux Boundary Condition[END_REF] in the case s c u u = , 0 ψ ≡ and assumption (S.C) is trivially satisfied. Notice that if u satisfy (2.2), then use (1.1) and (H), we have also u verify (2.1).

Let us stress that, if (H) is satisfy, in particular, the zero-flux boundary condition

( ) ( ) ( ) 0 f u u φ η
-∇ ⋅ = is verified literally in the weak sense (see for exemple [START_REF] Andreianov | Entropy Formulation of Degenerate Parabolic Equation with Zero-Flux Boundary Condition[END_REF] and [START_REF] Andreianov | Explicit Formulation for the Dirichlet Problem for Parabolic-Hyperbolic Conservation Laws[END_REF]). A forthcoming work is to envisage envisage (P) if assumption (H) is dropped. We expect that the boundary condition should be relaxed.

Dissipative Property

We propose here an essential property of entropy solutions, based on the idea of

J. Carrillo [2]. Proposition 2.3. Let [ [ ( ) 0,T ξ ∞ ∈ ×    , 0 ξ ≥ . Then for all [ ] ,1 s k u ∈ , for all D ∈ 
 for all entropy solution u of (P), we have 

( ) ( ) ( ) ( ) ( ) ( ) ( ) { } ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0 1 0 0 0 0 , d d d d 1 0, d lim . T t T T Q A b u b k sign u k f u f k u D f k D x t x x t sign u k u x t b b k x x u u D σ φ σ ξ φ ξ η ξ ψ ξ ξ φ φ ξ σ Ω - Ω Ω → Ω ∩ - + - - -∇ -⋅∇ + -⋅ - - + - ≥ ∇ ⋅ ∇ - ∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫   (2.
( ) ( ) ( ) { } , such that A t x Q u k σ φ σ φ φ σ = ∈ -< - < . Proof. The
( ) ( ) ( ) ( ) ( ) ( ) ( ) sign u k sign b u b k sign u k φ φ - = -= - .
Secondly,

( ) 0 u φ ∇ = N  a.e. on the set ( ) ( ) [ ] { } , such that , 0, c t x Q u t x u ∈ ∈ . Taking as test function in (2.1) ( ) ( ) (
)

sign u k σ φ φ ξ - with [ [ ( ) 0, C T ξ ∞ ∈ ×  
and sign σ is the approximation of sign function, using Chain rule (see [START_REF] Alt | Quasilinear Elliptic-Parabolic Differential Equations[END_REF]) and passing to the limit 0 σ → . For more details see [3].

▄

Existence and Uniqueness Result

Existence of Entropy Solution

The main result of this subsection is the following theorem: Theorem 3.1. Assume that (1.1), (1.2), (H) holds. Then there exists an entropy solution u for (P).

Bi-Monotonicity Approach

Because of we are not in the case where (S.C) holds, we use the particular multi-step approximation approach of Ammar and Wittbold (see [START_REF] Ammar | Existence of Renormalized Solutions of Degenerate Elliptic Parabolic Problems[END_REF]). . Proof. We consider the particular multi-step approximation approach of Ammar and Witt bold [START_REF] Ammar | Existence of Renormalized Solutions of Degenerate Elliptic Parabolic Problems[END_REF]. We replace b by We obtain the following equation:

Theorem 3.2. Let ( ) ( ) *3 , 0 , , , , , n l 
( ) ( ) ( ) ( ) ( ) , , , , , div 0 in 0, l l l l l m n m n l m n m n m n t b u f u u u Q T φ ψ + -∆ + = = × Ω Take ( ) , , l l m n l m n v b u =
, hence l b is invertible, one puts the problem into the doubly non-linear framework then we obtain the following problem

( ) ( )  ( ) ( ) , , , , , div 0 in l l l l m n m n l m n m n m n t v f v v v Q φ ψ + -∆ + =  
where

1 l f f b - = ° ;  1 l l b φ φ - = ° and 1 , , m n m n l b ψ ψ - = °
. Using classical methods (cf. Andreianov and Gazibo [START_REF] Andreianov | Entropy Formulation of Degenerate Parabolic Equation with Zero-Flux Boundary Condition[END_REF]), one shows that there exists a weak solution 

, l m n u b u b u L Q → (3.5) ( ) ( ) ( ) 1 , , in . l m n m n u u L Q ψ ψ → (3.6)

A priori Estimates

l m n u ≤ ≤ (3.7) ( ) ( ) ( ) 2 1 
, 0, ;

l l m n L T H u L φ Ω ≤ (3.8) ( ) ( ) 2 , l l m n L Q u L φ ≤ (3.9) ( ) ( ) ( ) 1 , , , 
.

l l l m n m n m n L Q u u L φ ψ ≤ (3.10) 
Proof. Since 

( ) ( ) ( ) ( ) ( ) ( ) 0 , 0 0 0 d d 0 T l l mn l l n l t b u b b u b x t ξ - - Ω     - - - ≥         ∫ ∫ (3.11)
Let us introduce the function , we obtain the inequality

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0 , 0 0 d if 0, l l mn l l n l H t b u b b u b x t T - - Ω   = - - - ∈     ∫ Since (
( ) ( ) ( ) ( ) 2 1 , 0, ; l l m n u L T H L Q φ ∞ ∈ Ω ∩ and 
( ) ( ) ( ) ( ) ( ) 2 1 1 , 0, , l t l m n b u L T H L Q ∂ ∈ Ω +  is treated via the standard chain rule argument ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) , , , , , 0 0 , , , 0 , d d 
( ) ( ) ( ) ( ) ( ) ( ) ( ) 2 0 0 , , , , , 0 ,. 
.

T l l l l l m n m n m n l m n l m n l n l n B u t u u C u b u u ψ φ φ φ Ω Ω Ω + + ∇ ≤ ∫ ∫ ∫ ∫
with some 0 C > independent of n. Note that the functions , 

t l l l l l m n l m n m n l m n t t l m n t b u x t b u x t f u u u τ τ τ ξ φ ξ ψ ξ + Ω Ω + Ω + - + -∇ ⋅∇ + = ∫ ∫ ∫ ∫ ∫ Take now ( )( ) ( )( ) , , ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) , , , , , , , 0. 
, ,

l l l m n l m n u t x u t x ξ φ τ φ = + -
and integrate in t. By Fubini theorem and estimates of Lemma 3.4, it appear a factor τ in the right hand side and we get

( )( ) ( ) ( )( ) ( ) ( ) , , 0, , , l l l m n l m n Q T h b u t x h u t x C τ τ τ τ φ τ = -×Ω ≤ ∫ ∫ (3.15) with ( )( ) ( ) ( ) , , , h g t x g t x g t x τ τ + -
. Here C is a constant independent of , , l m n . Take 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1 Q Q Q s r w W s r Q w W s r Q τ τ τ τ τ φ φ φ φ φ φ - = -   ≤ -       ∫ ∫ ∫ ∫ ∫ ∫ Since ( ) ( ) ( )
) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) , , , , . l l l m n l m n W s r W s r s r s r s r h b u t x h u t x τ τ φ φ φ φ φ φ φ φ φ - = - - ≤ - - = Therefore (3.15) implies ( ) ( ) ( ) ( )( ) ( )( ) ( ) ( ) , , , 1 , , , 1 l 
l l l m n m n l m n Q Q h u t x Q w h u t x h u t x Q Q w Cw C Q τ τ τ τ τ τ τ τ τ φ φ τ τ   ≤         = ≤       ∫ ∫ ∫ ∫ (3.

Uniqueness of Entropy Solution in One Space Dimension

Stationary Problem

Let us stress that to our knowledge the problem of uniqueness is still open in multiple space dimensions. The definition of strong traces of the solution with respect to the lateral boundary of the domain Ω is possible if for example the diffusion term ( )

u φ is such that ( ) ( ) f u u φ -∇
is continuous up to the boundary ∂Ω . If there existed "sufficiently many" solutions (in the sense of [START_REF] Andreianov | Entropy Formulation of Degenerate Parabolic Equation with Zero-Flux Boundary Condition[END_REF], [START_REF] Bürger | On the Well-Posedness of Entropy Solution to Conservation Laws with a Zero Fux Boundary Condition[END_REF] 

( ) ( ) ( ) ( ) ( ) ( ) ( ) div in 0 on t b u f u u u s f u u + -∆ + = Ω    -∇ ⋅ = ∂Ω   φ ψ φ η (S)
where ( )

s L ∞ ∈ Ω .
Remark 3.6.

1) If, we suppose that ( )( ) b u ψ + is bijective, then performing a change of the unknown one puts the problem into the doubly nonlinear framework in the form

( ) ( ) ( ) div u f u u s φ + -∇ = .
Existence and uniqueness follows (see [START_REF] Andreianov | Entropy Formulation of Degenerate Parabolic Equation with Zero-Flux Boundary Condition[END_REF]).

2) If ( ) b u independent of t and u is solution of (S) it is also solution of (P)

with source term ( )

s b u - .
Then, we can deduce from Definition 2.1 and Proposition 2.3 their equivalent form for the stationary problem. Definition 3.7. A measurable function u taking values in [0, 1] is an entropy solution of (S) if u is a weak solution of (S) and ( ) ( )

1 u H φ ∈ Ω and for all ( ) ξ + ∞ ∈    , [ ] [ ] 0, ,1 c s k u u ∀ ∈ ∪ , ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1 d d d 0 
.

sign u k f u f k u x f k y x sign u k b u u s x φ ξ η ξ ψ ξ - Ω ∂Ω Ω - - -∇ ⋅∇ + ⋅ - - + - ≥ ∫ ∫ ∫   (3.17) Proposition 3.7. Let ( ) ξ ∞ 
∈    ; then for all [ ] ,1 s k u ∈ , for all D ∈   , for
all entropy solution u of (S), we have:

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 
( )

1 0 d d 1 d lim . A sign u k f u f k u D x f k D x sign u k b u u s x u u D σ φ σ φ ξ η ξ ψ ξ φ φ ξ σ - Ω ∂Ω → Ω Ω∩ - - -∇ + ⋅∇ + - - - + - ≥ ∇ ∇ - ∫ ∫ ∫ ∫   (3.18) 
In the next subsection, we give a Definition of so called "trace regular entropy solution"

Trace Regular Entropy Solution

Definition 3.8. An entropy solution is called trace regular solution of (P) if the normal component of the total flux

( ) ( ) ( ) f u u φ η -∇ ⋅ , has 1 L strong trace ( ) ( ) ( ) f u u γ φ -∇ at boundary of Lipschitz domain i.e.: for ( ) L ξ ∞ ∈ ∂Ω ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 
1 0 0 1 lim , d d 0. f u u x f u u x x σ ξ φ η γ φ η σ τ σ → ∂Ω -∇ ⋅ - -∇ ⋅ = ∫ ∫ (3.19)
The difficulty is that the regularized zero-flux boundary condition does not permit control over the tangential derivatives (with respect to ∂Ω ) of the solution. Thus, boundary flux traces of solution seem hard to obtain and we need the concepts of domains with Lipschitz deformable boundaries and traces (see [START_REF] Vasseur | Strong Traces for Solutions of Multidimensional Scalar Conservation Laws[END_REF], [START_REF] Gazibo Karimou | Degenerate Parabolic Equation with Zero Flux Boundary Condition and Its Approximations[END_REF] for more details).

Remark 3.9. Notice that if the normal component of the flux Recall (cf. [START_REF] Bénilan | Nonlinear Evolution Equations in Banach Spaces[END_REF]) that an operator A is accretive if

( ) 1 ˆ, 0 L Ω   - - ≥   β β α α for all ( ) ( ) ˆ, , , A ∈ β α β α
, where for ( )

1 , L ∈ Ω β α the bracket [ ] ( ) 1 .,. L Ω is defined by [ ] ( ) ( ) [ ] 1 0
, L sign

Ω Ω = = + ∫ ∫ β β α β α α .
If A is accretive and ( ) ( ) 

1 R I A L + = Ω λ for some 0 > λ , then A is m- accretive. Proposition 3.13. Let ( ) , , , b f u z A ∈ φ ψ , ( ) , , ˆ, b f u z A ∈ φ ψ . Then for ( ) + ∞ ∈ Ω  ξ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) [ ] ( )
A φ ψ is accretive in ( ) 1 L Ω .
2) For all λ sufficiently small, ( )

, , b f R I A + φ ψ λ contains [ ] ( ) 1 ; 0,1 L Ω . 3) ( ) [ ] ( ) 1 , , ; 0,1 b f D A L = Ω φ ψ . Proof. 1) Let ( ) , , , b f u z A ∈ φ ψ , ( ) , , ˆ, b f u z A ∈ φ ψ .
Applying Proposition 3.13 with 1 = ξ in (3.20) and the standard properties of the bracket (see [START_REF] Bénilan | Nonlinear Evolution Equations in Banach Spaces[END_REF]), we get 

( ) ( ( ) ( ) ( ) ( ) [ ] ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) [ ] ( ) 1 1 1 1 1 1 1 ˆˆˆ, ˆˆˆ, ˆˆˆ, . L L L L L L L b u b u u u u u s s u u b u b u u u z z b u b u u u u u z z Ω Ω Ω Ω Ω Ω Ω - + - ≤ - - ≤ - - + - + -     ≤ - + - + - - ψ ψ ψ ψ ψ ψ We deduce that [ ] ( ) 1 ˆ, 0 L u u z z Ω - - ≥ , so that , , b f A φ ψ is accretive. 2) For 0 > λ , consider the problem ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) in , 
( ) ( ) ( ) ( ) , , , b n n n f u n s b u u A - - ∈ φ ψ ψ . For [ ] [ ] 0, ,1 c s k u u ∈ ∪ , for all ( ) 0 ∞ ∈   ξ . We get ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) [ ] , 1 d 1 d d 0 b n n y n y a b n n n a a b sign u k f u f k u y n sign u k s b u u y f k y n - - -∂ ⋅ ∂ + - - - + ⋅ ≥ ∫ ∫ ∫ φ ξ ψ ξ η ξ σ (3.21)
For every i, one can construct n i ξ such that ( ) 

, i i n i a b → ξ 1 , as n → ∞ , supp ( ) , n i i i a b ⊂ ξ , 3 2 n y i L n ∞ ∂ ≤ ξ and 
1 n i ≡ ξ in ( ) , i i i n i n a b + - δ δ

  ) such that ( )u φ (resp ( ) b u )is strictly increasing only on [ ]

2 )

 2 assumptions on b and φ do not concern the case where the structure condition presence of the absorption term in the equation requires us to assume it to be increasing. Further, we suppose:The case of triply nonlinear problems of the form (P) has been first addressed by Ouaro and Touré (see[5]) and the references therein) and Ouaro [6].
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 1 Figure 1. Convection and diffusion flow.
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  solution, it is also entropy subsolution and entropy super solution of ( )

  locally uniformly bounded because they are monotone and converge pointwise to , b φ respectively. Therefore the right-hand side of the above inequality is bounded uniformly in l , thanks to (3.12) and the uniform bounds on the data 0 n u in ( ) L ∞ Ω . The uniform estimate of the left-hand side follows. We then estimate

  function, let w the modulus of continuity of φ on [ ] 0,1 and W be its inverse and set

(

  

16 ) 1 L

 161 the left-hand side of(3.16) tends to zero as 0 → τ , we deduce (3.14). ▄ The proof of Theorem 3.1 is a direct consequence of Theorem 3.2 and Theorem 3.3. Since, we have establish the proof of theorem 3.2, let us demonstrate Theorem 3.3. Proof of Theorem 3.3. There exists a function , k m n u constructed by means of the nonlinear semigroup theory (see, e.g., [3] [13]), such that ( ) below, we refer to Andreianov and Gazibo [3], Ammar and Wittbold [9], Ammar and Redwane [14] for details). One then shows that , of this entropy solution being already shown. Further, the whole set ( ) priori estimates of Lemma 3.4 and 3.5. We then pass to the limit in , order: first k → +∞ , then , n m → +∞ → +∞ . While letting k → +∞ , we use the fact that 1 , m n ψ -is Lipschitz continuous.The fundamental estimates for the semigroup solutions permit to show that ( ) Ω ; thus we get the strong precompactness of ( ) ( ) the limit u is an entropy solution of the original problem (P) (one can use Lemma 3.6 and 3.7 of[START_REF] Andreianov | Entropy Formulation of Degenerate Parabolic Equation with Zero-Flux Boundary Condition[END_REF]). ▄

  Sketched) The proof of Proposition 3.13 is actually contained in the proof of Theorem 3.17 below, due to Remark 2.2. Actually a simpler argument applies, because both ( ) ( ) Mathematics and Physics the context of the stationary problem (S). ▄ Somewhat abusively, we will write

  Notice that the notion of solution for ( ) S λ is like the Definition 3.7. Let exists u λ entropy solution of ( ) be the set of piecewise constant functions from[a, b] 

ξ

  in (3.21).

  entropy solution, then take in(3.17) 

  ingredient of the proof of Proposition 2.7 can from firstly, for all

	u	∈	[ ] [ ] 0, ,1 c s u u ∪	and for all	[ ] ,1 s k u ∈	, one has:

,

  M. Karimou Gazibo DOI: 10.4236/jamp.2023.114063 941 Journal of Applied Mathematics and Physics see Definition 3.9 below) having this regularity, uniqueness would follow. Unfortunate, we could obtain this regularity for this moment only for the stationary problem associate to (P) and in one space dimension. Now, we consider the stationary problem associated to (P)

Acknowledgements

The author is grateful to Boris Andreianov for her attention to this work and for very stimulating discussions. He also thanks Stanislas Ouaro for discussions and remarks.

u is also entropy solution of ( ) , P l m n in the sense of Definition 2.1 and converge to u entropy solution of (P) in L ∞ weakly star up to a subsequence. Furthermore: 

-∇ ⋅ is continuous function then it satisfy (3.19).

From now on, we will suppose that ( )

is a bounded interval of  .

We have this property Since ψ is bijective, the proof of Proposition 3.11 is identical to the proof of Proposition 4.8 of [START_REF] Andreianov | Entropy Formulation of Degenerate Parabolic Equation with Zero-Flux Boundary Condition[END_REF].

The result of this section is the following theorem:

Theorem 3.11. Suppose that ( )

is a bounded interval of  , then (P) admits a unique ( ) b u such that u is entropy solution of (P).

Abstract Evolution Problem

We present now the problem (P) under the abstract form of an evolution equation governed by an accretive operator, in order to apply classical results of the nonlinear semigroup theory (see, e.g., [START_REF] Bénilan | Nonlinear Evolution Equations in Banach Spaces[END_REF]).

Let us define the (possibly multivalued) operator

, \ entropy solution of S , with .

Consider the abstract equation:

For an operator 

Then, for all

a.e. on ( )

and therefore, it is also dense in [ ] ( )

Integral Solution and Uniqueness

Now, we can exploit the notion of integral solution (see, e.g., [7] [START_REF] Bénilan | Nonlinear Evolution Equations in Banach Spaces[END_REF]). Definition 3.15. Suppose that ( )

. and for all ,

In particular, the integral solution is unique. Theorem 3.17 . Let v be an entropy solution of (P) and u be an entropy solution of (S). Then

In particular, ( ) b v is an integral solution of (E).

Proof of Theorem 3.17 We adopt the doubling of variables of Kruzkhov [START_REF] Kruzhkov | First Order Quasilinear Equations with Several Independent Variables[END_REF] in the sense of [3] [18]. We compare regular solution and entropy solution. Keep in mind that by the result of [START_REF] Cances | On the Time Continuity of Entropy Solutions[END_REF] an entropy solution v of (S) is automatically time-continuous with values in [ ] ( )

an entropy solution of (P) and ( ) u u y = an entropy solution of (S). Consider nonnegative function ( )

Ω their complementaries in Ω . To simplify the notations, take

)

and integrate over c y Ω .

We get 

Next, following the idea of [START_REF] Andreianov | Entropy Formulation of Degenerate Parabolic Equation with Zero-Flux Boundary Condition[END_REF] we consider the test function

, where ( )

. Then, 

We use the change of variable ( ) ( ) ,,x y x z  with ( )

For z given,

( )

., 

( ) ( ) ( )

. : (  )

, for n large enough. Hence by the Lebesgue theorem, ( ) ( ) ( )

We have shown that the limit of n I equals zero. The passage to the limit in other terms in (3.29) is straightforward. Finally (3.29) gives for n → ∞ ( )

Now, the claim of Theorem 3.12 is a direct consequence of the fact that if u is the entropy solution then ( ) b u is an integral solution, and of Corollary 3.16.

▄
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