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Prediction of aircraft vibration environment using machine learning

  Stéphane Nachar 3 , Frédéric Giordano 4 This work is made possible through funding from Dassault Aviation. • Studying the vibration environment of an aircraft is fundamental to ensure the on-board equipment robustness with respect to vibrations up to 2000 Hz • Challenge: being predictive with the currently available models is a difficult task in the frequency band of interest • Proposed approach: to develop data-driven predictive models, based on flight test data and enhanced by physical models Context • Develop new insights of the data: better understand the vibration environment to improve specifications • Local model: predict the vibration environment at one point of the aircraft depending on the flight parameters • Global model: predict the vibration environment at any point of the aircraft (equipment & structure) Thesis Objectives 1 Université Paris-Saclay, CNRS, Laboratoire interdisciplinaire des sciences du numérique, 91405, Orsay, France 2 Université Paris-Saclay, CNRS, CentraleSupélec, Laboratoire EM2C, 91190, Gif-sur-Yvette, France 3 Dassault Aviation, Direction Générale Technique, 78, quai Marcel-Dassault, 92552 Saint-Cloud Cedex 300, France 4 Dassault Aviation, Direction des Essais en Vol, Base Aérienne 125, ZI le Tubé, 13800 Istres, France Kinematic lines prediction • Objective: predict engines kinematic lines, transpose ground test data to flight • Methods: gaussian process, physical transposition model • Results: 10% error with noise estimation • Applications: troubleshooting, unbalanced monitoring RMS prediction for a specific accelerometer, along the engine % rpm (left), reconstruction of a kinematic line amplitude (right). Data transformation • Objective: handle the high sample rate temporal data • Methods: Flight phases identification, Power Spectral Density (PSD), Root Mean Square (RMS) frequency bands compression, order analysis • Results: data takes up 0,01% of its original size Data transformations from the temporal domain. Structural propagation • Objective: predict vibrations environment at any point of the aircraft for a given source • Idea: propagation path identification • Methods: FE model + test data hybridization, graph signal processing techniques • Preliminary results: learned connections (graphs) • Future work: extension to new aircrafts (transfer learning) Empirical graph learned from test data (left), kinematic lines attenuation through the structure (right).

  broadband response generated from a high variety of sources, without separating them • Methods: multivariate multi-output ensemble model • Results: 1% (random split) / 10% (extrapolation split) error • Applications : anomaly detection, flight envelope extension RMS prediction for a specific accelerometer, projection along the dynamic pressure (left), reconstruction of a predicted spectrum (right).
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Measurements from an accelerometer close to an equipment are used to characterize the maximum vibrational levels it needs to withstand.